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Abstract: In vitro cell-based tests are an important preclinical step for the safety assessment of
biomaterials and drugs. Three-dimensional cell culture models (3D) may improve the limitations
of the usual 2D models, as they better simulate a physiological environment. This work describes
the characterization of a 3D spheroid model of MC3T3-E1 murine preosteoblasts for the testing of
bone-substitute materials and investigates its adequacy to some of the most employed cell viability
tests. The spheroids presented structural stability for 28 days in culture, with a regular spheroidal
aspect, compact surface, and dense inner structure, with high potential for mineralization, but
a time-dependent reduction in size. The use of colorimetric tests (MTT, XTT, and NRU) did not
achieve satisfactory optical densities and did not correlate with cell density in the 3D model, as the
aggregates remain strongly stained even after dye extraction steps. On the other hand, the LDH test
achieved appropriate optical density and a high correlation with cell density (r2 = 0.77) and identified
a dose–response for a well-known cytotoxic polymer (latex), while no toxicity was identified for
biocompatible PLA wires. These results indicate that material testing with 3D bone cell models
requires a careful choice of test methods and parameters.

Keywords: cell culture; bone substitute; biomaterials; osteoblasts

1. Introduction

Risk assessment is of paramount importance during the development of novel bio-
materials, ensuring human health and their safest clinical use [1]. In this context, the
first screening to assess the toxicological risk is performed using in vitro models with cell
culture, as an important step prior to in vivo preclinical and clinical assessments. Bidi-
mensional (2D) monolaminar models represent the main cell culture methodology and
have provided, for decades, important data on the cytotoxicity of several compounds and
materials, being the scope of international standards for material testing (ISO 10993-5:2018).
However, several inherent limitations of in vitro assays have reduced their predictability
and applicability. Regarding tests employing monolaminar culture, cells are devoid of a
consistent extracellular matrix (ECM), and the reduced cell–cell interactions and mechanical
stimuli interfere with cell behavior, morphology, and phenotype [2], increasing the distance
with expected clinical outcomes. The high rate of failure of materials during clinical test
phases demonstrates the need for more predictive models.
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Technologies involving cell culture have continually improved throughout the 20th
century [3]. Concerning Toxicity Testing for the 21st Century, organotypic culture tech-
niques such as 3D models have considered as promising models to fill the gap between
the in vitro and in vivo or clinical results [4]. This model allows cells to further interact
with each other and with ECM, mimicking some of the physiological responses that occur
in a tissue, permitting cells to make complex interactions with adjacent cells, receiving
and transmitting signals [5]. Furthermore, 3D models provide gradients of oxygen, nutri-
ents, metabolites, soluble signals, with increased heterogeneity of cells, and the expression
of cell-signaling factors and responses to drugs and materials more similar to in vivo
conditions [6]. Several studies have investigated 3D models, which includes spheroidal
organoids or spheroids, which may be produced by the liquid overlay technique [7].

Osteoblast and osteoblast-like cells lines are important for toxicology evaluation and
risk assessment of drugs related to bone diseases such as osteoporosis, osteosarcoma,
and nanoparticles [8] and implantable biomaterials [9], including the use of international
standards for materials testing (ISO 10993-5:2009). Different osteoblast and osteoblast-
like-based 3D models are being developed nowadays [10–14]. However, there is a lack of
further characterization of these 3D models. Moreover, there is a gap in the evidence of the
suitability of spheres of osteoblastic lines to standardized cytotoxicity assessments. As long
as these factors are not fully approached, the confidence in these tests will remain limited.
In this context, this work aimed to (i) characterize the stability, integrity, and uniformity
of a 3D model, composed of aggregates of preosteoblastic cells, intended for the in vitro
evaluation of biocompatibility of bone-substitute biomaterials, and (ii) to investigate the
suitability of the 3D model as a substitute of monolaminar culture in the performance of
some of the most widely used in vitro cytotoxicity tests for the evaluation of biomaterials.

2. Materials and Methods
2.1. Cell Culture

We obtained the MC3T3-E1 preosteoblastic murine cells from the collection of the
Clinical Research Unit of the University Hospital Antônio Pedro-UFF (UPC-HUAP-UFF).
The cells were maintained in Minimum Essential Medium Eagle (MEM) with Alpha Modi-
fication (α-MEM) containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin
at 37 ◦C in a 5% carbon dioxide environment.

