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Abstract: Emotion recognition in multi-party conversations (ERMC) is becoming increasingly popu-
lar as an emerging research topic in natural language processing. Recently, many approaches have
been devoted to exploiting inter-dependency and self-dependency among participants. However,
these approaches remain inadequate in terms of inter-dependency due to the fact that the effects
among speakers are not individually captured. In this paper, we design two hypergraphs to deal
with inter-dependency and self-dependency, respectively. To this end, we design a multi-hypergraph
neural network for ERMC. In particular, we combine average aggregation and attention aggregation
to generate hyperedge features, which can allow utterance information to be better utilized. The
experimental results show that our method outperforms multiple baselines, indicating that further
exploitation of inter-dependency is of great value for ERMC. In addition, we also achieved good
results on the emotional shift issue.

Keywords: emotional shift; emotion recognition in conversations; emotion recognition in multi-party
conversations

1. Introduction

Emotion recognition in conversations (ERC) has attracted more and more attention
because of the prevalence of dialogue behavior in various fields. The primary purpose
of ERC is to recognize the emotion of each utterance in the dialogue. The recognized
emotion can be used for opinion mining on social media, such as Facebook and Instagram,
building conversational assistants, and conducting medical psychoanalysis [1–4]. However,
ERC, especially emotion recognition in multi-party conversations (ERMC), often exhibits
more difficulties than traditional text sentiment analysis due to the emotional dynamics
of dialogue [4]. There are two kinds of emotional dependencies among the participants
in a dialogue—inter-dependency and self-dependency. Self-dependency is the influence
of what the speaker says on the current utterance. Inter-dependency is the influence of
what others say on what the current speaker says. Therefore, identifying the emotion of an
utterance in a multi-party dialogue depends not only on the utterance itself and its context,
but also on the speaker’s self-dependence and the inter-dependency [5,6].

Existing work on emotion recognition in conversations can be roughly divided into
two categories: that based on recurrent neural networks and that based on graph neural
networks. Some recent works based on recurrent neural networks [3,7–13] began to focus
on conversational context modeling and speaker-specific modeling, and some works [14]
have even carried out multi-task learning for speaker-specific modeling on this basis.
They tried to deal with speaker-dependent influences through speaker-specific modeling
and conversational context modeling, but they could use other speakers’ utterances to
influence the current utterance well. Meanwhile, some works based on graph neural
networks [5,6,15–18] have used relational graph convolutional networks (RGCNs) [19] to
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distinguish among different speaker dependencies, and some have even used conversa-
tional discourse structure [6] or commonsense knowledge [18] to extend relationships
among utterances. These models are intended to establish more perfect utterance relations
and then aggregate according to the relations to form the influence of the surrounding utter-
ances on the current utterance. However, the performance of such models is affected by the
type and quantity of inter-utterance relations. Moreover, an emotional change in a speaker
may be caused by the joint influence of multiple utterances of multiple speakers. This
influence may also be caused by the interactions of utterances in different relationships. So,
inter-dependency is more complex than self-dependency. We believe that it is necessary to
build a graph network alone to model inter-dependency, especially for multi-dialogue, and
this can allow better identification of the problem of emotional shifts between consecutive
utterances of the same speaker.

Conventional graph neural networks focus on pairwise relationships between objects
in the constructed graphs. In many real-world scenarios, however, relationships among
objects are not dyadic (pairwise), but rather triadic, tetradic, or higher. Squeezing the
high-order relations into pairwise ones leads to information loss and impedes expressive-
ness [20]. So, we used a hypergraph neural network [21] to deal with two kinds of speaker
dependencies instead of using a conventional graph neural network. According to the
hypergraph [21] structure, we know that a hyperedge may contain multiple utterances,
and an utterance may belong to multiple hyperedges. We let each utterance generate a
hyperedge. The nodes on the hyperedge are the corresponding current utterance and the
specific context of the current utterance. Hypergraph neural networks [21] can use the
structure of a hypergraph to deal with the influences of multiple utterances from multiple
speakers on an utterance, that is, they use multiple surrounding utterances to produce
an influence on the current utterance. By performing a node–edge–node transformation,
the underlying data relationship can be better represented [21], and more complex and
high-level relationships can be established among nodes [22]. Previous work has shown
that speaker-specific information is very important for ERMC [3,6]. Therefore, the way
of using hypergraphs for speaker-specific modeling of ERMC is a very important issue.
Second, the current utterance may be influenced by utterances from different speakers.
Therefore, the way of using hypergraphs for non-speaker-specific modeling of ERMC is
also a very important issue.

