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Abstract: Structural expressionism resembles the use of slender structural elements, in particular
beam-type elements. To satisfy structural, functional, and also architectural requirements a compre-
hensive structural analysis must be performed. The main issue of this study is the buckling analysis
of beam-type elements, concerning Cavalieri’s principle. The present study is divided into two
separate sections. The first part is a theoretical study, in which a variable cross-section beam-type
element is modeled. The stability analysis is performed by an indirect variational method and the
stiffness of the support connections is also introduced. The numerical simulation highlights 6 cases
defined by the restraints of the support connections. The case study follows the modification of the
critical buckling load of the variable cross-section beam-type element. Prior to the case study, a novel
verification method is proposed to achieve a realistic cross-section for the beam-type element. The
study revealed that with ideal characteristics of the stiffness coefficients of the restrains significant
increase of the critical buckling load is obtained, and further if an actual situation is considered with
finite values of the stiffness of the restrains, the variable cross-section for the beam-type element is a
recommended and rational choice to make, to eliminate stability issues.
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1. Introduction
1.1. General Aspects

The structural design process assumes achieving a structure that satisfies structural,
functional, and architectural requirements, the famous triad formulated by Vitruvius in his
multi-volume work De architectura in the 1st century BC. Due to the number of factors, one
should consider parametric correlation rather than individual parameters, to perform an
optimal structural design process, which in addition is an iterative one.

To quantify on a qualitative and quantitative scale the parameter correlation prin-
ciple one may choose to evaluate the carbon footprint of a structure with the Life-cycle
Assessment (LCA) technique [1]. Through this technique, one may have an overview of
the most important stages during the life cycle of a structure, to take the most optimal
solutions during the design phase. The design and structural conformation phase have
an insignificant impact on the carbon footprint of a structure, on a quantitative scale, in
comparison with the exploitation phase or the material production phase [2]. The structural
design phase predefines the carbon footprint, on a qualitative scale, in the means that if a
structure is completed further modifications would imply significant financial and time
resources.

In the structural design phase, engineers tend to point out the most significant factors
which in the end will define the final structure: strength, stability, and stiffness. The
development of modern technologies and high-strength construction materials, allows
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architects and engineers to use a smaller number of elements, therefore the presence in
particular of slender beam-type elements is more frequent.

The main goal is to avoid a structural collapse due to the loss of local or global stability,
or by extensive deformation of structural elements. Both of these undesired failure types
are closely related to structural topology, in other words, one must study the relations
between different kinds of loads and the shape of the elements.

In order to achieve a comprehensive stability analysis and to compute the critical
combination of the loading parameter, a gravity and a tip force parameter may be consid-
ered [3].

The main issue which is a debate for more than three centuries is the study of stability,
in particular, the stability analysis of beam-type elements and frames, a bread-and-butter
problem for structural engineers according to Z.P. Bažant. One of the first pioneers of the
study of elastic buckling was Leonhard Euler who studied the strength and stability of
centrally loaded structures, under their weight. Euler’s analytical formula denotes that
failure would occur due to stresses induced by sidewise bending only, which is a particular
case of long columns [4]. Since then the main preocupation of enginners’ is the study
of beam-type elements with material and geometric nonlinearities. [5]. Euler’s studies
have been followed by several significant theoretical contributions to the understanding of
elastic buckling, but the fathers of modern engineering mechanics are considered to be S.
Timoshenko and J.M. Gere who managed to write one of the most comprehensive guides
to the elastic stability of structures [6].

Centrally loaded elements in a classical interpretation are considered to be beams
and columns. Complex structures made up of beam-type elements with variable flexural
rigidity are preferably used, in addition to the architectural and functional aspects, because
it provides a better distribution of the strength and load. According to Euler’s formula,
elastic buckling has a significant role in the design of elements with great height and large
spans in the case of columns and of beams. Altogether beams do not carry a high amount
of axial loads, but in the case of tensegrity type structures, one of the main concerns of the
definition of structural topology is to reduce the length of isolated compressed elements [7].
The present research offers a different kind of approach for a specific situation, through a
simple and high-precision method. The main purpose of the present study is to combine
stability analysis with Cavalieri’s principle, in order to increase the critical buckling load,
by modelling the geometric shape of the beam-type element.

