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Abstract: A method of establishing a prediction model of the greenhouse temperature based on time-
series analysis and the boosting tree model is proposed, aiming at the problem that the temperature
of a greenhouse cannot be accurately predicted owing to nonlinear changes in the temperature of the
closed ecosystem of a greenhouse featuring modern agricultural technology and various influencing
factors. This model comprehensively considers environmental parameters, including humidity inside
and outside the greenhouse, air pressure inside and outside the greenhouse, and temperature outside
the greenhouse, as well as time-series changes, to make a more accurate prediction of the temperature
in the greenhouse. Experiments show that the R2 determination coefficients of different prediction
models are improved and the mean square error and mean absolute error are reduced after adding
time-series features. Among the models tested, LightGBM performs best, with the mean square
error of the prediction results of the model decreasing by 18.61% after adding time-series features.
Comparing with the support vector machine, radial basis function neural network, back-propagation
neural network, and multiple linear regression model after adding time-series features, the mean
square error is 11.70% to 29.12% lower. Furthermore, the fitting degree of LightGBM is the best
among the models. The prediction results of LightGBM therefore have important application value
in greenhouse temperature control.

Keywords: time series; nonlinear change; boosting tree model; greenhouse temperature prediction

1. Introduction

China has gradually transformed from traditional agriculture to modern agriculture
and is gradually moving towards intelligent agriculture with the development of computer
technology. A greenhouse is a typical scene of the application of modern agricultural
technology in that its internal environment is operable. A greenhouse can form a small,
closed ecosystem suitable for plant growth and improve the yield and quality of agricultural
products, and it is thus used widely in agricultural production. Among the environmental
factors of a greenhouse, crops are most sensitive to temperature. Temperature affects the
enzyme activity of plant cells and thus the growth rate, yield, and quality of crops, i.e.,
temperature strongly affects the growth and development of crops. In ensuring the yield
and quality of agricultural products, we should ensure the normal growth of crops by
accurately controlling the greenhouse temperature.

2. Related Work

Recent theoretical research on the temperature of a greenhouse environment mainly
includes the investigation of the prediction model of energy and the material balance
equation, but the thinking of factors affecting the indoor environment is too singular, and
time-series features and environmental factors of a greenhouse have not been compre-
hensively considered [1,2]. Cui Lizhen et al. [3] adopted the improved support vector
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machine (SVM) and grid search algorithm. It is possible to dynamically optimize the
kernel parameters and penalty factors of the SVM, but the grid search efficiency is too
low, and more computing resources are needed to handle increasing data volumes. Peng
Xiuyuan et al. [4,5] used the least-squares method to predict the temperature curve but only
predicted the future temperature according to the historical change in temperature and
did not consider other environmental factors, such as the air pressure and humidity. Yu
Chaogang et al. [6,7] established a model for predicting the greenhouse indoor temperature
adopting a radial basis function (RBF) neural network, which has a high training speed and
does not fall into local optima, but they did not consider the nonlinear effects of environ-
mental factors on the greenhouse temperature. Zhang Kun’ao et al. [8,9] adopted particle
swarm optimization (PSO) to optimize the prediction of the greenhouse temperature. A
PSO algorithm can optimize the RBF neural network structure and network weights can
improve the training performance. However, with increases in the number of sample data,
the number of model iterations, and particle size, the prediction results of the model are
prone to be trapped in local optima. Sam Nguyen Xuan et al. [10,11] tested and predicted
the influencing factors of the indoor temperature adopting a dynamic model and multiple
linear regression. They comprehensively considered a variety of environmental factors,
such as the indoor temperature and humidity and outdoor temperature. However, some
factors of multiple linear regression are not measurable, and it must be assumed that the
environment is a small ecosystem in which the conservation of energy holds, but this
situation does not occur in reality. Fen He et al. established a temperature prediction model
for the greenhouse ecosystem based on the back-propagation (BP) neural network [12,13].
The model has the characteristics of a simple structure, low calculation cost, and strong
adaptability. However, there are many minima in the BP neural network, such that it is easy
to fall into local minima. A large number of training times leads to a low learning efficiency
and slow convergence. The selection of the hidden layer lacks theoretical guidance, and
there is a tendency to forget the old samples when training and learning new samples.
Georgia Papacharalampous et al. carried out the time-series analysis of a hydrological
climate and extracted many time-series features, such as trend features and extreme fea-
tures, which affected the accuracy of the hydrological climate prediction [14]. In recent
years, multivariate time series was proposed. Ziyu Jia et al. [15] proposed a theory of
state space reconstruction of multivariate time series based on the non-uniform embedding
method of information theory, and in [16] they present a new non-uniform embedding
method framed in information theory to detect causality for multivariate time series, named
LM-PMIME. The key to solving the problem of multivariate time-series prediction lies in
the description of the relationship between the variables. Only by accurately and clearly
expressing the mutual influence of each variable can we achieve good prediction results. In
other words, the prediction effect of multivariate time series with an unclear relationship is
not satisfactory.