In this paper, we construct two hypergraphs for speaker-specific and non-speaker-
specific modeling, respectively. The hyperedges in the two hypergraphs are different.
The hypergraph for speaker-specific modeling, where the nodes on the hyperedge are from
the speaker of the current utterance, mainly deals with self-dependency. The hypergraph for
non-speaker-specific modeling, where nodes on a hyperedge contain the current utterance
and utterances from other speakers, is primarily used to handle inter-dependency. In
Figure 1, we construct two kinds of hyperedges for the third utterance. The hyperedge of
the green triangle indicates that the node of the hyperedge is from speaker B of the third
utterance. The hyperedge of the blue triangle indicates that the nodes of the hyperedge are
from speakers other than speaker B. Note that this hyperedge needs to contain the current
utterance so that the nodes within the hyperedge have an effect on the current utterance. We
use the location information and node features to aggregate to generate hyperedge features.
Here, we use the location information to obtain the weight of the average aggregation, use
the node features to perform the attention aggregation to obtain the attention weight, and
combine the two weights to obtain the hyperedge features. Then, the hyperedge features
are used to model the conversational context by using a recurrent neural network. Finally,
the hyperedge features are used to aggregate to obtain new node features. The hypergraph
convolution of the two hypergraphs can be used to model specific speakers and non-specific
speakers so as to deal with inter-dependency and self-dependency among participants.

The main contributions of this work are summarized as follows:

• We construct hypergraphs for two different dependencies among participants and
design a multi-hypergraph neural network for emotion recognition in multi-party
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conversations. To the best of our knowledge, this is the first attempt to build graphs
for inter-dependency alone.

• We combine average aggregation and attention aggregation to generate hyperedge
features that can allow better utilization of the information of utterances.

• We conducted experiments on two public benchmark datasets. The results consistently
demonstrate the effectiveness and superiority of the proposed model. In addition, we
achieved good results on the emotional shift issue.

 3: Let's grab our stuff and get the hell out of here. [Neutral] -- A
 4: I'm sorry we can't store your childhood things anymore. [Sadness] -- B
 5: Oh, I can't wait to see everything again! All of the memories. [Joy] -- C
 6: Well, I don't know what's in the boxes down here, but I do know there are 
six or seven. [Neutral] -- B
 7: I used to love to play restaurant. [Neutral] -- C

 2: Well, it's time for a new family to start their memories here and hopefully 
their check will clear before they find the crack in the foundation and the 
asbestos in the ceiling. [Neutral] -- B

 1: Dad, we can't believe you're selling the house. [Sadness] -- A

2

3

65

7

4

1

Figure 1. Conversation as a hypergraph. Circles and triangles represent nodes and hyperedges,
respectively. A. B, C are participants in the conversation.

2. Related Work
2.1. Emotion Recognition in Conversations

In the following paragraphs, we divide the related works into two categories according
to their methods to model a conversation’s context. Note that, here, we regard the network
by using Transformer [23] without actually building a graph as a model based on a recurrent
neural network. DialogXL [24], BERT+MTL [14], and ERMC-DisGCN [6] have been used
for some research on emotion recognition in multi-party conversations.

Recurrence-Based Models. ICON [8] separately models each speaker’s historical
utterances through GRU [25] and uses an additional GRU to model the impacts between
speakers. DialogueRNN [3] uses three GRUs to model the speaker, the context given by
the preceding utterances, and the emotion behind the preceding utterances, respectively.
COSMIC [13], which was built on DialogueRNN, uses commonsense knowledge (CSK)
to learn interactions among participating interlocutors. BiERU [10] involved the design
of a generalized neural tensor block (GNTB) to generate contextual utterance vectors by
taking the context and current utterance as inputs, and then extracting features from the
contextual utterance vector by using a two-channel model (LSTM [26] and CNN [27]).
EmoCaps [28] introduced the concept of emotion vectors into multi-modal emotion recog-
nition and involved the proposal of a new emotion feature extraction structure, Emoformer.
BERT+MTL [14] exploits speaker identification as an auxiliary task to enhance the rep-
resentation of utterances in conversations. DialogueCRN [12] is used to understand the
conversational context from a cognitive perspective and integrates emotional cues through
a multi-turn reasoning module for classification. VAE-ERC [29] models the context-aware
latent utterance role with a latent variable to overcome the lack of utterance role annotation
in ERC datasets. TODKAT [30] proposes a new model in which the transformer model
fuses topical knowledge and CSK to predict the emotion label. DialogXL [24] improves
XLNet [31] with enhanced memory and dialog-aware self-attention. CoG-BART [32] uti-
lizes supervised contrastive learning in ERC and incorporates response generation as an
auxiliary task when certain contextual information is involved.