1.2. Literature Overwiev

In recent years many analytical and numerical modells have been developed for the
study of elastic buckling of structures. The feasible approach of elastic buckling has been
proved to be the numerical modells. The majority of cases do not consider the variation of
material and geometric properties. Arablis and Beskos proposed a new numerical method
for the linear elastic stability analysis of plane structures consisting of beam-type elements.
Throughout the analysis, the beams were considered with rectangular cross-sections with
constant width and variable depth. The geometry is modeled through linearly tapered
functions with constant width. The numerical modell implies the finite element method
to compute the exact flexural and axial stiffness matrix and quasi-consistent mass and
geometric matrices [8]. Das et al. proposed for the geometric shape of the beam-type
elements linearly taper, exponential and parabolic functions, for which two types of cross-
sections are adopted, solid circular and rectangular cross-sections. In the case of rectangular
cross-sections, a constant width b is maintained [9].

The types of structural elements that are subjected to significant axial loads are the
columns, which collect the weight of the structure and transfer it to the foundations. The
columns have become more slender, due to architectural and design requirements [10].
Topological modelling of the beam-type element is a main issue regardless of the application
field: from stability analysis to the study of dynamic behavior with plastic deformations [9].
In the case of slender columns with significant height, the establishment of the critical
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buckling load is an aspect of reference in the design phase. Gradually changing cross-
sections ensures the decrease of the mass of the columns, which can be modelled throughout
the moment of inertia of the cross-section [11].

Several studies investigate variable cross-section beam-type elements, in order to
reduce the weight of the structure and increase strength, or to satisfy architectural require-
ments. The optimization process, through the structures own weight, is minimized and the
critical buckling load is maximized, which is the main issue regarding variable cross-section
beam-type elements [12]. Ruocco et al. [13] proposed an optimization problem to define the
exact geometric shape of inhomogeneous columns with elastic restraints against buckling,
loaded simultaneously with concentrated and distributed compressive loads which include
self-weight. In this model, the Euler column is used, which is discretized by adopting the
Hencky bar-chain model, in order to solve the differential equations which are governing
the buckling phenomena. The critical bucking load, through this approach, represents
the lowest eigenvalue of the resulting system of algebraic equations [13]. The Hencky
bar-chain model offers a physical interpretation of the numerical finite difference method,
as well as the possibility of optimization and buckling analysis of non-uniform beam-type
elements [14].

Ruocco et al. offers a visual exemplification of Cavalieri’s principle, namely the op-
timized shape of the beam-type element is represented through parallel plan sections
through lines, which are overlayed on the initial shape of the beam-type element, repre-
sented throughout the same technique, is order to highlight the topological modifications
of the optimization process within the stability analysis [13]. Gual-Arnau uses the same
technique in order to estimate the volume of a solid based on orthogonal parallel equidis-
tant plane sections throughout lines [15]. Cavalieri’s principle has a high application rate
in medicine, used in particular to estimate the volume of solids.

Eisenberg [16] conducted a stability analysis in the case of variable cross-section
columns, with specific boundary conditions, loaded with variable axial compressive force.
In his model, both the cross-section bending stiffness and the axial load variation are
described through polynomial expressions, and the stiffness matrix for the member includes
the effects of the axial loading [16]. The differential equation, which governs the phenomena,
can be transformed into a system of algebraic equations with unknown coefficients. The
buckling load is found as the load that makes the determinant of the stiffness matrix equal
to zero [16].

The Variational Iteration Method (VIM) is a powerful method in the analysis of various
engineering problems, and for solving nonlinear ordinary and partial differential equations
and integral equations [17]. Coşkun and Atay applied VIM for the determination of critical
buckling loads for Euler columns with constant and variable cross-sections. The study
assumes various buckling cases with different boundary conditions and with different
variations of cross-sections [17]. For the VIM exemplification method, there are presented
a constant cross-section with an initial approximation of the linear ordinary differential
equation is a cubic polynomial function with unknown coefficients. The variation of the
cross-section is due to the variation of the moment of inertia of the column along the
length of the Euler-type element. The material is assumed to be homogeneous therefore the
variation of flexural rigidity depends only on the variation of the cross-section. There are
proposed two variations of the flexural rigidity, thus exponential variation and by a power
low, admitting a linear, a quadratic, and a cubic variation of the cross-section. The results
are compared with the exact analytical solutions [17]. Das et al. used the variational method
to define the static problem, in which the axial displacement field is to be computed [9].

