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Abstract: Advanced data augmentation techniques have demonstrated great success in deep learning
algorithms. Among these techniques, single-image-based data augmentation (SIBDA), in which a
single image’s regions are randomly erased in different ways, has shown promising results. However,
randomly erasing image regions in SIBDA can cause a loss of the key discriminating features,
consequently misleading neural networks and lowering their performance. To alleviate this issue, in
this paper, we propose the random slices mixing data augmentation (RSMDA) technique, in which
slices of one image are placed onto another image to create a third image that enriches the diversity
of the data. RSMDA also mixes the labels of the original images to create an augmented label for
the new image to exploit label smoothing. Furthermore, we propose and investigate three strategies
for RSMDA: (i) the vertical slices mixing strategy, (ii) the horizontal slices mixing strategy, and (iii)
a random mix of both strategies. Of these strategies, the horizontal slice mixing strategy shows
the best performance. To validate the proposed technique, we perform several experiments using
different neural networks across four datasets: fashion-MNIST, CIFAR10, CIFAR100, and STL10. The
experimental results of the image classification with RSMDA showed better accuracy and robustness
than the state-of-the-art (SOTA) single-image-based and multi-image-based methods. Finally, class
activation maps are employed to visualize the focus of the neural network and compare maps using
the SOTA data augmentation methods.

Keywords: adversarial attacks; class activation maps; convolutional neural network; data augmentation;
deep learning; image classification

1. Introduction

Deep learning (DL) has shown a significant performance gain in various domains, includ-
ing image classification [1–10], audio classification [11–17], and text classification [18–20]. This
performance gain is due to three major factors [21]: (i) deep neural network architectures’
progress, (ii) high computational power, and (iii) access to large-scale data [21]. Among
these factors, research on data has been the hot topic considering that DL convolutional
neural networks (CNNs) require a huge amount of data. The data is required for better
generalization, which, in turn, can prevent and reduce overfitting. Overfitting occurs
when the network performance on training data becomes very high, and the network
performance on unseen (validation) data worsens; alternatively, overfitting can be observed
when the training error is low but the unseen (validation) error is high. There are two major
categories of approaches to prevent overfitting. The first is model regularization [22], which
is a technique that selects the desired model’s complexity level, or the level at which the
model provides better generalization. Examples of this class are batch normalization [23]
and dropout [24]. The second category is data augmentation [21,25–27], which uses or
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re-mixes existing data to create new and more diverse training data. There are different data
augmentations (DAs), divided into two categories; (i) traditional data augmentations such
as flipping [21,25], cropping [21,25], resizing [25], and many more [21] and (ii) advanced
data augmentation. Recent research has demonstrated that traditional data augmentations
do not provide enough diversity for the highly parameterized CNN architectures, and, as
a result, they can overfit easily[27–31]. Thus, advanced data augmentations have ignited
the interest of the research community. Examples of advanced data augmentations are
random erasing (RE) [25], hide and seek (HS) [32], GridMask [33], CutOut [34], MixUp [35],
CutMix [36], RICAP [27], mixed example data augmentations [37], and many more [21].
Single-image deletion has been studied by many researchers with techniques such as RE,
HS, GridMask, and CutOut. Furthermore, multi-image mixing techniques have been stud-
ied, such as CutMix, MixUp, RICAP, and many others [21]. Single-image deletion and
multi-image mixing techniques are illustrated in Figure 1. Single-image deletion techniques
may lose features, consequently deteriorating the performance of DL models, and multi-
image mixing techniques have explored augmentations from different perspectives, but
none have considered data augmentation based on slice mixing. To the best of our knowl-
edge, we are the first to explore random slices mixing to check the effect of the proposed
data augmentation technique using different strategies, namely, the horizontal (row-wise)
slices mixing strategy, the vertical (column-wise) slices mixing strategy, and a mixture
of both, as shown in Figure 2. The research question we address is: can the proposed data
augmentation technique preserve the features’ information lost in single-image data augmentations?
The proposed technique obtains slices of one image and places them onto another image to
create a third image and enrich the variety of training images available. In our previous
work [38], we introduced only horizontal slice mixing and validated the approach for the
limited models without finding the optimal hyperparameters, such as the probability and
slice size. In this work, we are extending the previous work [38] to vertical slice mixing
and a mixture of both, and are using numerous bigger models in addition to finding the
optimal hyperparameters. Furthermore, robustness against adversarial attacks is checked,
and RSMDA class activation maps are compared with other SOTA methods to visualize
the focus of the models. In the remainder of the paper, the terms “network” and “model”
are used interchangeably.