Graph-Based Models. DialogueGCN [5] used a context window to connect the current
utterance with surrounding utterances and treated each dialogue as a graph. RGAT [15]
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used BERT [33] to obtain contextual information and proposed relational position encodings
to use the location information of utterances. ConGCN [34] regarded both speakers and
utterances as graph nodes and the whole dataset as one graph. DAG-ERC [17] involved
the design of a directed acyclic graph neural network and provided a method for modeling
the information flow between the remote context and local context. SKAIG [18] utilized
CSK to enrich edges with knowledge representations and process a graph structure with
a graph transformer. MMGCN [35] was the proposal of a new model based on a multi-
modal fused graph convolutional network. TUCORE-GCN [36] proposed a context-aware
graph convolutional network model by focusing on how people understand conversations.
ERMC-DisGCN [6] involved the design of a relational convolution to leverage the speaker
self-dependency of interlocutors to propagate contextual information and the proposal of
an utterance-aware graph neural network.

2.2. Hypergraph Neural Networks

Unlike conventional graph neural networks, hypergraph neural networks no longer
focus on only pairwise interactions between nodes. As shown in Figure 1, the relationship
between hyperedges and nodes is a many-to-many relationship.

Zhou et al. [37] were the first to introduce hypergraphs in order to represent compli-
cated relationships, and they proved that hypergraph-based learning outperformed graph-
based learning on several clustering, embedding, and classification tasks. HGNN [21]
was the proposal of a hypergraph neural network framework, and its ability to model
complex high-order data dependencies through hypergraph structures was demonstrated.
HyperGAT [38] used subject words to construct hypergraphs for text classification. HGC-
RNN [22] adopted a recurrent neural network structure to learn temporal dependencies
from data sequences and performed hypergraph convolution operations to extract hid-
den representations of data. HWNN [20] was the proposal of a graph-neural-network-
based representation learning framework for heterogeneous hypergraphs, an extension
of conventional graphs, which could characterize multiple non-pairwise relations well.
SHARE [39] constructed different hyperedges through sliding windows of different sizes
and extracted user intent through hypergraph attention for session-based recommender
systems. MHGNN [40] used multi-hypergraph neural networks to explore the latent
correlations among multiple physiological signals and the relationships among different
subjects. HOTL [41] was the proposal of a new online cross-topic ECG emotion recognition
method that used online transfer learning based on hypergraphs and effectively handled
the online cross-subject scenario in which unknown target ECG data arrived one by one
with varying overtime. Shao et al. [42] used hypergraphs of each modality to represent
the complex relationships among subjects and used multimodal physiological signals for
emotion recognition through an edge-weighted hypergraph neural network.

To the best of our knowledge, there is currently no work on building graph networks
by using non-specific speaker contexts alone or on dealing with inter-dependency among
speakers by using hypergraphs. In order to better capture the high-order relationships
among utterances and model the two speaker dependencies, we treat dialogue as a hyper-
graph and solve the ERC task by using a hypergraph neural network.

3. Methodology
3.1. Hypergraph Definition

A hypergraph is defined as HG = (V, E), where V = {v1, v2, . . . , vN} is a node set,
and E = {HE1, HE2, . . . , HEN} is a collection of hyperedges. A hyperedge HEm is a subset
of the node set V, that is, the node set belonging to hyperedge HEm is a subset of V. The
structure of a hypergraph HG can also be represented by an incidence matrix A, with
entries defined as in Equation (1):

Aij =

{
0, vi /∈ HEj,
1, vi ∈ HEj

(1)
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We use X = {x1, x2, . . . , xN} to denote the attribute vector of nodes in the hypergraph.
So, the hypergraph can also be represented by HG = (A, X). In this paper, we use matrix
M to store the relative position weight of an utterance in the hypergraph. The structure
of matrix M is similar to that of the incidence matrix A. Each row in M corresponds to
a hyperedge, and the non-zero items in each row represent the utterance node in this
hyperedge. The size of the non-zero items is related to the positions between nodes in the
hyperedge. In the following, we use HG = (M, X) to represent the hypergraph.

