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Abstract: The rolling bearing is an important part of mechanical equipment, and its performance
significantly affects the quality and life of the mechanical equipment. This article uses the integrated
fiber Bragg grating resonant structure sensor excited by periodic micro-shocks caused by micro faults
to realize the extraction of information relating to potential faults. Because the fault signal is weak
and can easily be interfered with by ambient noise, in order to extract the effective signal, this article
determines the autoregressive model of bearing vibration by the final prediction error criterion and
the recursive least squares estimation algorithm. The augmented state space model is established
based on the autoregressive model. A Kalman filter is used to reduce the noise interference, and then
the reduction noisy signal is analyzed by power spectrum and improved autocorrelation envelope
spectrum to realize the detection of bearing faults. Through data analysis and method comparison,
the proposed improved autocorrelation envelope spectrum analysis can directly extract the bearing
fault frequency, which is superior to other methods such as cepstral analysis.

Keywords: bearing fault; fiber Bragg grating resonance monitoring; autoregressive model; Kalman
filter; spectrum analysis

1. Introduction

A bearing is a basic and important component in rotating machinery. Generally,
there are many kinds of noises in the working environment. The load during operation is
also relatively large and easily damaged. Early bearing failures can be hidden in machine
vibration and environmental noise [1]. In serious cases, bearing failure will affect the normal
operation of the whole equipment and pose a threat to the operation of the equipment.
Therefore, the detection and fault diagnosis of the bearing are of great significance [2,3].

The incipient shock of the rolling bearing is weak, the contact interface damage is
small, the shock force generated by the interaction of the components is not large, and the
vibration amplitudes and the characteristic information are not obvious and weak. Due to
the constraints of the space structure, the bearing is usually not directly measured, and data
can only be obtained indirectly through the sensor installed on the equipment bearing seat
or in an external housing. The fault impulse response will be attenuated in the mediating
parts between the bearing and the sensor. In addition, it is difficult to avoid the interference
of component vibration and sensor circuit conversion noise during the operation of the
equipment. Therefore, the signal-to-noise ratio of the final picked-up signal is usually
low, and the proportion of the relevant component of the fault in the signal is small [4,5].
In addition, the rolling elements may slide relative to each other or sway due to uneven
force. Therefore, the interval between fault shocks is not strictly consistent. Additionally,
when the bearing speed is too high, some rolling elements will fly by before the collision
fault point, resulting in the loss of fault shock. Many of the above factors have presented
great obstacles to the identification of faults of bearings. Therefore, seeking an effective
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and reliable method for extracting weak fault features has always been a prominent and
difficult point in engineering application research. At the same time, it has important
practical significance for the monitoring and forecasting of the equipment’s status and for
later equipment maintenance [6,7].

At present, the research on fault detection and diagnosis of rolling bearings has made
certain progress. Djebala et al. directly used discrete wavelet transform to identify early
bearing faults, and successfully extracted weak feature information after signal decom-
position and reconstruction, but the wavelet transform needs to select a suitable wavelet
threshold and a suitable number of wavelet decomposition layers [8]. Wang et al. studied
the method of extracting the weak feature of the bearing, which combined the adjustable
quality factor wavelet transform and the aggregate empirical mode decomposition, and
successfully applied it to the actual signal analysis, but the empirical mode decomposition
has problems of mode aliasing and end effects, and it is necessary to select a sufficient
number of eigenmode functions [9]. Jiang et al. used the minimum direct deconvolution to
filter the early fault signals of the bearing, and used the full-period signal of the bearing to
verify that the characteristics of the fault signal after noise reduction can be more obvious,
but the minimum direct deconvolution is a non-globally-optimal filter, which has poor
robustness and is susceptible to interference from a few abnormal spikes during signal
processing [10]. Yao et al. used enhanced sparse representation algorithm based on an
adaptive period matching to extract the initial fault features of the bearing [11]. Wang et al.
combined the signal processing with ensemble bagged-trees-based machine learning and
used the decomposition and reconstruction methods in the stochastic resonance to diagnose
early bearing fault, but the time efficiency of mechanical fault detection of this method
needs to be improved [12]. As an intelligent fault diagnosis method, machine learning has
been applied to rotating systems fault diagnosis [13]. Rezazadeh et al. proposed a method
to identify shallow cracks in rotor systems by using convolutional neural networks and
persistent spectra during steady state operation [14]. Then, based on supervised learning
and convolutional neural network methods, intelligent methods for automatic detection of
imbalance, crack and parallel dislocation in rotating machinery are compared [15]. Using
machine learning requires a substantial amount of time and computing power.

In recent years, some researchers have used models to analyze bearing faults. Sawalhi et al.
combined AR inverse filtration and squared envelope to estimate the spall size within the
bearing [16]. Bastami et al. established an autoregressive model based on discrete wavelet
transform to estimate the defects of tapered roller bearings [17]. Wu et al., addressing
the stator/rotor winding fault, established the model, analyzed the characteristics, and
proposed a new type of robust diagnosis design for stator/rotor winding early fault [18].
Borghesani et al. studied the signal model of rolling bearings and evaluated the stationarity
of real and pseudo cycles in the rolling bearing signal, as well as the first and second order
(pseudo) cycle stationary fault symptoms [19].