The rest of the paper is organized as follows: Section 2 describes the literature review;
Section 3 explains the proposed method; Section 4 provides the experimental details, results,
adversarial attacks, and class activation maps; and, finally, Section 5 concludes the work.

Figure 1. Comparison of different data augmentations against the proposed RSMDA.
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(a) Strategy 1: Random Slices Mixing Data Augmentation Row-Wise (RSMDA-R)
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(b) Strategy 2: Random Slices Mixing Data Augmentation Column-Wise (RSMDA-C)
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(c) Strategy 3: Random Slices Mixing Data Augmentation Row–Column-Wise (RSMDA-RC)

Figure 2. Three strategies for Random Slices Mixing Data Augmentation (RSMDA).

2. Related Work

The main purpose of using data augmentation is to prevent a model from overfitting.
RSMDA is broadly related to regularization as data augmentation is itself an explicit form
of regularization [25,26,39,40]. We consider related works that fall into two main categories:
(i) dropout as a regularization technique and (ii) data augmentation. These will be discussed
in what follows.

2.1. Dropout

A lot of research has been completed on dropout [24,41–44]. Dropout [24,41], intro-
duced by Hinton et al., is a regularization technique, in which hidden and visible neural
network neurons are randomly set to zero with some probability and are dropped during
training. The advantage of this technique is that it averages several smaller sub-networks to
not only boost the generalization capability but also to improve the robustness against ad-
versarial attacks. With the passage of time, it was noticed that dropout regularization works
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well with densely or fully connected layers, but it does not perform well with convolutional
layers (CLs) [45]. There are two main reasons for this not working well with CLs: (i) CLs
have far fewer parameters than densely connected layers and need much less regularization.
(ii) On the image level, if we drop out the pixel in the image, the remaining neighboring
pixels will provide enough information; therefore, performing regularization does not have
the same effect as it has on the model level in the case of fully connected layers. Later on,
many variants of dropouts have been proposed to improve the effectiveness of a simple
dropout. In [42], an adaptive dropout is proposed as an extension of dropout, where the
probability of a hidden neuron being discarded is calculated using a binary belief network.
Technically, there are different probabilities for different neurons. DropConnect [43] is
another extension of dropout that randomly selects the subsets of weights and sets them to
zero instead of setting the subset of the activation to zero. SpatialDropout [45] is another
extension of dropout that randomly ignores whole feature maps instead of individual
pixels, which helps cater to the problem of neighboring pixels passing on redundant infor-
mation. In stochastic pooling [44], parameter-free activations are selected during training
from a multinomial distribution and used with SOTA regularization techniques. Stochastic
pooling can be combined with data augmentation or dropout.

2.2. Data Augmentation

Data augmentation is another regularization technique. Technically, data augmen-
tation enlarges the number of training samples using existing training dataset samples;
therefore, it increases the performance of deep learning models. Most data augmentation
techniques create different flavors of existing samples during training, thereby providing
many different views of such samples to increase the diversity of data. Recently, there
has been a lot of work performed on data augmentation [21,25,27,32–34,37]. For a clearer
understanding of the different aspects involved, we divide the related data augmentation
approaches into two categories: (i) single-image-based data augmentation and (ii) multi-
image-based data augmentation. Each of them is discussed separately in the remainder of
this section.

2.2.1. Single-Image-Based Data Augmentation (SIBDA)

Single-image-based data augmentation refers to the data augmentation approaches
in which only a single image is required for augmentation. This is the case for traditional
augmentation approaches, such as flipping, rotating, etc. These days, SIBDA techniques
have advanced from occlusion perspectives, such as random erasing, CutOut, and many
more [21]. Closely related SIBDAs are discussed below.

• CutOut: CutOut [34] is data augmentation in which a random part of the image is cut
with a square and filled with 0, 255, or the mean of the dataset during training. It was
introduced with the purpose of recognizing partially or fully occluded object(s).

• Random erasing: Random erasing (RE) [25] is a data augmentation technique in
which a rectangular random region of the image is selected at random and erased with
a random value with the aim of minimizing overfitting. During training, different
occlusion levels are performed not only to improve the performance of the neural
network but also to improve the robustness of the model. RE was designed to deal
with occlusion in images, thereby forcing the model to learn the erased features. Here,
occlusion is where some part(s) of the image is not clear. RE seems similar to CutOut,
but the key difference is that RE randomly determines whether to mask out or not,
and it determines the aspect ratio and size of the masked region. On the other hand,
CutOut does not consider the aspect ratio.