Vertices. Each utterance in a conversation is represented as a node vi ∈ V. Each node
vi is initialized with the utterance embeddings hi. We update the embedding representa-
tions of vertices via hypergraph convolution.

Hyperedge. Since each hyperedge is generated based on a specific current utterance,
we need to calculate the influences of other utterances on the current utterance, and these
influences will be weakened according to the relative position between the utterances.
We set the position weight of the current utterance to 1, and the position weight of the
remaining utterances gradually decreases with the relative distance. See Algorithm 1 for
the specific process of hypergraph and hyperedge construction.

Algorithm 1 Constructing a Hypergraph

Input: the dialogue {h1, h2, . . . , hN}, speaker identity p(·), and context window w.
Output: SSHG, NSHG.

1: X ← {h1, h2, . . . , hN}
2: MSSHG, MNSHG ← ∅, ∅
3: for all i ∈ [1, N] do
4: Mi

SSHG, Mi
NSHG ← {0, 0, . . . , 0}, {0, 0, . . . , 0}// N zero in total

5: wp, w f , count← i− w, i + w, 0 //wp, w f ∈ [1, N]

6: Mi
NSHG[i]← 1

7: for j = wp; j <= w f ; j ++ do
8: if p(hi) = p(hj) then
9: Mi

SSHG[j]← 1/(1 + abs(i− j))
10: count++
11: else if p(hi)! = p(hj) and count = 0 then
12: Mi

NSHG[j]← 1/(1 + abs(i− j))
13: end if
14: end for
15: end for
16: SSHG ← (MSSHG, X)
17: NSHG ← (MNSHG, X)
18: return SSHG, NSHG

We designed two kinds of hypergraphs—one is speaker-specific hypergraph (SSHG),
and the other is a non-speaker-specific hypergraph (NSHG). The hyperedges in the SSHG
are speaker-specific hyperedges (SSHEs). We selected some utterances in the context
window to add to the SSHEs, and the speaker of these utterances was the same as the
speaker of the current utterance. The hyperedges in the NSHG were non-speaker-specific
hyperedges (NSHEs). We take the past utterance of the speaker of the current utterance
as a selective constraint and selected some utterances in the context window to add to the
NSHEs. The speakers of these utterances were different from the speaker of the current
utterance.

3.2. Problem Definition

Given the conversation record and the speaker information for each utterance, the
ERC task is that of identifying the emotional label of each utterance. More specifically, an
input sequence containing N utterances {u1, u2, . . . , uN} is given, and it is annotated with a
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sequence of emotion labels {y1, y2, . . . , yN}. Each utterance ui is spoken by p(ui). The task
of ERC aims the prediction of the emotion label yi for each utterance ui.

3.3. Model

An overview of our proposed model is shown in Figure 2, which consists of a feature
extraction module, a hypergraph convolution layer module, and an emotion classification
module. Hyperedges are generated according to the third, fourth, and fifth utterances.

u1 
u2 
u3 
u4 
u5 
u6 
u7 

h1
0 
h2
0 
h3
0 
h4
0 
h5
0 
h6
0 
h7
0 

 

Hypergraph Convolution LayerFeature Extraction

y1 
y2 
y3 
y4 
y5 
y6 
y7 

Emotion Classification

Layer 1 h1
1 
h1
2 
… 

h1
L1  

… 
 

 

L1 

Layer 1 
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h2
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h5
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h2
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h4
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h5
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h6
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h7
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h1
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h3
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Layer 1 

L2 

h1
1 
h1
2 
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h1
L2  
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Speaker A Speaker B

Speaker C Hyperedge

Hypergraph Concatenation

Figure 2. Overview of our proposed model. In the hypergraph convolutional layer module, the red
dotted line represents the information transfer between the hyperedges.

3.3.1. Utterance Feature Extraction

Following COSMIC [13], we employed RoBERTa-Large [43] as a feature extractor. The
pre-trained model was first fine-tuned on each ERC dataset, and its parameters were then
frozen while training our model. More specifically, a special token [CLS] was appended at
the beginning of the utterance to create the input sequence for the model. Then, we used
the [CLS]’s pooled embedding at the last layer as the feature representation hi of ui.