The autoregressive models based on time series analysis have a wide range of appli-
cations in signal processing, and have certain applications in bearing fault detection and
bearing life-prediction. It establishes a statistical model based on a finite-length sample,
and then uses the model to achieve prediction, filtering or control purposes. The model
parameters contain important state characteristics of the system and are very sensitive to
system state changes. The autoregressive model can also be transformed with the state
space model, in which it is convenient to use Kalman filter for noise reduction. The Kalman
filter is a time domain method. The recursive algorithm is used, which is convenient for
real-time implementation on the computer, with small computation and storage, and it
can handle multi-variable, time-varying, and non-stationary time series filtering problems.
With the Kalman filter, the system state is specified and defined in combination with spe-
cific problems, which can reflect the characteristics and conditions of the system, which is
conducive to solving practical problems [20].

Considering the limitations of the methods in the literature cited above, combined with
the advantages of the autoregressive model and the Kalman filter, this article is based on the
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analysis of bearing vibration signals detected by fiber Bragg grating resonant sensors. First,
it establishes a state space model of rolling bearing based on the autoregressive model of
time series. The recursive least squares estimation algorithm is used to determine the model
parameters, the final error prediction criterion is used to determine the model order, and the
autocorrelation function is used to verify the tailing of the autoregressive model. Then, the
Kalman filter is applied to the vibration signal to realize signal noise reduction processing.
The noise-reduced signal is first analyzed by power spectrum to detect whether the bearing
has fault. If a fault occurs, improved autocorrelation envelope spectrum analysis is used
to determine the location of the bearing fault. Finally, it is compared with the analysis
result of wavelet transform and empirical mode decomposition to verify the accuracy and
effectiveness of the method in this article. The combination of Kalman filter and spectrum
analysis can effectively extract the evidence of the faulty bearing and realize the fault
detection and identification of the rolling bearing.

The main contributions of this article are as follows:

(1) Based on the vibration signal detected by the fiber Bragg grating resonant sensor,
an autoregressive model is established and transformed into a state space model of
bearing vibration.

(2) Based on the established state equation and observation equation of bearing vibration,
a Kalman filter is used to realize state estimation and noise reduction.

(3) Bearing fault diagnosis is realized by the improved autocorrelation envelope spectrum
analysis method. The first method proposed is the improved autocorrelation envelope
power spectrum, which can extract the fault frequencies and their multipliers. The
second method proposed is the autocorrelation envelope maximum entropy spectrum,
which can directly extract the bearing failure frequency. The two envelope spectrum
lines are pure and the noise interference is small. The bearing fault detection and fault
identification are realized.

2. Methods and Principle
2.1. Random Signal Autoregressive Model

An autoregressive model (abbreviated AR model) is analyzed by time series. The
information within the system state can be reflected by identifying model parameters. The
accurate ordering of descriptors in the AR model can express the system state intensively
and accurately in the objective laws of a dynamic system. In addition, studies have
shown that the autoregressive parameters of the AR model are very sensitive to the state
change law.

The AR model is a linear model. The model uses a difference equation to describe
the random sequence. The relationship between the sequence points of different signals is
different, so different models are obtained.

AR(n) model is

x(k) = ϕ1x(k− 1) +ϕ2x(k− 2) + · · ·+ϕnx(k− n) + a(k), a(k) ∼ NID
(

0,σ2
a

)
(1)

In formula (1), x(k) is observation, k is time series, k = 1, 2, · · · , N, a(k) is zero-mean
Gaussian white noise, n is the model order. The AR model describes the relationship
between the value of the k-th point in the random sequence {x(k)} and the previous
adjacent n points, and uses a zero-mean Gaussian distribution error term a(k) to represent
the uncertainty of the relationship.

2.2. AR Model Order Determination and Parameter Estimation

The smaller the variance of the error term, the more accurate the model, and the more
it can simulate the relationship between the items in the sequence.

According to formula (1), it follows that

a(k) = x(k)−ϕ1x(k− 1)−ϕ2x(k− 2)− · · · −ϕnx(k− n) (2)
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σ2
a =

1
N− n

N

∑
k=n+1

(
x(k)−

n

∑
i=1
ϕix(k− i)

)2

(3)

In formulas (2) and (3), ϕi(i = 1, 2, · · · , n) is the parameter of the model. σ2
a is

the variance.
When the order n of the AR model is unknown, it needs to be determined in the

recursive process. With the increase of model order, the variance of the model decreases
gradually. When it reaches the minimum value or no longer changes, the order at this time
is the correct order of the AR model.

The model order is determined using final prediction error (FPE) criterion. The FPE
criterion is the sum of the power of the unpredictable part of the AR(n) process and the
error power caused by inaccurate AR parameter estimation.

The definition formula is as follows:

FPE(n) =
N + n + 1
N− n + 1

σ2
a, n = 0, 1, · · · , L (4)

In formula (4), L is the highest order given in advance. N is the number of data
samples, and the value in parentheses increases as n increases (towards N). It reflects
that the inaccuracy of the estimation of the prediction error power is increasing. The
minimum value will appear in the process that σ2

a decreases as the order increases. The
order corresponding to the minimum value of FPE is the final order. When M is the
minimum order, formula (5) is satisfied.

FPE(M) = min
0≤n≤L

FPE(n) (5)

According to the measurement data of the system, under certain criteria, the unknown
parameters of the model can be identified.