2.2. Production of the 3D Model

Spheroids were produced by the liquid overlay technique. We seeded the cells in a
density of 20,000 cells per well in 96-well round-bottom plates covered by 1% sterile agar.
Subsequently, we added 200 µL of culture medium and incubated the plates for 4 or 7 days,
depending on the experiment, at 37 ◦C in a 5% carbon dioxide environment.

2.3. Spheroid Diameter and Aspect Measurement

We performed the assessment of spheroid diameter and aspect by observing 100
spheroids through weekly follow ups for 4 weeks using a photomicroscope (Zeiss Axio
A1). The mean diameter and aspect were measured using the Image-Pro Plus 6.0 image
analysis program, where the measurement is made at intervals of two degrees joining two
contour points, and the aspect was evaluated by the ratio between the major and smallest
axis of the ellipse.

2.4. Cell Viability Analysis

To evaluate cell viability, aggregates from day 1 to day 5 were disaggregated using
60 µL Tryple Select (TrypLE Select, Gibco, Thermo Fisher Scientific, Boston, MA, USA),
then incubated for 240 min at 37 ◦C in a 5% carbon dioxide atmosphere. After the
incubation, each aggregate was disaggregated with a micropipette and observed in the
optical microscope to confirm the complete disaggregation. Subsequently, 20 µL of the
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cells were mixed with 20 µL of 0.4% Trypan Blue (Sigma-Aldrich, Waltham, MA, USA),
and the cells were counted in a hemocytometer.

2.5. Apoptosis and Necrosis Analysis

We evaluated the spheroids for the presence of apoptosis using a Caspase 3/7 fluorescent
kit (Life Technologies, Thermo Fisher Scientific, Boston, MA, USA) and 4% Hoechst 33342 for
nucleus staining. Aggregates were incubated for 30 min with the reagent at room tempera-
ture, then they were washed 3 times with phosphate-buffered saline (PBS) and fixed in 4%
paraformaldehyde. Cells were exposed to 4% Hoechst 33342 for 5 min, then washed 2 times
with PBS and observed in a confocal microscope (Leica, DMI 6000, Wetzlar, Germany).

2.6. Scanning Electron Microscopy (SEM)

For the SEM analysis, we fixed the spheroids in Karnovsky solution for 30 min, fol-
lowed by three 5 min washes in sodium cacodylate buffer. The samples were dehydrated in
a series of ethanol solutions (15–100%), treated with 1: 1 ethanol and hexamethyldisilazane
(HDMS) for 10 min, followed by pure HMDS for 10 min. After that, they were coated
with a gold layer of 20 nm thickness. We examined the samples using a scanning electron
microscope (EVO MA15, Zeiss, Aalen, Germany), with the acceleration voltage adjusted to
15 kV. The working distance was 33.5 mm. SEM images were recorded at magnifications
ranging from 864× to 6260×.

2.7. Histological Analyzes

We fixed the spheroids in 4% paraformaldehyde, followed by submersion in 30%
sucrose, then placed the samples in gelatin capsules for medicine (Pipingrock, 8021) with
Optimal Cutting Temperature (OCT) medium for freezing (EasyPath Killik OCT). Those
capsules were submitted to a dry ice bath (−78 ◦C) for quick freezing. We cut the blocks
with a cryomicrotome (Leica CM1850 UV) in sections of 7 µm thickness. The sections were
stained with Hematoxylin-Eosin (HE), or 2% Alizarin Red (Alizarin Red S, Sigma-Aldrich,
São Paulo, Brazil). We evaluated qualitatively the calcium accumulation through optical
microscopy (Zeiss Axio A1, Aalen, Germany).

2.8. MTT Assay

To assess the cell viability, spheroids with 4 and 7 days of formation and three different
cell densities (20, 30, 40 × 103 cells) were washed once with PBS and then exposed to
0,5 mg/mL MTT (3-(4,5-dimethyl-thiazoyl-2yl) 2,5-diphenyltetrazolium bromide, Sigma-
Aldrich, Brazil) for 2 h at 37 ◦C. After complete solubilization of formazan crystals in
Dimethyl sulfoxide (DMSO), we measured the optical density (O.D.) with a spectropho-
tometer (Sinergy II, Biotek Inst., Winooski, VT, USA) at 540 nm, testing the extraction three
times with DMSO (10 min, 1 h, and overnight).