3.3.2. Hypergraph Convolution (HGC) Layer

We utilized the two hypergraphs to perform separate hypergraph convolutions, and
then obtained different utterance representations. The process of performing hypergraph
convolution for each graph can be divided into the following three steps.

Node-to-Edge Aggregation. The first step was the aggregation from the nodes to
the hyperedges. Here, we used the position weight mi

j to calculate the weight α
pos
ji of the

weighted average aggregation. Since some nodes on a hyperedge are informative, but others
may not be, we should pay varying attention to the information from these nodes while
aggregating them together. We utilized an attention mechanism to model the significance
of different nodes. Here, we used a function S(·, ·) to calculate the attention weights αATT

ji .
Function S(·, ·) was derived from the scaled dot-product attention formula [23]. Then, the
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obtained weight α
pos
ji , attention weight αATT

ji , and node information hl−1
i were aggregated

to obtain the hyperedge feature f l
j . The specific process is shown in Equations (2)–(5).

α
pos
ji =

mi
j

∑k|vk∈HEj
mk

j
(2)

αatt
ji =

S(W1hl−1
i , tl)

∑ f |v f∈HEj
S(W1hl−1

f , tl)
(3)

f l
j = σ( ∑

vi∈HEj

α
pos
ji αatt

ji W2hl−1
i ) (4)

S(a, b) =
S(aTb)√

D
(5)

where HEj is the j-th hyperedge resulting from the j-th utterance. mi
j is stored in the

association matrix M, which represents the size of the position weight of the i-th node in the
j-th hyperedge. hl−1

i represents the features of the utterance node. tl represents a trainable
node-level context vector for the l-th HGC layer. W1 and W2 is a trainable parameter matrix.
D is the dimension size.

Edge-to-Edge Aggregation. The second step was to transfer information between
hyperedges. In order to make the current utterance have a better interaction with the
context, we used the hyperedge generated by each utterance to model the conversation
context. We used BiLSTM to complete the information transfer. The specific process is
shown in Equation (6).

ql
j, hiddenj =

←−−→
LSTM

c
( f l

j , hiddenj−1) (6)

where hiddenj is the j-th hidden state of the LSTM, and ql
j represents the hyperedge feature

obtained after the information is passed by the hyperedge.
Edge-to-Node Aggregation. To update the feature for a node, we needed to aggregate

the information from all of its connected hyperedges. We also used S(·, ·) to calculate the
similarity between the node and hyperedge features. The specific process is shown in
Equations (7) and (8).

hl
i = σ( ∑

HEj∈Ei

βijW3ql
j) (7)

βij =
S(W4ql

j, W1hl−1
i )

∑HEp∈Ei
S(W4ql

p, W5hl−1
i )

(8)

where Ei is the set of hyperedges containing the i-th node. W3, W4, and W5 denote trainable
parameters, and S(·, ·) is the same as in Equation (5).

3.4. Classifier

We concatenated the hidden states of the two hypergraphs in all HGC layers and
passed them through a feedforward neural network to obtain the predicted emotion. The
specific process is shown in Equations (9)–(11).

HHG
i =‖LHG

l=1 (hHG)
l
i (9)

Pi = so f tmax(Wsmax[h0
i : HSSHG

i : HNSHG
i ] + bsmax) (10)

ŷi = argmaxk(Pi[k]) (11)
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where HHG
i represents the result of the hypergraph convolution performed on the hyper-

graph, HG can be SSHG and NSHG, and LHG is the number of layers for the hypergraph
convolution of the corresponding hypergraph.

For the training of ERMC-MHGNN, we employed the standard cross-entropy loss as
an objective function. The specific function is shown in Equation (12).

L(θ) = −
C

∑
i=1

Ni

∑
t=1

LogPi,t[yi,t] (12)

where C is the number of training conversations, Ni is the number of utterances in the i-th
conversation, yi,t is the ground-truth label, and θ is the collection of trainable parameters of
ERMC-MHGNN.

4. Experimental Setting
4.1. Datasets

We evaluated our model on two ERC datasets. Their statistics are shown in Table 1.
They were all multimodal datasets, but our task mainly focused on textual modality for
conducting our experiments.

MELD [44] was derived from the Friends TV series. The utterances were annotated
with one of seven labels, namely, neutral, joy, surprise, sadness, anger, disgust, and fear. The
dataset consisted of multi-party conversations and involved too many plot backgrounds.
Non-neutral emotions accounted for 53%.