Recursive least squares (RLS) estimation algorithm can realize parameter recursive
estimation. After the identified system obtains new observation data, it will use the new
observation data recursively and modify the previous estimate in combination with the
previous estimate, so that new parameter estimates can be obtained until the parameter
estimates reach satisfactory accuracy [21].

Formula (1) is written in vector form:

x(k) = ηT(k)θ+ a(k) (6)

θ = [ϕ1,ϕ2, · · · ,ϕn]
T (7)

η(k) = [x(k− 1), x(k− 2) · · · , x(k− n)]T (8)

The RLS algorithm is:

θ̂(k + 1) = θ̂(k) +
P(k)η(k + 1)

1 + ηT(k + 1)P(k)η(k + 1)

[
x(k + 1)− ηT(k + 1)θ̂(k)

]
(9)

P(k + 1) = P(k)− P(k)η(k + 1)ηT(k + 1)P(k)
1 + ηT(k + 1)P(k)η(k + 1)

(10)

θ̂(0) = θ0, P(0) = P0 (11)

In formulas (6)–(11): θ is a vector consisting of AR model parameters ϕi, i = 1~n.
θ̂(k) is its estimate at the k-th instant. η(k) is a vector consisting of the sampling sequence
x(k− i), i = 1~n. P(k) is a covariance matrix. θ0 and P0 are initial values.
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2.3. Kalman Filter

A Kalman filter is a dynamic data processing method. It is a filter method that linearly
optimally estimates the state of the system to eliminate noise. When the noise of the system
is normally distributed, a Kalman filter can calculate the minimum variance of the system.
When the noise of the system is not normally distributed, a Kalman filter can calculate the
linear minimum variance of the system.

Kalman filtering is a recursive filtering method based on time series. The principle is
to introduce new measurement data of the system as an information supplement in each
step of the filter process while continuously returning to the system filter process. In the
filter iteration process, the estimated value of the system state can be corrected in time, the
state estimation error can be reduced, and the optimal estimation can be achieved.

The Kalman filter has been applied in practical engineering tasks such as target
tracking, comprehensive industrial monitoring, fault-tolerant control, etc. The multi-sensor
distributed fusion estimation based on the Kalman filter has certain research and application
to network problems, such as transmission delay, packet loss, limited bandwidth and sensor
power [22,23]. In the actual project, the capacity of the system hardware to store data is
reduced by applying Kalman filter, and the time for the system to access data is reduced,
thereby simplifying the calculation process and operation time of the system.

The state equation and observation equation of the Kalman filter are as follows:

X(k + 1) = ΦX(k) + Γw(k) (12)

Y(k) = HX(k) + v(k) (13)

In formulas (12) and (13): X(k) is the state of the system at time k. Y(k) is the observa-
tion signal of the state. w(k) is the input white noise with the variance matrix Q. v(k) is
the observation noise with the variance matrix R. The two are uncorrelated. Φ is the state
transition matrix and H is the observation matrix, with suitable dimensions.

The recursive Kalman filter is:
State one-step prediction X̂(k + 1 |k ):

X̂(k + 1 |k ) = ΦX̂(k) (14)

One-step prediction error variance matrix P(k + 1 |k ):

P(k + 1 |k ) = ΦP(k |k )ΦT + ΓQΓT (15)

Kalman gain K(k + 1):

K(k + 1) = P(k + 1 |k )HT
[
HP(k + 1 |k )HT + R

]−1
(16)

State estimation X̂(k + 1):

X̂(k + 1) = X̂(k + 1 |k ) + K(k + 1)
[
Y(k + 1)−HX̂(k + 1 |k )

]−1 (17)

Filtering error variance matrix P(k + 1|k + 1 ):

P(k + 1|k + 1 ) = [In −K(k + 1)H]P(k + 1 |k ) (18)

In formula (18), In is the unit matrix. As long as the initial values X̂(0) and P̂(0) are
given, the estimated state X̂(k) at time k can be calculated recursively according to the
observed signal Y(k).

2.4. Power Spectrum and Improved Autocorrelation Envelope Spectrum Analysis

The bearing vibration signal is a random signal, which is an infinite signal in the time
domain, and its frequency, amplitude and phase are all random.
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(1) Autocorrelation function and power spectrum

The Fourier transform of autocorrelation function of random signal is power spectral
density. The power spectral density function is estimated from finite values of random
sequences, which is called power spectrum analysis [24].

The power spectrum of the signal reflects the distribution of the energy of the signal
with the frequency, which is an average statistical concept of the random process. As the
energy of the frequency component in the signal changes, the position of the spectral peak
in the power spectrum also changes. In addition, when the frequency component of the
signal increases, the energy distribution within the power spectrum will be decentralized,
otherwise it will be centralized.

Let the autocorrelation function of s(k) of the signal after Kalman filter be rss(m).
There is

rss(m) = E[s(k)s(k + m)] (19)

In formula (19): m is the time delay and E[·] is the mathematical expectation.
The power spectral density is:

Pss(ω) =
∞

∑
m=−∞

rss(m)e−jωm (20)

(2) Improved autocorrelation envelope power spectrum

Hilbert envelope analysis can separate the low-frequency signal modulated in the
high-frequency signal, and effectively identify the fault components of the bearing. The
main process uses the Hilbert transform to convert the signal into an analytical signal. In
the analytical signal, the real part is the actual signal itself, and the imaginary part is the
Hilbert transform’s result of the signal. The amplitude value of the analytical signal is the
envelope of the signal [25].