• Hide and Seek: Hide and seek (HS) [32] is another data augmentation technique in
which the image is divided into squares of the same size as a grid. During the training
at each step, a random number of squares is hidden to force the neural network to
focus on the most discriminated parts and learn the relevant features. At each epoch,
it gives a different view of the image being modeled to learn the important features.
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• GridMask: GridMask [33] is a type of data augmentation in which uniform masking is
applied to mask out regions in the image and the mask square size changes at each step.
Previously discussed data augmentations, such as a CutOut, RE, and HS, randomly
erase the region(s) in which there are high chances that either an object is removed
or contextual information is lost, which can potentially harm the performance of the
model. To trade off between losing contextual information or object removal and
performance, GridMask is introduced.

All of the above SIBDAs have higher chances of losing useful features and, at the same
time, are not taking advantage of label smoothing. Label smoothing refers to whatever
portion or percentage of the image is erased or mixed; corresponding labels should be
mixed in the same ratio. To cater to these features or to information loss, we propose a
novel approach named random slices mixing data augmentation (RSMDA). The RSMDA
approach is different from SIBDAs because, firstly, it requires two images, and, secondly, it
enjoys the benefits of label smoothing. It is logically correct that, whatever portion of the
images have mixed, the corresponding labels should be mixed accordingly, as performed
in [27,35,36].

2.2.2. Multi-Image-Based Data Augmentation

Multi-image-based data augmentation (MIBDA) refers to the data augmentation
category where it requires more than one image to create the augmented image. Several
methods exist for MIBDA, such as MixUp [35], CutMix [36], RICAP [27], mixed example
data augmentations [37], and many more [21]. We have limited the MIBDA techniques’
literature review so that is closely related to the proposed technique.

• MixUp: MixUp [35] is a data augmentation that creates a new augmented image
using a weighted combination of two images, and label smoothing is performed
simultaneously. It demonstrated impressive performance on a variety of tasks.

• CutMix: CutMix [36], a data augmentation method, is introduced to deal with the
problems of information loss and the inefficiency of regional dropout methods. In
CutMix, a random region of one image is replaced with a patch from another image,
and the corresponding labels are mixed as well. It demonstrates high regularization in
a wide range of tasks. This method uses only two images.

• Random Image Cropping and Patching Data Augmentation for Deep CNNs (RI-
CAP): RICAP [27] is another data augmentation technique that is similar to CutMix
except that it uses four images. RICAP further increases the diversity of the train-
ing data, enabling it to learn more features; it has shown good performance. More
importantly, the labels of the four images are also mixed.

• Improved Mixed Example Data Augmentation: Improved mixed example data aug-
mentation (IMEDA) [37] is another data augmentation that explores augmentation
to check the importance of linearity using non-label preserving data augmentations
in its search space. IMEDA explores the number of data augmentations and shows a
massive performance gain over the SOTA methods.

All of the MIBDA techniques have explored data augmentation from different mixing
points of view, which is closely relevant to RSMDA. The key difference between the previous
works and RSMDA is that none of these previous data augmentations individually explored
data augmentation from a slice mixing point of view. To the best of our knowledge, we are
the first to explore data augmentation from a slice mixing point of view in detail. We make
the following contributions to this work.

• We propose a novel data augmentation technique named random slices mixing data
augmentation (RSMDA).

• We propose and investigate three different RSMDA strategies, namely, horizontal (row-
wise) slice mixing, vertical (column-wise) slice mixing, and a combination of both.
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• We validate this approach using different models’ architectures across different datasets.
RSMDA is not only effective in its accuracy performance but also robust against ad-
versarial attacks.

• We investigate the RSMDA hyperparameters in detail, provide analysis, and compare
them with SOTA augmentations using class activation maps (CAMs).

• Finally, we provide the full source code for RSMDA in an open repository: https:
//github.com/kmr2017/Slices-aug (accessed on 8 December 2022).