In view of the above problems, this paper uses the light gradient boosting machine
(LightGBM) model as the basic prediction model. LightGBM not only applies a series of
environmental factors, such as humidity, air pressure, and outdoor temperature, to the
prediction of the greenhouse temperature, but also comprehensively considers tempo-
ral and nonlinear changes in indoor and outdoor temperature. Adopting environmental
factors and a time-series feature extraction method proposed in the literature [14], a green-
house temperature prediction model is established to make a more accurate prediction of
the greenhouse temperature and thus improve the quality and yield of crops and avoid
unnecessary economic losses resulting from inaccurate prediction.

3. Proposed Methodology

The proposed method is based on LightGBM, which is a framework for implementing
the gradient boosting decision tree (GBDT) algorithm developed by Microsoft. The GBDT
algorithm is an iterative-based decision tree algorithm. It uses the classification and
regression tree model as the weak learner. The new learner is established in the direction
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that the gradient of the loss function of the previous learner falls, and the new learner is
then iteratively generated to train the model [17]. In the iterative process, the next round
of prediction is based on the residual between the predicted value and the real value of
the previous round, and all the predicted results are added as the conclusion. The GBDT
algorithm can therefore be expressed as the optimization process of decision tree learning
with an additive model and forward step algorithm [18]:

FM(X) = ∑M
m=1 fm(X), (1)

where fm(X) represents the decision tree. M is the number of trees and the number of
iterations. The boosting tree is initialized as:

F0(X) = 0.

According to the forward step-by-step algorithm, the model of the m-th step can be
expressed as:

Fm(X) = Fm−1(X) + fm(X), (2)

where Fm−1(X) is the current model and fm(X) is the current decision tree. Taking the
squared loss as the loss function and supposing that there is a sequence X:x1, x2, x3, . . . , xn
and corresponding true values Y: y1, y2, · · · , yn, the loss function is defined as:

L(Y, Fm(X)) =
1
n∑n

i=1((yi − Fm(xi))
2). (3)

The first derivative of the loss function is:

L′(Y, Fm(X)) = − 2
n∑n

i=1 (yi − Fm(xi)). (4)

The second derivative of the loss function is:

L′′ (Y, Fm(X )) = 2. (5)

Furthermore, according to Formula (4), we obtained the first derivative of the loss
function as:

L′(Y, Fm(X )
)
= L′(Y, Fm−1(X) + fm(X)) (6)

while according to the first-order expansion of the Taylor formula,

f (x + x0) = f (x) + f ′(x)× x0, (7)

We have:

L′(Y, Fm(X )
)
= L′(Y, Fm−1(X))+L′′ (Y, Fm−1(X))× fm(X). (8)

We obtained the best tree when L′(Y, Fm(X )) = 0. It follows that:

fm(X) = − L′(Y, Fm−1(X))

L′′ (Y, Fm−1(X))
(9)

According to Formulas (6) and (7):

fm(X) = −
− 2

n ∑n
i=1(yi − Fm−1(xi))

2
=

1
n∑n

i=1 (yi − Fm−1(xi)), (10)

and it follows from Formula (4) that:

Fm(X) = Fm−1(X) +
1
n∑n

i=1 (yi − Fm−1(xi)). (11)
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Finally, we obtained the strong learner as:

FM(X) = F0(X) +
1
n∑M

m=1 ∑n
i=1 (yi − Fm−1(xi)). (12)

In the above formula, n is the total number of samples. The model of the optimal
solution was obtained by iteration.

The conventional implementation of the GBDT requires the scanning of all the data
instances to estimate the information gain of all the possible split points [19]. The implemen-
tation is thus time-consuming when handling big data. LightGBM uses a histogram-based
algorithm (Histogram) to traverse each segmentation point, which consumes less memory
and reduces the complexity of data separation to speed up the training process. It also
uses the gradient-based one-side sampling algorithm to reduce a large amount of data
with only small gradients, uses the exclusive features bundling algorithm to bind many
mutually exclusive features into one feature, and uses the leaf-wise strategy to grow trees
and find the leaf with the largest gain of variance for the split [20]. LightGBM thus has the
advantages of faster training, lower memory consumption, better accuracy, and quicker
processing of massive data. LightGBM is therefore widely used for ranking, classification,
prediction, and many other machine learning tasks [21–25].