The Hilbert transform of the autocorrelation function rss(m) is r̂ss(m), and its
expression is:

r̂ss(m) =
1
π

∫ +∞

−∞

rss(τ)

m− τdτ (21)

The analytic signal is:
r̃ss(m) = rss(m) + jr̂ss(m) (22)

The envelope signal is:

|̃rss(m)| =
√

rss2(m) + r̂ss2(m) (23)

In order to eliminate the dimensional influence between the envelopes, the envelopes
are normalized.

|̃rss(m)| =
|̃rss(m)| − 1

N ∑N
m=1 |̃rss(m)|[

∑N
m=1

∣∣∣|̃rss(m)| − 1
N ∑N

m=1 |̃rss(m)|
∣∣∣2/(N− 1)

]1/2 (24)

Substituting formula (24) into formula (20), the improved autocorrelation envelope
power spectrum can be obtained. The method can extract the higher spectral lines and their
harmonic components.

(3) Autocorrelation envelope maximum entropy spectrum

The maximum entropy spectrum method uses the existing autocorrelation function
value, with the maximum entropy as the premise, use the known autocorrelation func-
tion value to extrapolate other unknown autocorrelation function values, and finally per-
form frequency domain transformation to obtain continuous power spectrum estimation.
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The maximum entropy spectrum method has the characteristics of high resolution and
short duration.

The formula for the maximum entropy spectrum is∫ π
−π

PMEM

(
ejω
)

dω = rss(m) (25)

Substitute formula (23) into formula (25) to obtain the autocorrelation envelope maxi-
mum entropy spectrum. This method directly extracts the high-amplitude spectral lines,
excluding its harmonic components.

3. Bearing State Space Model Establishment and Fault Identification Process
3.1. Bearing State Space Model Establishment

The real state of bearing vibration is x(k), k = 1, 2, · · · , N, and the state vector is
formed by the real state sequence {x(k)}. Let the augmented state vector be X(k) as

X(k) = [x(k) x(k− 1) · · · x(k− n + 1) ]T (26)

According to the relationship of the AR model (1), the state equation is obtained:


x(k)

x(k− 1)
...

x(k− n + 2)
x(k− n + 1)

 =



ϕ1 ϕ2 · · · ϕn−1 ϕn
1 0 · · · 0 0
...

...
. . .

...
...

0 0
... 0 0

0 0
... 1 0




x(k− 1)
x(k− 2)

...
x(k− n + 1)

x(k− n)

+


1
0
...
0
0

wk−1 (27)

The one-step transition matrix is obtained by formula (27):

Φ =



ϕ1 ϕ2 · · · ϕn−1 ϕn
1 0 · · · 0 0
...

...
. . .

...
...

0 0
... 0 0

0 0
... 1 0


(28)

System noise driving matrix:

Γ =


1
0
...
0
0

 (29)

The model error sequence a(k) is the system noise w(k), so the system noise variance
matrix is Q = σ2

a.
From the equation of state in formula (27), it can be seen that the measured value of

the noise-containing bearing in the observation equation is {y(k)}. Let Y(k) = y(k), and
compute the measurement equation as:

Y(k) = [1 0 · · · 0 0]X(k) + v(k) (30)

The measurement matrix is:

H = [1 0 · · · 0 0]1×n (31)

where the observation noise v(k) is zero mean white noise, and the variance matrix is R.
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3.2. Fault Detection and Identification Process of Bearing

Under the influence of internal and external factors, the normal working rolling
bearing will generate excitation force, thus promoting the system’s vibration. Therefore,
the system’s vibration mode includes both natural vibration and fault vibration. The
natural vibration is almost unaffected by the working state, because it is only related to the
vibration transmission path, processing links, materials and other factors. Fault vibration
can indicate the working state of bearing. By analyzing the vibration characteristics, we
can judge whether the bearing has faults, such as wear fault, corrosion fault, fracture fault
and indentation fault [26].

The failure caused by the incipient weak local damage of the bearing will produce
vibration and shock. However, due to the short duration of shock, energy divergence,
wide frequency range, and small vibration amplitude, small faults are often submerged
in background noise and are difficult to find and extract [27,28]. This article uses fiber
Bragg grating resonant sensors to monitor bearing. According to the collected data, noise
reduction, time domain, power spectrum and improved autocorrelation envelope spectrum
analyses are performed in sequence to realize the detection and diagnosis of bearing faults.
The process of bearing fault detection and identification is shown in Figure 1.
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In this article, the fiber Bragg grating resonant sensor is used to monitor the bearing.
The fiber Bragg grating resonant sensor uses generalized resonance as the monitoring prin-
ciple and fiber Bragg grating as the monitoring method, which can realize the monitoring
of the incipient weak fault signals of the bearing.

The specific process of fiber Bragg grating resonant sensor monitoring bearing is
as follows: when a partial failure occurs on the surface of a certain component of the
bearing, it will collide with the surface of other components during the loaded operation.
This produces a concentrated shock pulse force. The sensor absorbs shock energy to
generate a generalized resonance wave, and releases energy at the sensor’s own high-
frequency natural frequency. After processing the high-frequency resonance wave, a
vibration waveform that eliminates low-frequency vibration interference but is rich in fault
information can be obtained. The vibration signal in this process is measured by the fiber
Bragg grating. The fiber Bragg grating converts the vibration signal into the axial strain
of the fiber Bragg grating, and then uses the high-speed fiber Bragg grating demodulator
to obtain the center wavelength of the fiber Bragg grating. By monitoring the wavelength
dynamics of the fiber Bragg grating change, the bearing vibration can be monitored [29,30].
The process of picking up weak faults is shown in Figure 2.