3. Proposed Method

Let x ∈ RW×H×C and y represent a training image and its label, respectively. The main
idea of RSMDA is to create a new training image with its label (x̃, ỹ). For that purpose, we
select two training samples with corresponding labels, (x1, y1) and (x2, y2). A combination
of these training samples can be defined as:

x̃ = M� x1 + (1−M)� x2 (1)

Additionally, their labels’ combination is defined as:

ỹ = λ� y1 + (1− λ)� y2 (2)

where M ∈ [0, 1]W×H is a binary mask that is filled with 0 and 1, where 0 and 1 are for
excluding and including the image pixel, respectively. The symbol � shows element-wise
multiplication, and λ is the combination ratio of the two images and their labels, which is
sampled from a beta distribution, such as CutMix [36] or MixUp [35]. In Beta(α, α), we set
alpha to 1, following previous data augmentation, and λ is distributed technically from the
normal distribution.

For sampling the binary mask M, we randomly obtain slices of the size S in a certain
range. To obtain the total number of slices, we divide W or H by S.

In the case of the total number of column slices:

TotalSlices = bW/Sc (3)

In the case of the total number of row slices:

TotalSlices = bH/Sc (4)

The next step is to ascertain how many slices should be mixed. To obtain this, we
multiply the total slices by λ, which gives the number of slices to be mixed.

Nmix = bλ× TotalSlicesc (5)

In Equation (5), Nmix is the number of slices to be selected from the target sample and
pasted to the source image. To do so, we fill Nmix number of slices in mask M with 1 to
select the slices from the target image. In order to generate an augmented sample pair
(x̃, ỹ), the selected slices from the target image are pasted to a source image. Then, the (x̃, ỹ)
augmented pair is used for training the model.

Furthermore, we propose and investigate the three different strategies of the proposed
technique. Each of them is discussed below:

• Random slices mixing row-wise (RSMDA-R): In this strategy, we obtain Nmix num-
ber of slices horizontally from the target image and paste it to the source image. Their
corresponding labels are also mixed following the whole process discussed in Section 3.
RSMDA-R is shown in Figure 2a.

• Random slices mixing column-wise (RSMDA-C): This is another strategy that we
explore, in which we follow the same method used in RSMDA-R, except that we
obtain the slices vertically, as shown in Figure 2b.

https://github.com/kmr2017/Slices-aug
https://github.com/kmr2017/Slices-aug
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• Random slices mixing row–column-wise (RSMDA-RC): This is the third strategy.
We apply both RSMDA-R and RSMDA-C based on binary randomness to each learning
step, as shown in Figure 2c.

4. Experimental Results

In this section, we discuss the experimental setup, the dataset, and the results.

4.1. Experimental Setup

In our work, we used many network types, such as Resnet [40], VGG [26], and Pyra-
midNet [46]. For a fair comparison with SIBDAs, we employed the same parameters as
in [25]; this work [25] used 300 epochs, an initial learning rate of 0.1, continuous reduction
by 10 at certain epochs (100, 150, 175, and 190), and a batch size set to 64. The probability of
performing RSMDA was set to 0.5, similar to RE, and we also checked 10 different proba-
bilities, as mentioned in Section 4.3.1. We re-performed the baseline and RE experiments
for the fashionMNIST dataset as the original experiments [25] performed for the baseline
and RE were on the old fashionMNIST dataset. The issue with the old fashionMNIST
dataset is that a few test and training images overlapped with each other, as discussed
in the GitHub repository (https://github.com/zhunzhong07/Random-Erasing/issues/9,
accessed on 1 December 2022) of RE [25]. For a fair comparison with MIBDAs, we used
the same setting as was mentioned in CutMix [36], where the epochs were 300, the batch
size was 128, the initial learning rate was 0.1, the momentum was 0.9, and the learning rate
decayed by 10 after every 30 epochs. We performed all of the experiments using a PyTorch
module with 2 NVIDIA GetForce RTX 2080 Ti GPUs. Similar to the previous settings, each
experiment was repeated at least three times unless otherwise mentioned.

4.2. Datasets

To validate the proposed approach, four different datasets were used. The datasets
include color datasets of different sizes of images, such as CIFAR10 [47], CIFAR100 [47], and
STL10 [48]. Then, a grayscale dataset, such as fashionMNIST [49] is used for the experiments.

4.2.1. FashionMNIST

The fashionMNIST dataset consists of 60,000 training and 10,000 test images. Each
image is in grayscale and has the dimensions of 28 × 28, and there are 10 clothing classes
in this dataset, namely, t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
and ankle boot.

4.2.2. CIFAR10 and CIFAR100

Both the cifar10 and cifar100 datasets have an equal number of training and test
images. Each dataset has 50,000 training and 10,000 test images, and each image is an RGB
color image and has the dimensions of 32× 32× 3. There are 10 and 100 classes in the
cifar10 and cifar100 datasets, respectively.