4. Experiment
4.1. Data Description

The experimental data were taken from an online competition (2020 iFLYTEK A.I., url:
http://challenge.xfyun.cn/topic/info?type=temperature (accessed on 1 July 2020)) held by
iFLYTEK. The greenhouse data available on the competition platform were collected by
sensors at an experimental station and provided by the China Agricultural University. The
collected dataset includes data of the collection time, the temperature, humidity, and air
pressure in the greenhouse, and the temperature, humidity, and air pressure outside the
greenhouse. The sensors collected data for a total of 30 days from 14 March to 13 April 2019,
among which the data of the first 20 days (with each minute of environmental parameters
being a group of data) were used as training data and the data of the next 10 days were
used as temperature prediction test data. The goal of the experiment was to use the data
recorded every minute in the previous 20 days and predict the data every 30 min in the
next 10 days. The data descriptions are provided in Table 1.

Table 1. All original features and descriptions.

Name Description

Collection time Data collection time
Temperature (indoor) Temperature inside greenhouse (Label)

Humidity (indoor) Humidity inside greenhouse
Air pressure (indoor) Air pressure inside greenhouse

Temperature (outdoor) Temperature outside greenhouse
Humidity (outdoor) Humidity outside greenhouse

Air pressure (outdoor) Air pressure outside greenhouse

There were 25,904 records in the dataset. Except for the collection time having a time
format, all the data were of float64 type, and the six fields of the indoor and outdoor
temperature, humidity, and air pressure for the greenhouse had missing data to varying
degrees. Statistical information of the data, except the collection time, is presented in Table 2.

http://challenge.xfyun.cn/topic/info?type=temperature
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Table 2. Statistical analysis of the original features.

Indoor
Temperature (◦C)

Indoor
Humidity (%)

Indoor Air
Pressure (hPa)

Outdoor
Temperature (◦C)

Outdoor
Humidity (%)

Outdoor Air
Pressure (hPa)

count 24,807 24,807 24,807 25,241 24,837 24,837
mean 16.63 72.60 981.26 16.61 74.36 983.64

SD 3.69 14.05 43.90 4.32 16.35 22.99
min 9.3 25 392.5 8.9 23 400.2
25% 13.8 64 980 13.4 64 979.9
50% 16.1 76 985.9 16 78 986.1
75% 18.4 84 989.9 18.7 88 990.4
max 30.1 91 1013.7 36.7 96 1082.5

4.2. Data Preprocessing

There may have been equipment abnormalities during the data collection and thus
failures in data collection and abnormalities in the collected data. The original data of each
category in the dataset are missing to some extent. The forward filling method was used
to fill in the missing data. Abnormal data were corrected to a reasonable range. The data
distributions before and after correction are shown in Figure 1.
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Figure 1. Change in indoor air pressure with time before and after correction.

In Figure 1, the value on the horizontal axis is the number of hours after 1:00 on 14
March 2019. The top plot is the indoor air pressure changing with time before data correc-
tion. The range of the air pressure is 400–1000 hPa, and there are obvious abnormal data
(data deviating from the change trend), which will affect the prediction of the model. We
replaced these abnormal data with the average value for the column to reduce their effect
and bring the data closer to the trend of change. It is seen that the change in indoor air pres-
sure with time after correction (the lower plot in Figure 1) follows a certain rule. Although
a few data deviated from the change trend, they were all within a reasonable range.
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4.3. Feature Engineering

In studying the regularity of time-series data with a change in indoor temperature,
the autocorrelation analysis of the indoor temperature was carried out adopting the au-
tocorrelation analysis method [26,27]. The autocorrelation coefficient, which is between
0 and 1, was used as the quantitative indicator of correlation. A larger value indicates
higher correlation. Suppose that there is a sequence X:x1, x2, x3, ..., xn. Let Xs,t be the
sequence xs, xs+1, ..., xt−1, xt starting at time s and ending at time t. us,t is the mean value
of the sequence Xs,t and σs,t is the standard deviation of the sequence Xs,t. The first-order
autocorrelation coefficient is then:

R(1) =
E(X2,n − us,n) ∗ (X1,n−1 − u1,n−1)

σ2,n ∗ σ1,n−1
. (13)

Similarly, the k-order autocorrelation coefficient is:

R(k) =
E(Xk+1,n − uk+1,n) ∗ (X1,n−k − u1,n−k)

σk+1,n ∗ σ1,n−k
. (14)

Adopting Formula (14), the high-order autocorrelation coefficient of the indoor tem-
perature was calculated, and the change in correlation with order is shown in Figure 2.
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Figure 2 shows that the correlation gradually decreased with an increase in order, and
the coefficient of the time-series correlation of temperature exceeded 0.6 when the order
was less than 10 and exceeded 0.8 when the order was particularly low. It is therefore
considered that the indoor temperature has a strong time-series correlation within the
reasonable order range.