Due to the harsh working environment of the bearing, the vibration signal collected
by the sensor contains a lot of noise. In order to accurately realize the detection and
identification of the faulty bearing’s signal, it is necessary to reduce the noise of the vibration
signal collected by the sensor. This article establishes the AR model, determines the AR
model order through the FPE criterion, and then determines the AR model parameters
through the RLS algorithm, and finally uses the Kalman filter to achieve noise reduction.
The main process is shown in Figure 3.
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Figure 3. Noise reduction process.

The detection process of the bearing faulty signal is as follows: first, the time-domain
analysis is performed on the signal after noise reduction. If the time-domain characteristic
curve has attenuated oscillation, it indicates that there is a generalized resonance wave.
Then, analyze the power spectrum of the signal after noise reduction, and the extracted
high frequency components is close to the natural frequency of the fiber Bragg grating
resonant sensor, which further shows that the bearing and the fiber Bragg grating resonant
sensor have a generalized resonance phenomenon. According to the generalized resonance
principle, when there is a weak fault in the bearing, the fault will have a generalized
resonance phenomenon with the fiber Bragg grating resonant sensor. Bearing fault detection
can be realized by time-domain analysis and power spectrum analysis. Figure 4 shows
the process.

The bearing fault identification process is as follows: improved autocorrelation enve-
lope spectrum analysis is performed on the signal after noise reduction, the fault frequency
is extracted, and the fault frequency is compared with the fault characteristic frequency of
the bearing to determine the location of the bearing fault. The bearing fault identification
process is shown in Figure 5.
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4. Design of Faulty Bearing Experiment Platform

The bearing fault monitoring experiment platform is built with UG software. It mainly
includes a drive motor, a coupling, a bearing 1, a bearing 2, a fiber Bragg grating resonant
sensor, a fiber Bragg grating demodulator, and a computer, as shown in Figure 6.

The fiber Bragg grating resonant sensor is fixed on bearing 1 and is used to detect
shock vibration signals. Bearing 1 is a test bearing, and bearing 2 is a symmetrical support
bearing. The diameter of the rotating shaft at the output end of the drive motor is 20 mm.
The shaft diameter is 35 mm. The coupling is used to connect the drive motor and the shaft
to transmit power and buffer the excessive instantaneous speed difference. When the sensor
detects the bearing vibration, the fiber Bragg grating is deformed by force. When a bearing
component has a fault and a small shock occurs, the sensor absorbs the shock energy to
generate a generalized resonance wave, and releases energy at the natural frequency of
the sensor. The vibration signal is collected by fiber Bragg grating, and then the change of
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central wavelength is read by the demodulator. Finally, the collected data is analyzed by
computer to diagnose whether the bearing is faulty.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 24 
 

The bearing fault identification process is as follows: improved autocorrelation en-

velope spectrum analysis is performed on the signal after noise reduction, the fault fre-

quency is extracted, and the fault frequency is compared with the fault characteristic fre-

quency of the bearing to determine the location of the bearing fault. The bearing fault 

identification process is shown in Figure 5. 

 

Figure 5. Bearing fault identification process. 

4. Design of Faulty Bearing Experiment Platform 

The bearing fault monitoring experiment platform is built with UG software. It 

mainly includes a drive motor, a coupling, a bearing 1, a bearing 2, a fiber Bragg grating 

resonant sensor, a fiber Bragg grating demodulator, and a computer, as shown in Figure 

6. 

 

Figure 6. Bearing fault monitoring experiment platform. 

The fiber Bragg grating resonant sensor is fixed on bearing 1 and is used to detect 

shock vibration signals. Bearing 1 is a test bearing, and bearing 2 is a symmetrical support 

bearing. The diameter of the rotating shaft at the output end of the drive motor is 20 mm. 

The shaft diameter is 35 mm. The coupling is used to connect the drive motor and the 

Figure 6. Bearing fault monitoring experiment platform.

Based on fiber Bragg grating resonant sensor, signal coupling caused by electromag-
netic interference can be effectively avoided, and micro shock monitoring can be realized.
The sensor has the advantages of high sensitivity, good stability, small volume, convenient
installation, etc.

The sampling rate of the fiber Bragg grating resonant sensor is 200 KHz and the natural
frequency is 6325 Hz. This frequency belongs to the high-frequency, which can effectively
avoid the influence of low-frequency interference during the bearing rotation process [30].

The bearing model selected in the experiment is Harbin bearing 7307. The number
of rolling elements is 8, and the contact angle is 0◦. The outer ring diameter and the inner
ring diameter of the bearing are 80 mm and 35 mm. The diameter of the rolling element
is 14.5 mm. The pitch diameter of the bearing is 57.5 mm. The motor rotates at a constant
speed and the speed is 300 rpm (5 Hz).

Substituting the bearing parameters into the formula in Table 1, the fault characteristic
frequencies of four parts can be obtained.