4.2.3. STL10

We shifted the experiments to slightly greater dimensions, so we chose the STL10
dataset. It has only 500 training images and 8000 test images. Each image is in RGB color
and of the dimensions 96× 96× 3. There are 10 classes in this dataset. Images in this
dataset are taken from one of the biggest datasets, ImageNet [39].

4.3. Results
4.3.1. Hyperparameter Study

In our approach, we find the best probability of performing RSMDA and the best slice
size using the ResNet20 model and the fashionMNIST dataset. In order to find the best
probability, we performed experiments using different probabilities starting from 0.1 to 1.0
with 0.1 intervals, and it was found that 0.5 was the best probability. To find the optimal

https://github.com/zhunzhong07/Random-Erasing/issues/9
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slice size, we investigate a slice size of two as the minimum, one-third of the image height
or width as the maximum, and a random slice size between the minimum and maximum
with each batch of images. The best parameters were found to be 0.5 for the best probability,
and the random slice size was the best slice size, as shown in Figure 3, in which the x-axis,
the three different color lines, and the y-axis show the probability of performing RSMDA,
the slice size, and accuracy, respectively. For all of the remaining experiments, we used the
best parameters.

Figure 3. Hyperparameters: probability and slice size effect on accuracy.

Note, here, accuracy is defined as the percentage of correctly predicted samples, which
is mathematically defined as:

A = 100 ∗ C/T (6)

where A, C, and T are the accuracy percentage, the number of correctly predicted samples,
and the total number of samples, respectively. Therefore, higher accuracy is preferred. The
error rate is the percentage of incorrectly predicted samples and can be defined as:

E = 100− A (7)

where E is the error rate, and A is the accuracy percentage. Therefore, a lower error rate
is preferred.

We performed a number of experiments using different networks and datasets with
three strategies. First, we compare our three strategies’ results with random erasing data
augmentation and the baseline of different models, as shown in Table 1, where RSMDA(R),
RSMDA(C), and RSMDA(RC) show RSMDA row-wise (horizontally), RSMDA column-
wise (vertically), and RSMDA row–column-wise, respectively. The error rate is reported,
and a lower rate is better. In Table 1, RSMDA(R) has better performance than the baseline
and random erasing in almost all experiments. In fashionMNIST, RSMDA(C) showed the
best performance of all other methods. In the case of the CIFAR10 dataset, RSMDA(R) was
more successful, especially using the VGG network type. Using the CIFAR100 dataset,
again, RSMDA(R) showed better performance than random erasing, and it showed better
performance using the VGG network type. In the case of the STL10 dataset, RSMDA(R) was
a winner compared to the baseline and random erasing. Overall, RSMDA(R) has shown a
huge performance improvement, and we consider it the best for the rest of our experiments
using the optimal hyperparameters discussed in Section 4.3.1.
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Table 1. Performance comparison of the proposed approach with random erasing and baseline. First
best and second best performances are highlighted in blue and red color, respectively.

Models Baselines RE RSMDA (R) RSMDA(C) RSMDA(RC)
Fashion-MNIST

ResNet20 6.21± 0.11 5.04 ± 0.10 4.91 ± 0.12 4.72 ± 0.13 4.76 ± 0.06
Resnet32 6.04 ± 0.13 4.84 ± 0.12 4.81 ± 0.17 4.65 ± 0.15 4.81 ± 0.12
Resnet44 6.08 ± 0.16 4.87 ± 0.1 4.07 ± 0.14 4.784 ± 0.01 4.9 ± 0.25
Resnet56 6.78 ± 0.16 5.02 ± 0.11 5.00 ± 0.19 5.00 ± 0.2 5.09 ± 0.59

CIFAR10
Resnet20 7.21 ± 0.17 6.73 ± 0.09 7.18 ± 0.13 7.38 ±0.254 7.48 ± 1.08
Resnet32 6.41 ± 0.06 5.66 ± 0.10 6.31 ± 0.14 6.06 ± 0.101 6.21 ± 0.76
Resnet44 5.53 ± 0.0 5.13 ± 0.09 5.09 ± 0.10 5.26 ± 0.262 5.51 ± 0.06
Resnet56 5.31 ± 0.07 4.89 ± 0.0 5.02 ± 0.11 5.28 ± 0.02 5.97 ± 0.47
VGG11 7.88 ± 0.76 7.82 ± 0.65 7.80 ± 0.65 7.82 ± 0.27 7.81 ± 0.57
VGG13 6.33 ± 0.23 6.22 ± 0.63 6.18 ± 0.54 6.31 ± 0.266 6.20 ± 0.38
VGG16 6.42 ± 0.34 6.21 ± 0.76 6.20 ± 0.34 6.26 ± 0.196 6.35 ± 0.76