2.9. XTT Assay

After spheroid formation (4 and 7 days), we washed the samples once with PBS, then
added 200 µL/well of α-MEM without SFB and 50 µL/well of 1:100 XTT ((2,3-Bis-(2-Methoxy-
4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide, Sigma-Aldrich, São Paulo, Brazil).
The plate was incubated for 4 h at 37 ◦C and 5% CO2. We accessed the optical density with
a spectrophotometer (Sinergy II, Biotek Inst., Santa Clara, CA, USA) at 480 nm.

2.10. Neutral Red Uptake (NRU) Assay

We washed the spheroids with the Wash solution NR I (In Cytotox, Xenometrix,
Germany). After that, we added 200 µL/well of 1:100 Identification solution NR II and
then incubated the plates for 4 h at 37 ◦C. The NR II solution was discarded, and the
spheroids were exposed to Fixation solution NR III for 1 min. For the dye solubilization,
the aggregates were submitted to the Solubilization solution NR IV for 15 min at room
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temperature. We measured the optical density with a spectrophotometer (Sinergy II, Biotek
Inst., Winooski, VT, USA) at 540 nm.

2.11. Lactate Dehydrogenase (LDH) Assay

The ability of the LDH test to detect a dose–response of positive controls was assessed
by the exposure to different dilutions of extracts of fragments of commercial latex tubes
(DentalCremer, Sao Paulo, Brazil), a well-known cytotoxic polymer, or the white filaments
of the biocompatible polymer polylactic acid (PLA) (3D Procer, São Paulo, Brazil). The
extracts were prepared according to ISO 10993-12:2018, by incubation of 200 mg/mL in
culture media for 24 h at 37 ◦C and 5% CO2, and the dose–response was evaluated with the
preparation of extracts with seven other concentrations, ranging from 100 to 3.12 mg/mL.
Cell aggregates were exposed in quintuplicates to these extracts and incubated for 24 h,
followed by the LDH test. We transferred a volume of 20 µL of each well to another plate
and added 240 µL of LDH II and LDH III solution (16 mL of LDH II and 3.4 mL of LDH
III) (In Cytotox, Xenometrix, Allschwil, Switzerland). We measured the optical density
with a spectrophotometer (Sinergy II, Biotek Inst., EUA) at 540 nm for 25 min at 37 ◦C. To
determine the total release of LDH corresponding to 100% cytotoxicity, aggregates (n = 5)
were also exposed to 200 µL medium mixed with 1% Triton X-100 and incubated for 24 h
prior to the test.

2.12. Statistical Analysis

Statistical differences were analyzed using a two-way analysis of variance (ANOVA)
followed by Tukey’s post-test for comparison between the pairs of the groups, with a
significance level of p < 0.05. The IC50 (concentration for the inhibition of 50% of cells) for
the Latex and PLA extracts was calculated by the equation produced by applying linear
regression to the results of the LDH assay. The statistical analyses were performed using
Graph Pad Prism 8.0 software (GraphPad, San Diego, CA, USA).

3. Results
3.1. Diameter and Aspect

Figure 1 shows that the liquid overlay protocol produces spheroidal bone cell ag-
gregates that decreased their diameter with time, as they become more compact. On the
seventh day, the mean diameter was 409.9 ± 53.4, while by the fourteenth day, this value
decreased to 353.1 ± 40.8 (n = 100 spheroids). On the other hand, the spheroids did not
present considerable variation in the aspect value, as in the seven and fourteen days the as-
pect remained 1.1 ± 0.1, indicating a consistent sphericity. Despite the compaction process,
the spheroids were still intact and regular even after 28 days.



Appl. Sci. 2023, 13, 1602 5 of 15Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 

Figure 1. Representative images by optical microscopy of MC3T3-E1 spheroids of 20,000 cells dur-

ing the first 7 days and at the 14th, 21st, and 28th days of formation. Images obtained with a 20× 

objective. Scale bars indicate 100 m. 