EmoryNLP [45] was also collected from the Friends TV scripts, but differed from
MELD in the choice of scenes and emotion labels. The emotion labels included neutral, sad,
mad, scared, powerful, peaceful, and joyful. Non-neutral emotions accounted for 73%.

Table 1. The statistics of the datasets . avg_utt denotes the average number of utterances.

MELD EmoryNLP

#Dial. 1432 897
Train 1038 713
Dev. 114 99
Test 280 85

#Utt. 13,708 12,606
Train 9989 9934
Dev. 1109 1344
Test 2610 1328
avg_utt 9.57 14.05

Classes 7 7
Metrics Weighted-average F1 Weighted-average F1

4.2. Compared Methods

For a comprehensive evaluation of our proposed ERMC-MHGNN, we compared it
with the following baseline methods.

Recurrence-Based Models: DialogueRNN [3], COSMIC [13], DialogueCRN [12], TOD-
KAT [30], DialogXL [24], VAE-ERC [29], DialogueRNN-RoBERTa [13], CoG-BART [32], and
EmpCaps [28].

Graph-Based Models: DialogueGCN [5], RGAT [15], RGAT-RoBERTa [17],
DialogueGCN-RoBERTa [17], SKAIG [18], ERMC-DisGCN [6], MMGCN [35], TUCORE-
GCN [36], and DAG-ERC [17].

4.3. Implementation Details

We conducted the experiments on Windows10 while using an NVIDIA GeForce GTX
1650 GPU with 4 GB of memory. We used PyTorch 1.7.0 and the CUDA toolkit 11.0. We
adopted AdamW [46] as the optimizer. Table 2 provides the hyperparameter settings. For
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the feature dimension, the utterance feature dimension extracted by the RoBERTA extractor
was 1024, and after the linear layer, the utterance feature dimension became 100.

Table 2. Hyperparameter settings.

# Batch size Dropout Lr Window SSHG NSHG

MELD 32 0.1 0.001 1 1 1
EmoryNLP 16 0.4 0.0009 4 4 6

5. Results and Discussions
5.1. Overall Performance

Table 3 shows the performance of different models on the MELD and EmoryNLP
test sets. We can see that our model outperformed all baselines, which demonstrated the
effectiveness of our proposed model. At the same time, we found that the models using
CSK on MELD generally performed better, while our model achieved good results without
relying on external knowledge. In this paper, we focused on modeling the two kinds of
dependencies among speakers by building multiple hypergraphs, so we did not incorporate
external knowledge. On the EmoryNLP dataset, we found that the models using large-scale
pre-trained models to extract features had better results. For example, both DAG-ERC and
TUCORE-GCN used RoBERTa as feature extractors. These models could achieve over 39%
on EmoryNLP. Our model also used RoBERTa as a feature extractor and achieved relatively
better results by separately modeling the two speaker dependencies. Compared with
DialogXL, BERT+MTL, and ERMC-DisGCN, our model had at least a 2% improvement in
the two datasets. This also showed that our model could identify the emotions of utterances
better than the previous models studied on the multi-party conversation dataset.

Table 3. Overall performance on the two datasets. ’-’ signifies that no results were reported for
the given dataset. ’CSK’ stands for a model that introduced commonsense knowledge, ’

√
’ and ’×’

represent using ’CSK’ and not using ’CSK’ respectively. ’*’ represents the results of the model in the
text-only modality.

Model CSK MELD EmoryNLP

RoBERTa × 62.88 37.78

DialogueRNN × 57.03 -
+RoBERTa × 63.61 37.44

DialogueCRN × 58.39 -
VAE-ERC × 65.34 -
DialogXL × 62.4 34.73
BERT+MTL × 61.90 35.92
CoG-BART × 64.81 39.04
COSMIC

√
65.21 38.11

TODKAT
√

65.47 38.69
EmoCaps * × 63.51 -

DialogueGCN × 58.10 -
+RoBERTa × 63.02 38.10

RGAT × 60.91 34.42
+RoBERTa × 62.80 37.89

TUCORE-GCN × 62.47 36.01
+RoBERTa × 65.36 39.24

DAG-ERC × 63.65 39.02
ERMC-DisGCN × 64.22 36.38
SKAIG

√
65.18 38.88

MMGCN * × 57.72 -

ERMC-MHGNN × 66.4 40.1
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5.2. Ablation Study

To investigate the impacts of the various modules in the model, we evaluated our
model by separately removing two weights in the node-to-edge aggregation process in
the hypergraph convolution. In addition, we conducted experiments on the hypergraph
convolution with a single hypergraph. The results are shown in Table 4.