Avcar [18] studied the elastic buckling of steel columns under axial compression
with square, rectangle, and circular cross-sections, and different boundary conditions, i.e.,
fixed-free and pinned-pinned boundary conditions. For the solution along numerical com-
putations, finite element modelling (FEM) has been employed. In this study, an analysis has
been made regarding the effects of the boundary conditions, cross-sections, and slenderness
ratios on the buckling loads of the steel columns [18]. Advanced numerical analysis can
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be performed with ANSYS Parametric Design Language codes, in order to determine the
critical buckling loads. Saraçaoğlu and Uzun investigated circular variable cross-section
concrete columns with a triangular variation of the cross-section admitting different ratios
for the prismatic and the tronconic segments along the height of the columns. The analysis
confirms that significant material economy and critical buckling load maximization can be
obtained [12].

Abdel-Lateef et al. [11] proposed a theoretical elastic stability analysis of columns
with variable cross-sections subjected to combined distributed and concentrated axial load.
The minimization of the total potential energy technique is employed. The variation of
the moment of inertia and the load intensity is governed by a power law of the distance
along the column length. A simplified concept of the modified slenderness ratio is used to
compute the critical stress for columns. The minimum potential energy principle is used
to establish the necessary equations, which take into consideration the first two terms of
the Fourier series for the deflection shape of the columns, which satisfies the geometric
conditions [11].

Eisenberg suggested that one should not disregard the variation of non-dimensional
critical buckling load with the variation of temperature field, which is a current research
topic [19]. A localized differential quadrature method (LDQM) has a high potential to
implement in the buckling analysis of axially graded non-uniform columns with elastic
restraints. LDQM can be implemented for solving generalized eigenvalue problems with
high accuracy and less computational effort [10].

2. General Approach of the Elastic Stability Issue in the Case of Beam-Type Elements

The property of elastic equilibrium of deformable bodies is considered their capability
of recurrence to their initial state after small perturbations appear in the neighborhood of
their equilibrium position. Under significant amounts of loads, beam-type elements can
change their behavior. Behavior changes take place through the increase or decrease of
their stiffness.

In some situations, the intensity of loads may reach critical values for which the
system becomes unstable and may lose its load-bearing capacity for any slight increase
in load intensity. At a critical state, if a lateral force is applied then a small deflection is
produced. In an elastic analysis, the resulting deflection disappears when the lateral force is
removed, thus the element returns to its initial form [20]. In the case of beam-type elements,
significant compressive forces and bending moments may cause the loss of their elastic
equilibrium configuration.

To evaluate on a quantitative and qualitative scale the effects of critical loads, the
elastic equilibrium conditions must be formulated based on the final deformed shape of the
structure, typical for stability issues and second-order theory [20]. The problem of elastic
equilibrium of structures may be defined from three different perspectives, static methods,
energy methods, and dynamic methods.

The definition of stability, through the dynamic approach, is fundamental and has
an overview of all structural stability issues. Dynamic stability analysis is employed
when structures are subjected to nonconservative loads, such as wind or pulsating forces.
Throughout dynamic stability analysis, false equilibrium states can be identified, which
can be caused by accelerated motions or vibrations with increasing amplitude. In modern
structural engineering, the dynamic approach to stability is very important [20].

The static approach can be applied in the case of conservative structural systems, for
which the critical loads can be computed, but cannot give a complete overview of the
stability issue. Statics can only answer the question if the equilibrium state is stable or
unstable. For simple structures, with no initial curvatures, it proves to be an effective
method, but in the case of structures with imperfections, the energy approach is used to
decide the stability of the system. Compared to the dynamic approach, it brings a great
simplification [20].
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The stability analysis of discretized elastic systems throughout the energy method is
based on the Lagrange-Dirichlet theorem, which checks the positive definiteness of the
energy function of the structure-load system. The energy criterion offers a comprehensive
answer to the question of stability, which is given by the dynamic definition of stability for
conservative systems [20].