3.2. Cell Viability Analysis 

We assessed the cell viability of the aggregates by the Trypan Blue exclusion method, 

normalizing the amount of live cells relative to the total cell density counted. The relative 

proportion of viable cells during the first 5 days of formation slightly increased, reaching 

96% on the 5th day (Figure 2A). After the fifth day, we could not estimate the cell density 

because it was not possible to achieve spheroid disintegration by the conventional method 

with proteolytic enzyme activity. The analysis of the presence of apoptosis was evaluated 

by immunofluorescence in a confocal microscope (Figure 2B). Fluorescent staining with 

3/7 caspase probes indicated the presence of well-distributed apoptotic cells on the sphe-

roid core, surrounded by viable cells. 
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section of a 20,000-cell aggregate, labeled for viable cell DNA through Hoechst 33342 (blue) and for 
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3.3. Structural Analysis 
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ular and compact surfaces with 1 day and 28 days in culture with osteogenic medium 

(Figure 3A,B). These spheroids presented extensions with characteristic filopodia (Figure 

Figure 1. Representative images by optical microscopy of MC3T3-E1 spheroids of 20,000 cells during
the first 7 days and at the 14th, 21st, and 28th days of formation. Images obtained with a 20× objective.
Scale bars indicate 100 µm.

3.2. Cell Viability Analysis

We assessed the cell viability of the aggregates by the Trypan Blue exclusion method,
normalizing the amount of live cells relative to the total cell density counted. The relative
proportion of viable cells during the first 5 days of formation slightly increased, reaching
96% on the 5th day (Figure 2A). After the fifth day, we could not estimate the cell density
because it was not possible to achieve spheroid disintegration by the conventional method
with proteolytic enzyme activity. The analysis of the presence of apoptosis was evaluated
by immunofluorescence in a confocal microscope (Figure 2B). Fluorescent staining with 3/7
caspase probes indicated the presence of well-distributed apoptotic cells on the spheroid
core, surrounded by viable cells.
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Figure 2. (A) Percentage of viable cells among the total cells measured by the Trypan Blue exclusion
test during the first 5 days of aggregate formation. (B) Confocal microscopy imaging of the central
section of a 20,000-cell aggregate, labeled for viable cell DNA through Hoechst 33342 (blue) and for
caspases 3/7 (green) indicating apoptosis. The scale bar indicates 50 µm.

3.3. Structural Analysis

Analyzing the ultrastructure of spheroids by SEM, most intact spheroids present regular
and compact surfaces with 1 day and 28 days in culture with osteogenic medium (Figure 3A,B).
These spheroids presented extensions with characteristic filopodia (Figure 3C,D). After 28 days,
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cells on the aggregate surface showed the presence of small vesicles sprouting from the cell
membrane, with typical dimensions of matrix vesicles (Figure 3E,F).
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Figure 3. Electron micrographs of MC3T3-E1 cell spheroids. (A) Spheroid on day 0 of treatment with
osteogenic medium; (B) Spheroid treated with osteogenic medium for 28 days; (C) Cells of a spheroid
on the day 0 and (D) on the 28th day; (E) cells aggregated in a spheroid on the 14th day in culture
(F) enlarged image of the area (*) with possible cell matrix vesicles.

3.4. Histological Analyzes

In order to evaluate the cell organization within the spheroids, we obtained photomi-
crographs of sections stained with Hematoxylin and Eosin (HE) five times (1st, 7th, 14th,
21st, and 28th days) of groups treated and untreated with induction medium after the
formation time. In the photomicrographs of HE, one can observe visible cell nuclei in all
regions. It was possible to verify more evident morphological differences in the images up
to 14 days between the cells from the periphery to the ones of the center. The peripheral
cells were more fusiform and elongated (Figure 4), while the central areas present cuboidal
morphology typical of active osteoblasts.
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Figure 4. Photomicrographs of spheroids maintained in culture with untreated medium and treated for
osteogenic induction. (A) 7 µm thick sections stained with HE and (B) 7 µm thick sections stained with
Alizarin Red (aggregates collected at 1, 7, 14, 21, and 28 days counted after the formation time of 4 days
and after the first day of exposure to the induction medium). Images obtained with a 20× objective. Scale
bars indicate 100 µm.