In characterizing the regularity of environmental factors changing with time, the
difference in each feature is regarded as a series feature. The collection interval of every
two groups of data was 1 min in the training set and 30 min in the test set, and it is thus
necessary to set the training set interval to 30 when generating the difference feature (i.e.,



Appl. Sci. 2023, 13, 1610 7 of 21

generating the difference from the data 30 min ago) and to set it to 1 in the test set (i.e.,
generating a difference from the previous group of data). Based on Figure 2, to ensure that
the data have high autocorrelation, only the first-order difference features were used in this
paper [28].

Jinan Gu proposed that temperature and time have an exponential relation when
environmental factors change [29]. There are static characteristics, such as temperature,
air pressure, and humidity, in the dataset that are representative of the moment in time.
In generating dynamic characteristics, we let t be the current time. t− 2, t− 1, and t + 1
then denote the two-previous times, previous time, and next time, respectively. We need
to use data of the current time (i.e., the data information at time t) and previous times to
predict the greenhouse temperature at time t + 1. The time interval of each collection in the
test set was 30 min, and the time interval between t and t + 1 was therefore also 30 min.
The indoor temperature change trend in the collected training set is shown in Figure 3. The
value on the horizontal axis is the number of hours after 1:00 on 14 March 2019.
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We concluded from the change in the temperature autocorrelation with order in
Figure 2 that temperature has a high time-series correlation within a certain order range.
We then used the original features given in Table 1 to extract the differential features of
each influence factor as part of the time-series features [30,31]. As examples, the feature
Temperature(outdoor)_diff describes the difference in outdoor temperature from t− 1 to t,
the feature Humidity(outdoor)_diff describes the difference in outdoor humidity from t− 1
to t, and the feature Pressure(indoor)_diff describes the difference in indoor air pressure
from t− 1 to t.

The difference features only represent the change regularity of environmental factors
at the last time or earlier and do not consider the general regularity of environmental
factors in the present time range. To reflect the general trend of features, we generated
statistical features according to all the data information in a time interval. As an example,
if a statistical feature within a time interval is generated, a window size of 30 is needed in
the training set, and the mean value, minimum value, maximum value, median, and other
attributes of each feature are calculated using the sliding window algorithm [32,33]. As
examples, Temperature(outdoor)_min is the minimum value of the outdoor temperature in
the sliding window, Humidity(indoor)_mean is the minimum value of the indoor humidity
in the sliding window, Pressure(outdoor)_max is the maximum value of the outdoor air
pressure in the sliding window, and Pressure(outdoor)_median is the median of the outdoor
air pressure in the sliding window.

Statistical features reflect the general trend of environmental factors based on difference
features but do not combine relationships between various environmental factors. The relation-
ship between a single environmental factor and indoor temperature may be linear, whereas
combined environmental factors and the indoor temperature may have a relationship that is
not simply linear. Combined features help us to express the nonlinear relationship between
features and labels. Therefore, the combination information of environmental factors was intro-
duced as cross-features (combination features), which can be information obtained by multi-
plication or taking the Cartesian product of environmental factors. As examples, the feature
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Humidity(indoor_outdoor)_quotient is the quotient of the outdoor humidity and indoor
humidity, the feature Temp(outdoor)_Hum(outdoor)_quotient is the quotient of the outdoor
temperature and outdoor humidity, and the feature Pre(outdoor)_Hum(indoor)_quotient is
the quotient of indoor humidity and outdoor air pressure.

All the difference and statistical features mentioned above are time-series features. The
difference features can be described as the gap between the current time and the previous
or earlier time, which allows the model to learn the change trend of environmental factors.
Statistical characteristics (e.g., the mean, minimum, maximum, and median) describe the
general trend of environmental factors in the time interval. These features are conducive
to reducing the effect of outliers in the training process. The difference features, statistical
features, and cross-features were input into the LightGBM model for preliminary feature
selection. The ranking of the feature importance after selection from high to low is shown
in Figure 4 (where only the top 20 features are displayed).
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5. Results and Analysis
5.1. Evaluation Indicator

In quantitatively evaluating differences in the fitting degree between models and
between original features and time-series features, the mean square error (MSE), mean ab-
solute error (MAE), and R-square coefficient of determination (R2) were used as evaluation
indicators to quantitatively distinguish and compare the prediction results of each model.
The formulas for calculating the evaluation indicator are:

MSE(y, ŷ) =
1
n∑n−1

i=0 (yi − ŷi)
2, (15)

MAE(y, ŷ) =
1
n∑n−1

i=0 |yi − ŷi|, (16)

R2(y, ŷ) = 1− ∑n−1
i=0 (yi − ŷi)

2

∑n−1
i=0 (yi − y−)2

, (17)

where yi is the actual value and ŷi is the predicted value of the i-th group of performance
evaluation data, y− is the average value of data, and n is the total number of samples. MSE
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and MAE, respectively, denote the MSE and MAE of the predicted value and actual value.
A smaller index value indicates a better prediction. The R2 coefficient of determination
indicates the degree of fitting between the predicted value and the actual value.