Table 1. The calculation formula of bearing fault characteristic frequency.

Fault Type Formula Fault Characteristic Frequency

Inner Ring BPFI/BPFO = 1
2 Z
(

1± d
D cos ∝

)
fs 25 Hz

Outer Ring BPFO = 1
2 Z
(

1− d
D cos ∝

)
fs 15 Hz

Rolling Element BSF = D
d

(
1−

(
d
D

)2
cos2 ∝

)
fs 18.57 Hz

Cage FTF = 1
2

(
1− d

D cos ∝
)

fs 1.87 Hz

Table 1: Z is the number of rolling elements, ∝ is the angle between the force direction
of the rolling element and the vertical line of the inner and outer raceways, fs is the rotation
frequency of the bearing, d is the average diameter of the rolling elements, and D is the
pitch diameter of the bearing and the spherical center distance of the two rolling elements
on the same line.

In order to simulate the fault of the bearing in actual operation, a small incision with a
width of 0.5 mm is produced in the inner ring of the bearing, as shown in Figure 7.
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5. Experiment Data Analysis
5.1. Determination of AR Model Order and Model Parameters of Faulty Bearing Vibration Signal

The following analysis uses MATLAB software to analyze the data. First, zero aver-
aging and smoothing processing are performed on the original data, and then the data
is analyzed according to the FPE criterion to obtain the FPE criterion function curve, as
shown in Figure 8. The number of data samples is 3× 104.
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In Figure 8: As the order of the model increases, the overall trend of the FPE criterion
curve is decreasing. When n is 5, the corresponding FPE criterion curve is at a lower value,
and the curve decreases slowly. When n is 33, the FPE standard curve has the lowest
value, the corresponding variance is the smallest, and the FPE standard curve is stable after
this point.

Next, the standard deviation (SD) and mean square error (MSE) are calculated for
n = 5 and n = 33, as shown in Table 2. When n = 5 and n = 33, the SD is close and the
MSE is same.

Table 2. SD and MSE when n = 5 and n = 33.

Model Order SD MSE

5 0.0635 0.0355

33 0.0558 0.0355

In the AR model, the higher order of the model will improve the accuracy of the
estimation, but it will also increase the computational burden, and false peaks or false
details will be generated in the power spectrum estimation. Combining the data in Table 2,
the model order of this article is chosen to be n = 5.
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According to the RLS identification algorithm, the AR model parameters are deter-
mined. The parameters ϕ1, ϕ2, ϕ3,ϕ4, ϕ5 have convergence and the values are 1.4209,
−0.2045, −0.1405, −0.0694, −0.0371. The identification result of parameters are shown
in Figure 9.
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According to the established AR model, its autocorrelation function is obtained, and
the autocorrelation function has tailing, as shown in Figure 10.
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5.2. Bearing Vibration Signal Analysis and Bearing Fault Detection and Diagnosis

The normal bearing vibration signal and the faulty bearing vibration signal are shown
in Figure 11. The vibration signal of the normal bearing is relatively stable, and the vibration
signal of the faulty bearing has obvious fluctuations. It is difficult to directly determine the
location of the bearing fault from the faulty bearing vibration signal.

Because the bearing will produce different degrees of vibration when it is running,
the vibration signal usually contains noise components and other interference information,
resulting in the bearing fault signal shock characteristic’s being not obvious, and affected by
external interference. In the case of excessive external interference, the fault feature is often
submerged. In addition, when an incipient fault occurs in the bearing, the amplitude of the
fault component relative to the frequency of rotation and other components irrelevant to
the fault is smaller. In order to accurately diagnose the fault of the bearing, it is necessary
to perform noise reduction pretreatment on the bearing vibration signal. Figure 12 shows
the state of the bearing after Kalman filter.
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Figure 12. State estimation after Kalman filter.

Analysis of Figures 11b and 12 shows that the vibration signal after Kalman filter noise
reduction maintains the state of the original vibration signal.

The signal after Kalman filter noise reduction has an obvious free damping oscillation
process. In order to clearly observe the attenuated oscillation signal, the time domain signal
of the first 10,000 points is selected in Figure 13. It is clear from the analysis that the weak
vibration generated by the bearing fault and the fiber Bragg grating resonant sensor has
generalized resonance, and a generalized resonance wave is generated.
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The following analyses are the power spectrum analysis of the vibration signals of
the normal bearing and the faulty bearing. If there is a high frequency component around
6325 Hz in the power spectrum, it means that there is a fault in the bearing. The faulty
bearing resonates with the sensor, releasing energy at the sensor’s natural frequency [30].

The power spectrum analysis of the normal bearing’s vibration signal, the faulty
bearing’s vibration signal and the vibration signal after noise reduction by the Kalman filter
are shown in Figure 14. The three power spectrums in Figure 14a–c contain low frequency
components of 1003 Hz, 1079 Hz and 1079 Hz respectively. These low frequency values do
not affect the diagnosis of bearing faults.
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filter noise reduction.

When the frequency value in the power spectrum is close to the natural frequency of
the fiber Bragg grating resonance sensor at 6325 Hz, it indicates that the bearing is faulty,
and the fault is in resonance with the sensor. In Figure 14b,c, the power spectrum of fault
bearing signal includes a 6157 Hz high-frequency component, which is close to the natural
frequency of the sensor. From this frequency, it can be determined that the bearing is
faulty. Additionally, the extracted components of the filtered power spectrum are the same,
without spectral distortion. Figure 14a There is no high-frequency component in the normal
bearing signal power spectrum.