To analyze the presence of calcium accumulation in the spheroids (formation of
mineralized matrix), we also obtained photomicrographs of sections stained with Alizarin
Red in five different periods of formation (1st, 7th, 14th, 21st, and 28th day) of aggregates
treated or not with an osteogenic medium. Figure 4 shows that, after 7 days of induction,
the aggregates already presented a high presence of calcium nodules. The 3D environment
may exert a positive effect on the mineralized phenotype, since mineralization nodules are
also evident in spheroids maintained with anuntreated medium.
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3.5. Assessing the Adequacy to the MTT Test

To observe the performance of the spheroids on a MTT test, we evaluated the variation
in cell density, incubation time, and formazan extraction time as technical factors affecting
the assay. To assess if the incubation time would influence the results, we tested two times
of incubation (2 and 4 h) with 20,000 cells spheroids. No significant difference can be seen
between both times (p > 0.05) (Figure 5A). With the aim to improve the extraction of formazan,
different times were also tested. Figure 5B shows that the time of extraction is an important
factor since the optical density (OD) of 1 h was greater than 10 min (p < 0.05), but the results
remained unsatisfactory, as readings remained rather low. There is no significant difference
between the densities, and all of them are significantly smaller (p < 0.05) than the 2D model
in all tests (Figure 5C).

We produced histological sections to analyze the interior of the spheroids after the
time of exposure to tetrazolium and after the extraction step with DSMO for 1 h. Figure 5D
shows that an incorporation of tetrazolium occurs, with its conversion into formazan up to
the innermost layers of the spheroid. The section produced after the extraction step (5E)
shows a decrease in the dye, but it is still present. Therefore, we can observe that there is
not a reduction in cell metabolism, but a decrease in the ability of the dye to leave the cell
aggregate during the extraction steps.
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Figure 5. (A) Optical density of the MTT assay for two different times of incubation (2 h and
4 h; (B)) Optical density for two different times of extraction (15 min and 1 h). Bars represent
the mean ± SD (n = 5) optical density at 540 nm; (C) Comparison of the optical density obtained
by a MTT assay performed with different cell densities for the 3D model, and the seeding of
20,000 cells for the 2D model. Black bars indicate the results obtained with monolaminar cell
culture of MC3T3-E1 cells form the same origin as those used in the aggregates. (D) 7 µm section of
spheroid with 20,000 cells after the incubation with Formazan for 2 h; (E) 7 µm section of spheroid
with 20,000 cells after the extraction with DMSO for 1 h. All experiments were performed with
spheroids at the 4th day after formation.
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3.6. Evaluating the Adequacy of the XTT Assay

Although XTT is a soluble version of the tretazolium-based assay, optical densities
remained as low as those observed for MTT (Figure 6A). Tests with longer incubation times
were not feasible, since the reading was equalized to blank (data not shown). Histological
sectioning of a spheroid after the incubation time of XTT (Figure 6B) shows that the dye
was released in the outermost layers, but not the inner portion of the spheroid, providing
an explanation of the reduced O.D. in the experiment.
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Figure 6. (A) Optical density of the XTT assay, with different cell densities incubated for 4 h. Bars
represent the mean ± SD (n = 5) optical density at 480 nm. The black bar indicates the result
obtained with monolaminar cell culture of MC3T3-E1 cells form the same origin as those used in
the aggregates. (B) 7 µm section of spheroid with 20,000 cells after incubation with XTT. An asterisk
indicates significative difference from other groups (p < 0.05). All experiments were performed with
spheroids at the 4th day after formation.

3.7. Analysis of the Adequacy to the NR Assay

There is no distinction between the result of cell densities (Figure 7A) and the result
in the three-dimensional model remains the same as in the previous tests, with an O.D.
inferior to the ideal. The histological evaluation of the produced sections shows that the
dye remains inside the spheroids (Figure 7B).
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Figure 7. (A) NRU assay performed with spheroids of three densities (20,000, 30,000 and 40,000 cells);
Bars represent the mean ± SD (n = 5) optical density at 540 nm after 25 min reaction. The Black bar
indicates the results obtained with monolaminar cell culture of MC3T3-E1 cells form the same origin
as those used in the aggregates. (B) Histological section (7 µm) of a spheroid after the extraction step,
showing the remaining dye inside cell aggregate. An asterisk indicates significative difference from
other groups (p < 0.05). All experiments were performed with spheroids at the 4th day after formation.
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3.8. Assessing the Adequacy to the LDH Enzymatic Test