5.2. Hyperparameter Selection

The hyperparameters of a model are generally determined by cross-validation so that
the model performs better on new data [34]. Since the experimental data in this paper
are time-series data and there is a strict time-series relationship between the training set
and the test set, the premise of the traditional cross-validation method is that the samples
are independent and identically distributed [35]. Time-series data contain information
such as that of the periodicity and the relationship between past and future data in the
change process. This situation does not meet the basic assumption of independent and
identically distributed data in cross-validation, and the cross-validation method based
on time series should thus be adopted. Commonly used timing-based cross-verification
methods [36,37] are the blocked cross-validation [38] procedure, which is similar to standard
cross-validation, hv-blocked cross-validation proposed by Racine [39], which extends
blocked cross-validation to further increase the independence among observations, and the
modified cross-validation procedure [40], which removes observations from the training set
that are correlated with the test. Vitor Cerqueira et al. compared and analyzed all the cross-
validation methods for time series [41]. Based on their results, blocked cross-validation
was used in the present study to determine hyperparameters.

5.3. Analysis of Results

We used the Python language for programming and extracted the difference features,
statistical features, and cross-features mentioned above. The LightGBM model, BP neural
network, SVM, linear regression model, RBF neural network, and multiple linear regression
(MLPRegressor, MLP) were used for training and prediction. The dataset was split 1- to
10-fold to validate the selection of the best hyperparameters and retrain all the models. The
fitting results of the models are shown in Figures 5–16. The green line shows real values
of the test set data, and the red and blue lines show the prediction results of each model
on the test set. The figures show that each model performed well in terms of the degree of
fitting, and the fitting result of LightGBM was better than the fitting results of the other
five models, being closer to the trend line of the actual value. Since the temperature in
the greenhouse has a strong time sequence (i.e., without the effects of special factors), the
greenhouse temperature at this time strongly correlated with the greenhouse temperature
at the previous time. The fitting of the predicted value to the actual value in the early stage
was better than that in the later stage. The value on the horizontal axis is the number of
hours after 1:00 on 3 April 2019.
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In Figure 5, the green line is the change curve of the real value, the blue line is the
change curve of the prediction result of LightGBM using the original features, and the red
line is the change curve of the prediction result of LightGBM after adding the time-series
features. It is seen that when the temperature smoothly changed, the prediction results
were close to the real value both before and after adding the time-series features. When the
temperature sharply changed, the prediction result was closer to the curve of the real data
after adding the time-series features. The situation was similar at other positions where the
temperature suddenly changed on the curve, such as approximately 160 and 183 h.

In Figure 6, the blue line is the absolute error of the prediction results without time-
series features, and the red line is the absolute error of the prediction results after adding
time-series features. It is seen that in the early prediction results, the results obtained
using only the original features and those also using the time-series features were close,
but after approximately 52 h, the absolute error when using only the original features
gradually became greater than that when also using the time-series features. The statistical
analysis of the results in Figure 6 reveals that the mean value of the absolute error when
using only the original features was 0.5177 ◦C, and the standard deviation of the absolute
error was 0.5652 ◦C. The mean value of the absolute error when also using the time-series
features was 0.4491 ◦C, and the standard deviation of the absolute error was 0.5259 ◦C. The
mean value and standard deviation of the absolute error when also using the time-series
features were less than those when using only the original features, and the prediction
result obtained when also using the time-series features was closer to the real value than
that obtained using only the original features, and the fluctuation of the error was smaller.

Figures 7 and 8 show that when the temperature trend changed (i.e., from decreasing to
increasing or from increasing to decreasing), the prediction results of the BP neural network
had lower absolute errors after time-series features were added. Statistical analysis of the
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results in Figure 8 revealed that the mean value and standard deviation of the absolute
error were 0.5852 and 0.6146 ◦C, when using only the original features, and 0.5617 and
0.5640 ◦C when also using the time-series features. Therefore, the prediction result of the
BP neural network when also using the time-series features was better than that when
using only the original features, but worse than that of LightGBM.

The prediction results and absolute errors of the SVM model are shown in Figures 9 and 10.
Statistical analysis of the results in Figure 10 showed that the mean value and standard
deviation of the absolute error of the SVM model were 0.5111 and 0.5374 ◦C, when using
only the original features, and 0.4917 and 0.5476 ◦C when also using the time-series features.
Therefore, the prediction result of the SVM when also using time-series features was better
than that when using only the original features, but the error fluctuation was larger, and it
was better than that of the BP neural network with time-series features but worse than that
of LightGBM.