CIFAR100
Resnet20 30.84 ± 0.19 29.97 ± 0.11 30.18 ± 0.27 30.28 ± 0.33 30.46 ± 0.79
Resnet32 28.50 ± 0.37 27.18 ± 0.32 27.08 ± 0.34 28.22 ± 0.22 28.42 ± 0.12
Resnet44 25.27 ± 0.21 24.29 ± 0.16 24.49 ± 0.23 25.21 ± 0.57 25.08 ± 0.13
Resnet56 24.82 ± 0.27 23.69 ± 0.33 23.35 ± 0.26 24.33 ± 0.12 24.91 ± 0.57
VGG11 28.97 ± 0.76 28.73 ± 0.67 28.26 ± 0.75 28.92 ± 0.33 28.29 ± 0.43
VGG13 25.73 ± 0.67 25.71 ± 0.54 25.71 ± 0.56 25.72 ± 0.26 25.72 ± 0.42
VGG16 26.64 ± 0.56 26.63 ± 0.75 26.61 ± 0.65 26.63 ± 1.77 26.63 ± 0.66

STL10
VGG11 22.29 ± 0.13 22.27 ± 0.21 20.68 ± 0.23 21.49 ± 0.02 20.79 ± 0.33
VGG13 20.64 ± 0.26 20.18 ± 0.23 19.91 ± 0.92 19.60 ± 0.12 19.7 ± 0.23
VGG16 20.62 ± 0.34 20.12 ± 0.65 20.09 ± 0.23 20.35 ± 0.03 20.49 ± 0.44

4.3.2. Classification Results

We compare our proposed approach with different dropout methods and data aug-
mentations using the best hyperparameters and the proposed strategy, as shown in Table 2.
In this comparison, we employed a large model, PyramidNet-200, with 26.8 million pa-
rameters using the CIFAR100 dataset. Our approach, RSMDA(R), outperformed all of the
aforementioned dropout methods and SOTA multi-image methods, except for CutMix, but
it showed a competitive performance as compared to CutMix. It placed second showing
error rates for top-1 and top-5 of 15.03 and 3.01, respectively. We compare the results based
on the top-1 error % by following the trend as mentioned in Table 5 of the work [36].

Table 2. Comparison of state-of-the-art regularization methods on CIFAR-100. First best and second
best performances are highlighted in blue and red color, respectively.

PyramidNet-200 (α̃ = 240) Top-1 Top-5
(Params: 26.8 M) Err (%) Err (%)

Baseline 16.45 3.69
+ StochDepth [50] 15.86 3.33
+ Label smoothing (ε = 0.1) [51] 16.73 3.37
+ Cutout [34] 16.53 3.65
+ Cutout + Label smoothing (ε = 0.1) 15.61 3.88
+ DropBlock [8] 15.73 3.26
+ DropBlock + Label smoothing (ε = 0.1) 15.16 3.86
+ Mixup ( α = 0.5) [35] 15.78 4.04
+ Mixup ( α = 1.0) [35] 15.63 3.99
+ Manifold Mixup ( α = 1.0) [52] 16.14 4.07
+ Cutout + Mixup ( α = 1.0) 15.46 3.42
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Table 2. Cont.

PyramidNet-200 (α̃ = 240) Top-1 Top-5
(Params: 26.8 M) Err (%) Err (%)

+ Cutout + Manifold Mixup (α = 1.0) 15.09 3.35
+ ShakeDrop [53] 15.08 2.72
+ RSMDA(R) 15.03 3.01
+ CutMix 14.47 2.97

We also compare our method with deeper and larger models, such as PyramidNet and
ResNet110. The proposed approach showed competitive results on CutMix and superior
results to the baseline for both of these models, as shown in Table 3.