As shown in Table 4, we can see that, after removing the weights αatt, there was a
relatively large drop in performance on both datasets. Through the attention function, the
surrounding utterances could be given different weights so that the current utterance could
better receive information from other utterances. Therefore, the use of attention weights
αatt was beneficial for the aggregation of the node information. When we removed the αpos

weights, both datasets also had relatively large drops. The distance between utterances
may affect the interaction between two utterances. Appropriately reducing the influence of
surrounding utterances according to the relative distance can also cause the model to better
aggregate node features to a certain extent.

Table 4. Results of the ablation study. ’↓’ represents the reduced performance compared with the
’Full model’.

Method MELD EmoryNLP

Full model 66.4 40.1

w/o αpos 65.61 (↓0.79) 39.15 (↓0.95)
w/o αatt 65.64 (↓0.76) 39.05 (↓1.05)

w/o SSHG 65.3 (↓1.1) 38.93 (↓1.17)
w/o NSHG 65.19 (↓1.21) 38.9 (↓1.2)

When we used one hypergraph and removed the other hypergraphs, we only per-
formed the hypergraph convolution of one hypergraph. From the results in Table 4, we
can see that the performance of the model was degraded regardless of which hypergraph
was removed. Here, the model also had a relatively large performance drop after removing
the NSHG, which also showed that the method of modeling for non-specific speakers was
feasible. In multi-party dialogues, the influences of utterances from other speakers should
be considered in a targeted manner.

5.3. Effects of the Depth of the GNN and Window Sizes

We explored the relationship between model performance and the depth of ERMC-
MHGNN. According to Figure 3, the best values of {LSSHG, LNSHG} were {1, 1} and {4, 6} on
the MELD and EmoryNLP datasets, and a 66.4% weighted-average F1 and 40.1% weighted-
average F1, respectively, were obtained. Note that the convolution on the EmoryNLP
dataset required more NSHG layers. This may have been related to the number of labels in
the conversation and the length of the conversation. The proportion of each label in the
EmoryNLP dataset was more balanced than that in the MELD dataset; the proportion of
emotional shift was relatively larger, and the conversation length was also larger. Therefore,
the EmoryNLP dataset needed more NSHG layers for convolution to deal with inter-
dependency. The proportion of neutral labels in the MELD dataset was relatively large,
and the conversation length was relatively small. Therefore, the MELD dataset did not
require too many convolution layers. In general, the use of two types of hypergraphs was
beneficial for understanding contextual cues and speaker dependencies and for enhancing
the recognition ability of the model.
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Figure 3. Effect of the depth of the GNN. We report the weighted F1 score on the MELD and
EmoryNLP datasets. The darker the color, the better the performance.

We also experimented with both datasets by increasing the window size of the past
and future. The experimental results are shown in Figure 4. In the figure, we can see that the
window size of the context had a relatively small effect on the two datasets, but the context
window sizes for obtaining relatively good results for the different datasets were not the
same. In the MELD dataset, there was a relatively certain number of conversations with
less than three utterances, while in the EmoryNLP dataset, the length of the conversations
was generally greater than five utterances. Therefore, the MELD dataset had better results
when the window size of the past and future was 1, while the EmoryNLP dataset required
a relatively large context window.
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Figure 4. Effects of window sizes.

5.4. Error Analysis

We analyzed our predicted emotion labels and found that misclassifications often
occurred in similar emotion classes, such as scared vs. mad and joyful vs. peaceful. In addition,
some non-neutral labels were predicted as neutral labels on datasets where neutral labels
were the majority. Figure 5 shows the confusion matrix obtained by our model on the
EmoryNLP dataset.
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Figure 5. Heatmap of the confusion matrix of ERMC-MHGNN on the EmoryNLP dataset.