The prediction results and absolute errors of linear regression model are shown in
Figures 11 and 12. Statistical analysis of the results in Figure 12 showed that the mean
value of the absolute error of linear regression when using only the original features was
0.4988 ◦C, and the standard deviation of the absolute error was 0.5414 ◦C. The mean value of
the absolute error when also using the time-series features was 0.5030 ◦C, and the standard
deviation of the absolute error was 0.5732 ◦C. In contrast with the prediction results of
the previous model, the mean value and standard deviation of the absolute error in the
prediction results of the linear regression model increased after adding the time-series
features. The ability of linear regression to distinguish the time-series features is thus not
strong, which relates to the characteristics of the linear regression model itself.

The degree of fitting of the prediction curve and the real curve in Figure 13 and the
fluctuation of the absolute error in Figure 14 reveal that the absolute error in the prediction
result of the time-series features of the RBF model was lower than that of other models
approximately 52 h previous, but the error in the subsequent results was similar to that
of the prediction result using the original features and worse than that of other models.
The RBF model has better recognition ability for short-term time-series features but poor
recognition ability for long-term time-series features. Statistical analysis of the results in
Figure 14 shows that the mean value and standard deviation of the absolute error were
0.5901 and 0.6148 ◦C for the original features only and 0.5749 and 0.5867 ◦C for the time-
series features also. The accuracy of the prediction results and the fluctuation of errors
were worse for the RBF model than the previous models.

The prediction results and absolute errors of the MLP model are shown in Figures 15 and 16.
Statistical analysis of the results in Figure 16 showed that the maximum, mean, and stan-
dard deviation of the absolute error were 3.3944, 0.5229, and 0.6028 ◦C, respectively, for the
original features only, and 3.2793, 0.5141, and 0.5583 ◦C, respectively, for the time-series
features also. In the same way, when time-series features were added to the MLP model,
not only the mean absolute error of the prediction results but also the fluctuation of the
error decreased.

Table 3 compares the prediction of each model before and after adding the time-series
features against the real value and presents a simple statistical analysis of the absolute error
of each model.

Table 3. Statistical analysis of the absolute error with and without time-series features.

Model

Indicators Without Time-Series Features With Time-Series Features

Max Mean SD Max Mean SD

LightGBM 3.0942 0.5177 0.5652 2.7378 0.4491 0.5259
BP 3.2832 0.5852 0.6146 3.1263 0.5617 0.5640
SVM 3.0594 0.5111 0.5374 3.1045 0.4917 0.5476
Linear Regression 3.1440 0.4988 0.5414 3.2217 0.5030 0.5732
RBF 3.2983 0.5901 0.6148 3.0887 0.5749 0.5867
MLP 3.3944 0.5229 0.6028 3.2793 0.5141 0.5583
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Table 3 shows that LightGBM saw the most obvious improvement after the addition of
time-series features. Not only the maximum error but also the mean error and the standard
deviation of the error in the prediction results were the smallest. Therefore, in general,
LightGBM made the best and most stable predictions among the models.

Figures 5–16 compared the prediction results of each model at each time point
with the real results. Good and poor results were intuitively seen in all the predictions.
We conducted a quantitative analysis of the prediction results of each model. Using
Equations (15)–(17), blocked cross-verification was adopted to adjust the hyperparameters
of each model, and all models were trained with the optimal parameters obtained by
verification. The evaluation indicators of the prediction results of each model with and
without time-series features are presented in Table 4.

Table 4. Evaluation indicators of the models before and after adding time-series features.

Model

Indicators Without Time-Series Features With Time-Series Features (MSE1i-MSE2i)/
MSE1i

(MSE2i-
MSE2LightGBM)/

MSE2i
MSE1 MAE2 R2_Score1 MSE2 MAE2 R2_Score2

LightGBM 0.5868 0.5177 0.9760 0.4776 0.4491 0.9805 18.61% -
BP 0.7193 0.5852 0.9706 0.6329 0.5617 0.9742 12.01% 24.54%

SVM 0.5494 0.5111 0.9776 0.5409 0.4917 0.9779 1.55% 11.70%
Linear Regression 0.5413 0.4988 0.9779 0.5808 0.5030 0.9763 −7.30% 17.77%

RBF 0.7254 0.5901 0.9704 0.6739 0.5749 0.9725 7.10% 29.13%
MLP 0.6360 0.5229 0.9740 0.5753 0.5141 0.9765 9.54% 16.98%

Table 4 shows that all indicators were best for linear regression before time-series
features were involved, followed by the SVM model and the RBF model. After adding
time-series features, the indicators of the LightGBM model were the best, whereas those
of the RBF model remained the worst. However, the MSE was reduced by 7.10%, the
MAE was reduced by 2.58%, and the R2_Score was reduced by 0.22% with the inclusion of
time-series features for the RBF model.