The following is the envelope spectrum analysis of the faulty bearing vibration signal,
as shown in Figure 15. Combined with the theoretical value of the bearing fault characteris-
tic frequency in Table 1, fIR = 25 Hz. In Figure 15a, the frequency components are 25.97 Hz,
77.24 Hz, 102.5 Hz, 121.8 Hz, 177.1 Hz. These frequencies are multiples of the inner ring
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fault characteristic frequency, respectively, are fIR, 3fIR, 4fIR, 5fIR, 7fIR. It can be diagnosed
that the bearing fault occurs in the inner ring. Among them, 96.55 Hz, 171.1 Hz are the
interference frequencies, which have been marked with a red circle.
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Figure 15. The envelope spectrum analysis curve: (a) the envelope spectrum analysis curve of
faulty bearing vibration signal without Kalman filter noise reduction; and (b) the envelope spectrum
analysis curve of faulty bearing vibration signal with Kalman filter noise reduction.

Figure 15b is the envelope analysis of the signal after the Kalman filter. The fre-
quency components included are 26.11 Hz, 75.79 Hz, 99.99 Hz, 121.6 Hz, 170.7 Hz. The
above frequency components are the inner ring fault characteristic frequency fIR, 3fIR, 4fIR,
5fIR, 7fIR.

According to the analysis of Figure 15, the disadvantages of envelope analysis are
as follows:

(1) If the working background of the bearing is noisy and the ambient noise is large, there
will be more envelope components obtained through envelope analysis. It is easy to
cause the fault signal envelope to be mixed with the noise envelope, and it is not easy
to distinguish.

(2) The envelope of the fault characteristic frequency is not obvious. The largest envelope
in the envelope spectrum corresponds to the 7fIR frequency of the bearing fault
characteristic frequency. The analysis of the envelope is required to determine the
bearing fault location.

Comparing Figure 15a,b, after Kalman filter noise reduction, the obtained envelope
spectrum has the following advantages:

(1) There is no noise envelope in the envelope spectrum. The obtained envelopes are all
multipliers of the fault characteristic frequency.

(2) The envelope spectrum curve is smooth without any slight noise interference.

The following is the analysis of autocorrelation envelope spectrum, as shown in
Figure 16.

As visible in Figure 16a, in the improved autocorrelation envelope power spectrum,
the bearing fault frequency and double frequency 25.63 Hz, 50.05 Hz, 75.07 Hz can be
extracted, and the bearing rotation frequency 4.883 Hz can also be extracted.

Compared with Figure 15b, the fault characteristic frequency is obvious, and the
corresponding amplitude is the largest. The envelope spectrum is concise, does not contain
more frequency components, and is easy to distinguish from other noise components.

Figure 16b is the autocorrelation envelope power spectrum by the literature [31].
Compared with Figure 16a, Figure 16a can not only directly extract the bearing fault
characteristic frequency, but also extract other frequency components. From this, the
accuracy of the extracted fault frequency can be further proved.
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The cepstral analysis method adopted by the literature [32] is shown in Figure 16c. In
Figure 16c, the x-axis is the time domain, and the peak value appears every 0.04 s. From
this, it can be determined that there is a periodic frequency, which is 25 Hz.

The analyses in Figure 16a,c can both extract the characteristic frequencies of bearing
faults. Comparing the two methods, the advantage of the improved autocorrelation
envelope power spectrum analysis method is that the extracted fault frequencies are
intuitive and do not require further analysis. The cepstrum contains too much noise and is
easily disturbed by noise, and further analysis is required to obtain the fault frequency.

As seen in Figure 16d, in the autocorrelation envelope maximum entropy spectrum, the
characteristic frequencies of bearing faults are directly extracted without interference frequencies.

Through the above analysis, the method based on Kalman filter and spectrum analysis
can effectively realize the detection and identification of the faulty bearing.

5.3. Compare with Existing Method

(1) Compare with wavelet transform

Wavelet transform is a common and effective method in extracting weak signals.
The wavelet transform decomposes the signal into the scale domain, and through multi-
resolution decomposition, the weak signal components in the original signal become
prominent. First of all, the bearing vibration signal is decomposed and reconstructed
by 11 layers using Haar wavelet. The reconstructed signal is shown in Figure 17a. The
recombined signal is then subjected to power spectrum analysis, as shown in Figure 17b.
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Analyzing Figures 17a and 11b, one can see that the time-domain diagram after wavelet
transform recombination is deviated from the time-domain diagram of the original signal.
The time-domain image reorganized by wavelet transform cannot fully reflect the vibration
state. Analyzing the power spectrum of the wavelet-recombined signal of Figure 17b,
there is a high frequency component of 6250 Hz, which shows that wavelet transform
can realize the detection of bearing faults. Comparing Figure 17b with Figure 14c, it can
be obtained that when the wavelet transform’s recombined signal is analyzed for power
spectrum, high-frequency components can be extracted, but the extraction of low-frequency
components is not accurate.

(2) Compare with empirical mode decomposition

Empirical mode decomposition (EMD) is often used to extract weak faults of bearings.
It can decompose complex signals into a limited number of intrinsic mode functions. The
decomposed IMF components contain local characteristic signals of different time scales of
the original signal. The bearing signal is decomposed by EMD. The time-domain signal
and spectrum of 1–5 IMFs are shown in Figure 18.