Observing that the tested colorimetric methods have limitations regarding the release
of the dyes, we verified an enzymatic method using the cytosolic enzyme lactate dehydroge-
nase (LDH) for the determination of viable cells in the spheroids. The results of the optical
density of aggregates with 4 days of formation presented adequate O.D. readings between
0.4 and 1.2 and were sensitive to differing cellular densities, with significant differences
between 20,000, 30,000, and 40,000 cell spheroids (p < 0.05). The time of formation of the
aggregates seems to interfere with the O.D., since the readings obtained with spheroids on
the 7th day are lower than with spheroids on the 4th day (p < 0.05) (Figure 8).
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Figure 8. LDH test of aggregates with 4 days (A) and 7 days (B) of formation. All groups were
significantly different in the same experimental time. Bars represent the mean ± SD (n = 5) reduction
in optical density at 340 nm after 25 min reaction. Black bars indicate the results obtained with
monolaminar cell culture of MC3T3-E1 cells form the same origin as those used in the aggregates. An
asterisk indicates significant differences from other groups in the same experimental time (p < 0.05).

To evaluate the behavior of the bone cell aggregates in a cytotoxicity test, we also
performed a dose–response assessment by exposing 4-day spheroids to different concentra-
tions of extracts of two commercial polymers, namely latex and PLA. Figure 9A shows that
the LDH test employing the 3D model was sensitive to the latex extract, being capable of
measuring cell death with a high level of correlation with the concentration of the extracts,
in the best linear fit (R2 = 0.77), allowing the determination of an IC50 of 175 mg/mL for
the latex extract. On the other hand, the biocompatible PLA did not cause significant
cytotoxicity, regardless of the concentration employed (Figure 9B).
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Figure 9. LDH test of aggregates at 4 days after seeding (30,000 cells), submitted to extracts of different
proportions of commercial latex (A) or polylactic acid (PLA) (B). Results represent mean ± SD survival,
as a % of the control (unexposed cells) of two independent experiments in quintuplicates.
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4. Discussion

In the present work, we developed and characterized a preosteoblast cell spheroid
model, aiming to provide a simple, low-cost, easy reproduction tool to achieve one further
step towards the simulation of bone microtissue, and improve the predictivity of cyto-
toxicity assessments of bone-substitute biomaterials and pharmaceuticals related to bone
treatment. For this, we verified the applicability of the model for common cytotoxicity
tests employed in the scientific literature and recommended in international standards
(ISO10993-5:2009), including the colorimetric assays MTT, XTT, and NR, as well as the
enzymatic LDH method. Our results indicate that the methods and parameters used for
the 2D models are not directly applicable to the wide use of this type of 3D models, and
that adaptations must be developed for these systems to achieve their full potential.

The choice of the cell type used in an in vitro biological assessment is an important
feature that must balance its advantages and limitations. While primary cells have the
benefit of a closer response to that observed in vivo, since they retain most characteristics
of the tissue of origin, obtaining these cells is usually difficult, and limited by ethical
approval and availability of donors. A limited number of passages and high variability
among donors are other interfering factors that restrict the use of primary cells in several
studies [15]. Immortalized cell lines, on the other hand, have the accumulation of mutations
and metabolic alterations as their main disadvantages, but have important advantages in
their commercial availability, uniformity, unlimited growth, and being well-characterized
in the scientific literature, therefore, contributing to achieving standardized and repro-
ducible tests [15]. In this context, MC3T3-E1 is a well-established non-transformed cell
line derived from mouse calvaria bone, often used in materials research and osteogenesis
studies, accumulating a large amount of data in the literature [16]. While its animal origin
requires interspecies extrapolation for human hazard purposes [17], MC3T3 cells have close
similarities to human osteoblast behavior and phenotype [17,18].