A comparison of the indicators before and after the inclusion of time-series features
in all models revealed that, for the prediction results with time-series features, except
those of the linear regression model, the indicators have improved. Among them, the
indicators of the LightGBM model improved the most, with the MSE decreasing by 18.60%,
the MAE decreasing by 13.25%, and the R2_score increasing by 0.45%. All indicators
of LightGBM were the best among the several models. This is because the LightGBM
model is based on the decision tree model, and the result is the average result after the
accumulation of multiple tree models. This characteristic can weaken the effect of abnormal
data, and the recognition of the complex features constructed in this paper is the same as
that of the original features, which are divided into branches depending on the optimal
threshold value.

The MSE, MAE, and R2_score of the sub-optimal SVM model decreased by 1.55%
and 3.80% and increased by 0.03% after adding the time-series features. The SVM model
can specify different kernel functions in the decision function, and the transformation
can be nonlinear (i.e., the transformation space can be high-dimensional), such that its
input space can be nonlinear, which is of great help in the recognition of high-dimensional
complex features. Therefore, the SVM can still achieve excellent performance after adding
time-series features. Both BP and RBF neural network models have the ability of multi-
dimensional nonlinear mapping, self-learning, and self-adaptation, such that they can also
identify high-dimensional complex features. Since each model has a different base learner
and recognition ability for high-dimensional complex features, the time-series information
that each model can recognize is also different to some extent. The prediction effect can
thus be improved by adding time-series features.

Owing to the shortcomings of the linear regression model, it is difficult to model
nonlinear data or features with correlation and to identify highly complex features well.
Therefore, the difference features, statistical features, and combination features mentioned
in this paper do not perform well in the linear regression model. Compared with linear
regression, the MLP model can fit nonlinear data and deal with complex relationships more
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flexibly. Therefore, the MLP model can better identify the complex features constructed in
this paper, and the prediction indicators of the MLP model have been greatly improved after
the addition of time-series features. Compared with the predication without time-series
features, the MSE decreased by 9.54%, the MAE decreased by 1.68%, and the R2_score
increased by 0.26%.

In summary, Table 4 shows that the prediction of each model was improved after
adding time-series features, and the time-series features made the most obvious improve-
ments to the prediction of LightGBM, with the MSE on the test set decreasing from 0.5868
to 0.4776 (i.e., by 18.61%). LightGBM performed better than the other models for all eval-
uation indicators. After adding the time-series features, the fitting degree of LightGBM
was 98.05%. Comparing LightGBM with other models after adding time-series features,
the MSE was lower by 11.70% (versus the SVM) and −29.12% (versus the RBF), the MAE
was lower by 8.66% (versus the SVM) and −21.88% (versus the RBF), and the R2_score
was improved by 0.26% (versus the SVM) and 0.80% (versus the RBF). LightGBM therefore
performed better in prediction.

We statistically analyzed the confidence interval of the absolute error between the
predicted value and the real value of each model at the 95% confidence level, and the results
are presented in Table 5. The table shows that for the same confidence level and the same
sample size, the confidence interval of the absolute value error of the predicted value of
the LightGBM model with time-series features was narrower than the intervals for other
models, which shows that the estimated error for the LightGBM model was smaller and
the prediction was more accurate than for the other models. The confidence intervals of the
linear regression model and SVM model without time-series features were smaller than the
interval for the time-series model. The results here coincide with the results presented in
Table 4. After adding the features of the time series, BP neural network, and RBF neural
network, the confidence interval decreased to a certain extent, but the effect was weaker
than that for the LightGBM model.

Table 5. Confidence interval of each model at the 95% confidence level.

Model
0.95 Confidence Interval Without Time-Series

Features
With Time-Series

Features

LightGBM [−0.5901, 1.6256] [−0.5816, 1.4799]

BP [−0.6194, 1.7898] [−0.5436, 1.6672]

SVM [−0.5422, 1.5645] [−0.5815, 1.5650]

Linear Regression [−0.5624, 1.5601] [−0.6204, 1.6266]

RBF [−0.6150, 1.7952] [−0.5750, 1.7249]

MLP [−0.6586, 1.7045] [−0.5801, 1.6085]

Figure 17 shows the variation in the training time for each model with the cross-
validation folding number. A greater number of folds for cross-validation results in a
longer time for training. Among the models, the training times of the BP neural network
and MLP model had a negative increase with the change in fold number, owing to the
early stopping mechanism used to prevent overfitting in the experimental process. This
also shows the instability of using the BP neural network and MLP in cross-verification.
Compared with the RBF model, SVM, and BP neural network, the LightGBM model
required less training time and obtained better results in less time. The LightGBM model is
thus superior to other models in terms of both prediction accuracy and time efficiency.
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Figure 18 compares the training times for different models with the optimal hyper-
parameters before and after adding time-series features. The BP neural network and
RBF model required less training time after adding time-series features because the early
stopping mechanism ensures that the parameters of the model converge earlier. The time
required by the SVM model obviously increased after adding the time-series features, which
indicates that the SVM model is extremely sensitive to the feature dimension. Compared
with the other models, LightGBM took a little more time than the linear regression and
much less time than other models after adding time-series features. LightGBM thus rapidly
provided prediction results.
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6. Discussion