We also studied the emotional shift issue, which means that the emotions of two
consecutive utterances from the same speaker were different. Since DialogXL did not pro-
vide the corresponding emotional shift prediction accuracy on the MELD and EmoryNLP
datasets, we reproduced it. The weighted-average F1 of DialogXL on the MELD and
EmoryNLP datasets was 62.67% and 35.0%, respectively, which are both higher than the
results in the paper. The emotional shift prediction accuracy of DialogXL on the MELD and
EmoryNLP datasets is listed in Table 5. It can be seen in Table 5 that, compared with the
other two models, our model greatly improved the accuracy in identifying emotional shifts
in these two multi-party dialogue datasets. However, improving the accuracy of identifying
emotional shifts can easily reduce the accuracy of identifying without emotional shifts.
Compared with the other models, we were able to improve the accuracy of recognizing
emotional shifts while keeping the accuracy of recognition without emotional shifts at a
high level.

Table 5. Test accuracy of ERMC-MHGNN and the partial baseline models on samples with an
emotional shift and without one. ’()’ indicates the number of samples.

#

MELD EmoryNLP

Shift w/o Shift Shift w/o Shift
(1003) (861) (673) (361)

DialogXL 57.33 71.43 33.88 43.77
DAG-ERC 59.02 69.45 37.29 42.10

ERMC-MHGNN 62.01 72.36 38.93 41.83

5.5. Case Study

For a comprehensive understanding of our proposed method, we allowed its perfor-
mance to be visualized through a case study, which was selected from the EmoryNLP test
dataset. As illustrated in Figure 6, our model and the baseline model both made mistakes
when predicting the emotions of utterance (2) and utterance (3). By checking the video
corresponding to this conversation, we found that Emily had already started checking in
for boarding. Ross was afraid that Emily could not see him coming to find her, so Ross
cried out to Emily anxiously. In this dialogue, if we only consider the text features, we
will lack some emotional information, so we cannot accurately predict the corresponding
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emotions. In our future work, we will use multimodal features to make up for the lack of
emotional information in the text features.

Scene: The airport, Emily is getting ready to board her flight to London.

This is the boarding call for Flight 009. 

Oh my God! What are you doing here? 

I just, I had to see you one more time before you took-off. 

This is the final boarding call for Flight 009. 

You are so sweet. 

That's, that's, that's a big candy bar. I had the most amazing 
time with you. 

Me too. 

Well, that' me. Here, have this. I'm only allowed one piece of 
carryon anyway. 

Emily! 

surprise     surprise surprise

fear        neutral      surprise 

sadness     disgust      disgust

anger       anger surprise

neutral    neutral neutral

neutral    neutral neutral

neutral    neutral neutral

surprise    surprise surprise

anger      anger      surprise 

Label        Ours      DialogXL

Ticket Agent EmilyRoss

1

2

3

4

5

6

7

8

9

Figure 6. Results of the case study on the EmoryNLP dataset, where three participants in a conversa-
tion are provided, along with their dependent historical utterances. We use green and red to highlight
the right and wrong predictions.

When the conversation went to utterance (8) and utterance (9), we found that Emily’s
communication with Ross was interrupted, and Emily was urged to board. In addition,
in combination with the semantics of utterance (9), Emily could not carry the big candy
bar that Ross gave her. So, Emily’s mood changed. We found that the baseline model
directly predicted the emotion of utterance (9) within the emotion of utterance (8). The
baseline model did not combine the context of this conversation well and did not fully
consider multiple historical contexts. Our model processed the utterances of three speakers
through hypergraphs and captured Emily’s emotional change from ’neutral’ to ’angry’ in
the current context by using two types of speaker dependence.

6. Conclusions

In this paper, two different hypergraphs were constructed for two speaker dependen-
cies for the first time, and a multi-hypergraph neural network—namely, ERMC-MHGNN—
was designed for multi-party conversation emotion recognition to better handle speaker
dependencies. The experimental results show that ERMC-MHGNN has good performance.
Furthermore, through comprehensive evaluation and ablation studies, we can confirm the
advantages of ERMC-MHGNN and the impacts of its modules on performance. Several
conclusions can be drawn from the experimental results. First, our approach to non-speaker-
specific modeling of utterances from other speakers is feasible. Second, combining average
aggregation with attention aggregation can allow better hyperedge features to be obtained.
Finally, although the model achieved certain results on the emotional shift issue, the ability
of the model to recognize similar emotions still needs to be enhanced.

In the future, we plan to build a hierarchical hypergraph neural network based on
the existing hypergraph network to deal with interactions within a single modality and
interactions among multiple modalities. We believe that hierarchical hypergraph neural
networks can not only handle high-order relationships between utterances, but can also
alleviate the deficiencies of single-mode features.
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