According to Figure 18, time-domain signals of different IMFs are obtained through
EMD decomposition. Different IMFs have different power spectrum. Among them, the
power spectrum frequency of IMF4 is the purest, with little noise interference. The peak
value is 5958 Hz, which is closing to the natural frequency of the sensor. Compared with
Figure 14c, the maximum frequency in the power spectrum obtained after Kalman filter is
6157 Hz, which is close to the natural frequency of the sensor 6325 Hz.

Finally, the signal to noise ratio (SNR) and root mean square error (RMSE) are analyzed,
as shown in Table 3.

Table 3. Noise reduction signal quality evaluation index.

Noise Reduction Method SNR RMSE

Kalman filter 5.6302 0.3833

Wavelet transform 1.7621 0.3925

Empirical mode decomposition 1.7039 0.5095

The SNR value represents the ratio of the effective signal energy to the noise energy
in the signal. The higher the value, the smaller the value of noise mixed in the signal.
The RMSE value reflects the difference between the signal after noise reduction and the
original signal. The lower the value, the closer the signal after noise reduction is to the
original signal.
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According to the data in Table 3, the noise reduction effect of the Kalman filter is better
than that of wavelet transform and Empirical mode decomposition.
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6. Analysis of Bearing Fault Signal of Case Western Reserve University

The bearing fault signals of Case Western Reserve University in the United States are
analyzed by this article method. In an experimental device the 1.5 kW 3-phase induction
motor is connected to a power meter and a torque sensor through a self-calibrating coupling,
and is operated by a driving fan.

The vibration signal is collected by the acceleration sensor and installed on the bearing
seat with a magnetic seat. The sampling frequency is 12,000 Hz, and the number of
sampling points is 8192. The rolling bearing is SKF6205-2RS JEM deep groove ball bearing.
Single point fault is found on the surface of inner ring and outer ring respectively by electro
discharge machining, which is then run at constant speed for motor loads of 1 horsepower.
The size of faults is 0.18 mm in diameter and 0.28 mm in depth. The rotation frequency
fr of the shaft is 1772 rpm (29.53 Hz). According to the literature [33], the inner ring fault
frequency is 5.415 fr (159.9 Hz), and the outer ring fault frequency is 3.585 fr (105.9 Hz).

The fault signal of the bearing inner ring and its power spectrum are shown in
Figure 19a,b. The AR model is established based on the vibration signal of inner ring,
and the model order is 6, as shown in Figure 19c. The model parameters have convergence,
respectively 0.9335, −1.5689, 1.4184, −1.2555, 0.6631, −0.4627, as shown in Figure 19d.
The signal after the Kalman filter is shown in Figure 19e. The autocorrelation function
has tailing, as shown in Figure 19f. The SNR after filtering is 9.1874. An improved
autocorrelation envelope power spectrum, 159.7 Hz and 319.3 Hz correspond to the inner
ring fault frequency and its multiple frequency, and 29.3 Hz corresponds to the shaft
frequency, as shown in Figure 19g. The maximum amplitude extracted by autocorrelation
envelope maximum entropy spectrum corresponds to the fault frequency of bearing inner
ring, as shown in Figure 19h.
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Figure 19. Inner ring fault analysis results: (a) bearing inner ring fault signal; (b) power spectrum
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The fault signal of the bearing outer ring is obvious, and the time domain signal and
its power spectrum are shown in Figure 20a,b. AR model order is 5, as shown in Figure 20c.
Model parameters are −0.1491, −1.1965, 0.1153, −0.3152, 0.1179, as shown in Figure 20d.
The signal after the Kalman filter is shown in Figure 20e. The autocorrelation function has
tailing, as shown in Figure 20f. The SNR after filtering is 16.3518. Improved autocorrelation
envelope power spectrum, 106.9 Hz, 212.4 Hz, 319.3 Hz, 424.8 Hz correspond to the outer
ring fault frequency and its multiple frequency, and 29.3 Hz corresponds to the shaft
frequency, as shown in Figure 20g. The maximum amplitude extracted by autocorrelation
envelope maximum entropy spectrum corresponds to the fault frequency of the bearing
outer ring, as shown in Figure 20h.
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7. Conclusions

In view of the fact that the fault signal of the bearing is weak, and the detection
and diagnosis are difficult, the fiber Bragg grating generalized resonant sensor is used
to realize the monitoring of the inner ring fault vibration signal. Combined with the
vibration monitoring signal, the state space model is established. The FPE criterion and RLS
algorithm are used to determine the model order and model parameters. After establishing
a faulty bearing dynamic system, the Kalman filter is used for signal noise reduction
processing, and power spectrum analysis is combined with improved autocorrelation
envelope spectrum analysis to detect and identify weak bearing faults. This verifies the
effectiveness and feasibility of the resonance detection method based on the Kalman filter
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and spectrum analysis for rolling bearing fault signals. Compared with other methods, the
proposed improved autocorrelation envelope spectrum analysis method can better identify
the characteristic frequencies of bearing faults. The subsequent research after this article
might investigate other effective methods for detection and diagnosis of bearing faults, and
the problem of detection and identification of multiple simultaneous bearing faults.
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