Regardless of the cell origin, the characterization of a 3D model is an important step
to enable its safe and reproducible use in different experimental scenarios. In the present
study, the proposed MC3T3-E1 spheroids presented a pattern of reduction in diameter over
time. This phenomenon has already been observed in other works with spheroids of other
cell types [19–22]. Possible explanations for this phenomenon may reside in differences in
Extracellular Matrix (ECM) secretion and reorganization [19], or an increase in interdigital
connections between the cells, increasing the expression of tight junctional proteins such
as E-cadherin [22]. Another possibility is cell death in the spheroid core, due to the lack
of oxygen and nutrients in their central areas. It is interesting to observe that the MC3T3
spheroids were stabilized on an average diameter a little under 400 µm considering that
oxygen and nutrient diffusion rarely exceeds 200 µm, which is the maximum distance
between a cell and the nearest capillary [23]. Furthermore, the initial aggregated presented
apoptotic cells in the core, while the histological evaluation did not evidence the presence
of a necrotic core. In conjunction, this characterization points out important cytotoxicity
assessments with this model to ensure the use of spheroids with similar time of formation
and diameter to generate comparable results.

The time for the complete formation of a 3D model varies according to the cell type. Some
studies indicate that the best time for spheroid use is around day 7, as described for human
mesenchymal stem cell spheroids [24] and primary human hepatocyte spheroids [25]. Other
works show that the first day of the formation may be already adequate for aggregates
composed of tumor cells, such as glioma spheroids [26]. In the present work, MC3T3-E1
spheroids were uniform and stable from day 4. The aggregates present a regular and
compact surface when observed by SEM, remaining intact in the course of 28 days, as
revealed by histological observation, even though no cell viability assessment had been
performed yet for such a long culture time. They also presented small vesicles sprouting
from the cell membrane, with typical dimensions of matrix vesicles. It is possible to observe
a morphological modification in the spheroid cells cultured for 28 days in an osteogenic
medium. This morphological modification and high numbers of filopodia can be due to the
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differentiation of osteoblasts, which when involved with the mineralized matrix, become
osteocytes, which have dendritic characteristics [27].

Usually, MC3T3 cells in a bidimensional, monolaminar culture show mineralization
only when cultivated in the presence of the induction medium and, in most studies, evi-
dence of mineralization begins after 14 days of cultivation [28,29]. The proposed MC3T3
spheroids, on the other hand, presented mineralized matrix formation in 21 days of cultiva-
tion even without treatment with induction medium, while aggregates that were treated
with osteogenic medium presented a strong deposition of calcium already on the 7th day of
culture. It is possible that the close cell–cell and cell–interactions promoted by 3D models
improve cell signaling and increase the local concentration of self-secreted induction factors,
such as growth factors, stimulating osteoblasts to differentiate and produce mineralized
matrix regardless of medium supplementation [30,31]. This is a feature that may increase
the similarity of the model with bone microtissue during medical materials testing.

We tested this 3D model with different colorimetric cytotoxicity assays. Among those,
MTT is a metabolic method and, therefore, both the number of viable cells and interferences
cell metabolism can influence the result. However, the testing with the MC3T3 model
did not identify a relationship between the number of cells on an aggregate unexposed to
toxicants and the resulting Optical Density at 540 nm, indicating the lack of sensitivity of
the regular protocol of MTT for this model.

In contrast to our results, the literature presents different studies using MTT with 3D
models, that have an apparent success investigating drug cytotoxicity using human colorectal
cancer cells spheroids [6], scaffold evaluation using human osteosarcoma MG63 cells [32] and
dental biomaterials biocompatibility with mesenchymal stem-cell spheroids [33]. However,
other authors suggest that colorimetric assays using the reduction in tetrazolium are not
applicable to three-dimensional models and micro-tissues with the collagen matrix, since the
dense matrix can affect the absorption and kinetic diffusion of the dye, which impacts OD
readings [34,35]. The high production of junction proteins such as N-cadherins and E-cadherins
during the development of the spheroids, which do not occur in the two-dimensional model,
can be another source of interference [36]. It is interesting to note that the MTT and XTT have
negative and positive charges, respectively [37] that maybe interacts with collagen charges
that can be more negative or more positive depending on the pH [38]. It is possible that the
formazan resulting from the tetrazolium conversion by cells would not be able to leave the
inner layers of the spheroid due to the dense collagen matrix Type I collagen production that
increases with time in osteoblasts and osteoblast-like cells [39]. Indeed, the sections of the
spheroids after staining seem to corroborate this hypothesis as it is possible to observe that the
tetrazolium is transformed to formazan even in the inner layers, and even after the extraction
step with an organic solvent, the aggregates remained stained. Other protocol adaptations,
such as increased incubation and extraction times, were not effective in this study, indicating
that further strategies might be tested, such as the use of other solvents, in order to enable the
adequate use of this method with bone cell spheroids.