4.3.3. Adversarial Attacks

Deep networks are fooled by adding a small unrecognizable perturbation to the input
data, and the perturbed data mislead the network to degrade the performance; this whole
mechanism is referred to as an adversarial attack [54,55]. A simple way to prevent an
attack is to generate an unseen input sample [56]. For adversarial attacks, we assume
that the attacker has complete information about the model, i.e., a white box attack. We
use different pre-trained (all models trained by us) ResNet models for cifar10, cifar100,
and fashionMNIST. In this section, we evaluate the robustness of the proposed approach
due to directly dealing with the input data following the previous methods [36]. In order
to check the robustness, we compare our three strategies with the baseline and random
erasing performance against two adversarial attacks, namely, the fast gradient sign method
(FGSM) [54] and the FGSM variant, fast gradient magnitude (FGM) [54,57], was proposed
to alleviate the issue of noise perceptibility [57]. These two attacks, FGSM and FGM,
were used to check robustness using different datasets and models. In all adversarial
experiments, we used the baseline, random erasing, and the model trained by the three
proposed strategies against these attacks using different values of epsilon [54], i.e., [0.05,
0.1, 0.15, 0.2, 0.25, 0.3]. In Figures 4–6, the x-axis values and y-axis values show epsilon
and accuracy, respectively. For the CIFAR10 dataset, we check the robustness against three
strategies and compare it with the baseline and random erasing using different trained
models of ResNet. In Figure 4, it can be seen that in the case of ResNet20 and ResNet44,
interestingly, RSMDA(C) was more robust against both attacks than the others, while in
the case of ResNet20 and ResNet56, RSMDA(R) was the winner. Overall, the proposed
approach beats the baseline and random erasing.

Table 3. Lighter architectures on CIFAR-100. First best and second best performances are highlighted
in blue and red color, respectively.

Model Params Top-1 Err(%) Top-5 Err (%)

PyramidNet-110 (α̃ = 64) [46] 1.7M 19.85 4.66
PyramidNet-110+ RSMDA 1.7M 19.29 4.42
PyramidNet-110+ CutMix 1.7M 17.97 3.83

ResNet-110 1.1M 23.14 5.95
ResNet-110+ RSMDA 1.1M 22.87 5.93
ResNet-110+ CutMix 1.1M 20.11 4.43

For the CIFAR100 dataset, we repeat the same experiment pattern to check the behavior
of the robustness using a dataset with a large number of classes. We checked the robustness
using the CIFAR100 dataset. The pattern was very much different than what we discussed
in the cifar10 case. As shown in Figure 5, RSMDA(RC) was more robust using the ResNet20
and ResNet56 models, and RSMDA(C) was more successful using ResNet32 and ResNet44.
In all of the models’ cases, the proposed approach shows more robustness compared to the
baseline and random erasing.
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To check the behavior of the robustness of the grayscale dataset, we use the trained
models on fashionMNIST against these adversarial attacks. We repeated the same stream of
experiments, as shown in Figure 6. Surprisingly, the fashionMNIST case showed very differ-
ent behavior from what was discussed in the cifar10 and cifar100 cases. In Figure 6, the over-
all RSMDA(RC) is more robust using the ResNet20 and ResNet44 models, and RSMDA(R)
is more robust with ResNet32. The proposed approach also showed more robustness with
the grayscale dataset.
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Figure 4. Comparison of DAs against different adversarial attacks for CIFAR10 dataset using
different models.



Appl. Sci. 2023, 13, 1711 12 of 17

FGSM attack FGM attack

0.05 0.1 0.15 0.2 0.25 0.3
Different epsilons

0.00

0.02

0.04

0.06

0.08

0.10

0.12

A
cc

u
ra

cy

Comparison of DAs using Resnet20 against FGSM attack for cifar100

Baseline
Random Erasing
RSMDA (R)
RSMDA(C)
RSMDA(RC)

0.05 0.1 0.15 0.2 0.25 0.3
Different epsilons

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
cc

u
ra

cy

Comparison of DAs using Resnet20 against FGM attack for cifar100

Baseline
Random Erasing
RSMDA (R)
RSMDA(C)
RSMDA(RC)

0.05 0.1 0.15 0.2 0.25 0.3
Different epsilons

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
cc

u
ra

cy

Comparison of DAs using Resnet32 against FGSM attack for cifar100

Baseline
Random Erasing
RSMDA (R)
RSMDA(C)
RSMDA(RC)

0.05 0.1 0.15 0.2 0.25 0.3
Different epsilons

0.00

0.02

0.04

0.06

0.08

0.10

A
cc

u
ra

cy

Comparison of DAs using Resnet32 against FGM attack for cifar100

Baseline
Random Erasing
RSMDA (R)
RSMDA(C)
RSMDA(RC)