In this paper, we extracted the time-series features of the factors affecting the indoor
temperature in a greenhouse and then used the LightGBM model to more accurately predict
the greenhouse temperature. It was found in the experiment that linear regression did
not have a strong ability to identify high-dimensional complex features, and therefore its
MSE and MAE for prediction did not decrease with the inclusion of time-series features.
Indeed, the original feature prediction performance was better. The combination of the
LightGBM model and time-series features greatly improved the accuracy of prediction
results. Although models other than the linear regression model have improved the predic-
tion performance after adding time-series features, the positive effect on the performance of
the LightGBM model was more obvious. In terms of the required training time, following
cross-validation, the training time required for most models is directly proportional to
the number of cross-validation folds, and the proportionality coefficient of the LightGBM
model was relatively moderate. Although the LightGBM model was not the fastest, it
obtained the optimal results in a relatively short time.

Owing to the limitation that the training data provided by the competition platform
are only for March and April, the method proposed in this paper has not been verified
using data for other periods, and we have checked relevant works published in the past
two years and have not found any other study using this dataset. Therefore, there is no
comparison between presented results and the results from the existing literature that
deals with similar research. Moreover, the limited original feature information in the
training data limited the time-series feature information that we could extract, such that
some factors affecting the greenhouse temperature were not considered. If other quarterly
data are added and the volume of data is sufficient, because the LightGBM model is
based on the GBDT algorithm, the temperature corresponding to different quarters will
be divided into different branches when building the boosting tree. In addition, if more
influencing factors such as the light intensity and carbon dioxide concentration are added,
more information can be extracted during time-series feature construction. Therefore, if
the data of different quarters are taken as input, theoretically, the model can also learn the
time-series information of different quarters.

Time-series cross-validation is highly dependent on the ability of the base learner
of the model to recognize historical time-series information. Stronger recognition ability
means that more information will be extracted with an increase in the number of time-series
features; otherwise, less information will be extracted. Therefore, when the data used for
cross-validation are divided into multiple folds, a greater number of folds results in each
fold containing less historical information. In the case of a multi-fold partition, the model
can extract different historical time-series information from the data of each fold, which
leads to a difference in the prediction results. A slight difference can help the model adjust
parameters and improve the model performance, while large differences will make the
model unstable and worsen the prediction results.

7. Conclusions

Based on an analysis of environmental factors that affect the indoor temperature, we
added difference features, statistical features, and other time-series characteristics of the
temperature, humidity, and air pressure using cross-features as the input of the nonlinear
relationship features and applying the LightGBM model, linear regression, SVM, BP neural
network, RBF neural network, and MLPRegressor for predictive analysis. In comparative
tests using only the original features and adding time-series features, we found that, after
adding time-series features, the prediction results of LightGBM were better than those of
the other models, which revealed that LightGBM has better adaptability to time-series
features. Compared with the LightGBM model, linear regression does not have strong
recognition ability for time-series features. Therefore, applying time-series features to
linear regression does not help to identify high-dimensional complex feature information.
Compared with the SVM, BP neural network, and RBF neural network, LightGBM took less
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time in the training process and did not easily fall into a local optimum. Compared with
the dynamic model and MLPRegressor mentioned in the literature [10,11], LightGBM is not
limited to small ecosystems but is applicable to other situations. Furthermore, LightGBM
had the smallest mean value and standard deviation of the absolute error, indicating that
LightGBM made the most stable prediction among the various models.

It is therefore concluded that the greenhouse temperature prediction model based on
time-series features and LightGBM not only trains the model in a shorter time but also
more accurately predicts the greenhouse temperature.

The growth of crops is strongly dependent on aspects of the natural environment, such
as light, temperature, humidity, and air pressure, which affect the crop yield and quality. In
the growth cycle of crops, all kinds of chemical reactions need to occur within the crop ma-
terial at an appropriate temperature, and therefore temperature is often the decisive factor
of crop growth and development. The LightGBM prediction results are important reference
values for greenhouse temperature control and play an important role in improving the
crop yield and quality and promoting the development of smart agriculture.

Owing to the limitation of data samples, the reported experiment has not been verified
on other datasets outside the dataset for 2019 used in the present study. Future work will
obtain more complete original data affecting the greenhouse temperature for further testing
of the model and expanding the use scenario.
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