Although XTT is a soluble version of the tetrazolium test, therefore not requiring an
extraction step, it presented similar results as the MTT for the 3D model. Analyzing the
histological sections, it is possible to observe that the dye left the cells of the outer layers,
but remained trapped inside the spheroid, which was strongly stained. A similar result
was observed for the third colorimetric assay tested, using the Neutral Red dye, which
also failed to leave the inner layers of the aggregates during extraction, as revealed by the
histological analysis. It is important to note that although the XTT, MTT, and NR tests did
not perform adequately for the spectrophotometric analysis, the formazan labeling is still
present after the cryosections, indicating the viability of the cells throughout the spheroid.
Thus, those reagents/dyes can still be used in the 3D model as a qualitative histochemical
analysis of cell viability, including the assessment of the penetration of the effects of a given
toxicant or material, reinforcing the usefulness of 3D models for histological approaches.

Many authors employ the enzymatic LDH assay to determine cell viability of 3D
models [40,41]. In the present study, LDH was the assay with best performance in the
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detection of different cell densities inside the MC3T3 spheroids. The test was sensible to
differentiate different densities and showed a dose–response when the spheroids were
exposed to latex, resulting in an IC50 estimated at 175 mg/mL. Curiously, a previous study
employing monolaminar bidimensional MC3T3-E1 culture was able to identify a much
higher sensitivity of these cells to latex samples of the same origin as this study, with
an IC50 value approximately ten times lower (16 mg/mL) [42]. This expected pattern
of lower sensitivity of 3D models to toxicants is often reported in the literature and is
most probably related to the strong cell–cell and cell—CM connections that alter the
drug/toxicant penetration [43], in a manner that is more relatable to the in vivo response
to these molecules.

An important observation was made regarding the response of the LDH test to ag-
gregates with different times of cultivation, as the optical density observed for spheroids
at 4 days was higher than that observed for those on the 7th day. In this study, we were
not able to experimentally identify if this reduced signal could be attributed to a smaller
proportion of cells at day seven, as the mineralized spheroids at this experiment could not
be disaggregated for cell counting with trypan blue. On the other hand, it is also possible
that the spheroids become more difficult to be quantified over time, most probably, due to
the mineralization and strengthening of the matrix. This hypothesis remains untested and
should be assessed by further studies but is a possibility of great relevance for researchers
that intend to investigate cell density during studies of the osteogenic potential of drugs and
materials, that usually employ longer experimental times, demanding further refinement
of the available quantification methods.

In summary, the results of the present study describe a reproductive model, with char-
acteristics more similar to the bone tissue in vivo, presenting mineralized matrix production
even without induction, but that demands the development of particular methodologies
for cytotoxicity assessments, with special issues related to colorimetric assays. Methods
that are very dependent on dye extraction may not be suitable for quantitative analysis of
the three-dimensional bone model but can be used qualitatively on histological sections.
On the other hand, the LDH method is capable of detecting cell viability similarly to the
2D model and is capable of generating a satisfactory dose response for a well-known
cytotoxic material, proving to be a suitable method for the evaluation of the cytotoxicity of
biomaterials through the use bone cell three-dimensional models.

5. Conclusions

The MC3T3-E1 spheroids presented good uniformity, structural stability, and cell
viability, evidencing cellular differentiation and a mineralized matrix even in the absence of
osteogenic stimuli, but with a time-dependent reduction in size during 28 days of culture.
The application of this model in the standard protocols of the colorimetric assays MTT,
XTT, and NRU is impaired due to the difficult extraction of the dyes from the inner layers
of the aggregates, reducing the expected measures of optical density. On the other hand,
the LDH test was able to identify a direct correlation between O.D. and aggregate cell
density, enabling the detection of the dose–response to a well-known cytotoxic material.
These results suggest that LDH is the most adequate cytotoxicity test for the use of this
bone spheroid model as a promising predictive tool for the in vitro evaluation of the
biocompatibility of biomaterials.
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