0.05 0.1 0.15 0.2 0.25 0.3
Different epsilons

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

A
cc

u
ra

cy

Comparison of DAs using Resnet44 against FGSM attack for cifar100

Baseline
Random Erasing
RSMDA (R)
RSMDA(C)
RSMDA(RC)

0.05 0.1 0.15 0.2 0.25 0.3
Different epsilons

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
cc

u
ra

cy

Comparison of DAs using Resnet44 against FGM attack for cifar100

Baseline
Random Erasing
RSMDA (R)
RSMDA(C)
RSMDA(RC)

0.05 0.1 0.15 0.2 0.25 0.3
Different epsilons

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

A
cc

u
ra

cy

Comparison of DAs using Resnet56 against FGSM attack for cifar100

Baseline
Random Erasing
RSMDA (R)
RSMDA(C)
RSMDA(RC)

0.05 0.1 0.15 0.2 0.25 0.3
Different epsilons

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
cc

u
ra

cy

Comparison of DAs using Resnet56 against FGM attack for cifar100

Baseline
Random Erasing
RSMDA (R)
RSMDA(C)
RSMDA(RC)

Figure 5. Comparison of DAs against different adversarial attacks for CIFAR100 dataset using
different models.

Overall, the proposed approach is more robust. In rare cases, random erasing showed
more robustness, such as with ResNet44 at an epsilon value of 0.05 in the cifar100 case (as
shown in Figure 5), but, with an increase in the value of epsilon, it becomes less robust.
The proposed approach’s robustness not only checks in the case of different numbers of
classes but also checks in different color domain datasets. In both the grayscale and color
datasets, it significantly improves the robustness against adversarial attacks, except in some
very rare cases.
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Figure 6. Comparison of DAs against different adversarial attacks for fashionMNIST dataset using
different models.

4.3.4. Class Activation Map (CAM)

Class activation maps (https://github.com/chaeyoung-lee/pytorch-CAM [58–60],
accessed on 10 September 2022) highlight different object regions of interest. They are
plotted from the final layer of the convolutional neural network [59]. They help us to
know where the model focuses more to ascertain whether the model is actually learning
the discriminating features or not. We compare this with relevant data augmentations,
including CutOut, CutMix, and MixUp, to check whether RSMDA is really learning the
discriminating features for two objects from their respective incomplete views. For this
purpose, first, we take two images, i.e., the cat and dog shown in the first row of Figure 7. In the
second row of Figure 7, we prepare the augmented output as an input for the model. Then,
we use ResNet50 (https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/, ac-
cessed on 10 September 2022), a pre-trained model, to obtain the CAM for each augmented
input. In the third and fourth rows of Figure 7, only the CAM for the dog and the CAM
with the dog are shown, respectively, to clearly show where the model focuses more.

https://github.com/chaeyoung-lee/pytorch-CAM
https://pytorch.org/hub/nvidia_deeplearningexamples_resnet50/
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The same is repeated for the cat class in the fifth and sixth rows. RSMDA suggests that it
learns features that are clear to the model, i.e., the tail of the dog where the model focuses
more on dog classification. We believe such tiny features are quite helpful for models to
recognize objects. Among these four augmentations, CutMix has a strong capability to
capture features, as shown in the third column of Figure 7. From the experiments, it seems
that RSMDA has the capability to learn tiny or small features that are quite helpful for
models in recognizing objects.
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Figure 7. Data augmentation visualizations comparison.
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5. Conclusions

In conclusion, we are the first to propose a novel data augmentation technique, named
random slices mixing data augmentation (RSMDA), to deal with feature loss problems in
single-image data augmentation techniques. RSMDA mixes two images uniquely in a sliced
way. Furthermore, we proposed and investigated three different strategies of RSMDA,
namely, RSMDA row-wise (horizontally), RSMDA column-wise (vertically), and RSMDA
row–column-wise based on binary randomness. Among these strategies, RSMDA row-wise
showed a significant performance in terms of accuracy and robustness. We also found
the best parameters of the proposed approach: slice size and probability. Using different
datasets and models, overall, RSMDA has shown better performance than single- and
multi-image data augmentation methods. We also checked the robustness of RSMDA in
detail, and it improves robustness over the baseline and random erasing. Finally, we drew
CAM to analyze the model focus, and it was found that the model focuses on tiny and quite
helpful features. These tiny features are very important in object recognition, so RSMDA
has its importance in object recognition. In the future, we will explore different slice shapes,
such as triangular, circular, and elliptical, rather than only rectangular. Additionally, we
may explore the same approach for only salient parts of the images.
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