The energy method can be applied for discrete and discretized systems, and for contin-
uous structures. Continuous structures such as beam-type elements, which do not represent
a discrete system, may usually be approximated by a discrete system, characterized by
generalized displacements, which are kinematic variables [20]. Ramachandran and Gun-
guli used a discrete model in order to capture the onset of dynamic instability of statically
determined columns [3].

3. Mathematical Modelling, Theoretical Aspects
3.1. Modelling Assumptions

In this study the following assumptions have been made: the material, of which the
column is made, is linearly elastic; the hypothesis of small displacements and deformations;
the axial force Q is constant and is computed through a first-order analysis;

• force Q is not influenced by the bending moments, it is a conservative force, which
remains unchanged during bending; for the analysis the Euler-Bernoulli beam model
is used, which does not take into account shear deformation and rotational bending
effects as the Timoshenko-Ehrenfest beam theory; stiffness matrix assembling process
neglects axial deformations; the beam-type elements are not subjected to lateral load,
external loads are applied only in the joints; the column ax is perfectly straight, there
are not taken into account any initial imperfections; no local buckling at any cross-
section along the column length is allowed.

3.2. General Aspects

A major issue in the design of beam-type elements with significant axial loads is
to improve the stability of the element and avoid their failure through buckling, which
phenomenon threatens the structural integrity of the whole structural assembly. The
phenomenon is more relevant in the case of statically determined structural assemblies.

The first step in the modelling of beam-type elements to improve their stability is to
analyze Euler’s critical load derived in 1757, which is presented in Expression (1) [6].

Fcr,E =
π2·E·Imin

L2
f

(1)

In Expression (1) E represents Young’s modulus, Imin denotes the minimum value of
the moment of inertia of the cross-section, L f and represents the buckling length of the
beam-type element subjected to compression forces, with respect to the imposed kinematic
constraints to the joints.

Euler’s formula highlights two important aspects unaware of the kinematic restrains
of the joints, the length of the element and the moment of inertia of the cross-section.
The factor of direct proportionality with the critical load is the moment of inertia. This
design parameter gain importance when the buckling modes are studied. The deflection
shape associated with the primary buckling mode emphasizes potential critical areas of
the element, which by similarity, can be scribed as potential areas of appearance of plastic
hinges. In this manner it is required to amplify the value of the moment of inertia, therefore
a variable cross-section beam-type element is obtained. In order to avoid sudden changes
of the elements cross-section, which can be identified as stress concentration points, it is
proposed the modelling of the cross-section of the element through a continuous function.

Modelling the cross-section of the element is performed with respect to Cavalieri’s
principle. According to Cavalieri’s principle, the cross-section area of every section will
remain unchanged during the modelling process, but the moment of inertia will change in
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accordance with the primary buckling mode. As a consequence of the mentioned principle,
the elastic resistance of every cross-section is identical. Modelling a beam-type element with
a variable cross-section follows the increase of the critical elastic buckling load, in an ideal
case exceeding the elastic resistance of the cross-section, thus the buckling phenomenon
can be avoided.

3.3. Modelling of the Moment Inertia

Modelling the moment of inertia of the cross-section presumes to assume a variation
law. The variation law can be formed through interpolation functions between reference
values in form of piecewise, multilinear, or polynomial functions. For the first two types of
function, results are satisfying, although in the points where the function is not continuous
the iterative process may be divergent, and the precision decreases by two orders of
magnitudes. In the particular case of polynomial functions, the passing through the critical
values is continuous, and the desired precision is in close correlation with the polynomial
function degree.

The modelling of the moment of inertia in this study regardless of the kinematic
constraints of the joints is performed with cubic functions, a piecewise polynomial formula
known as the spline function. The natural boundary conditions are shown in Figure 1. Be f
a function defined on [a b] which is interpolated in m + 1 nodes on n sub-intervals through
a cubic interpolant S(x) defined in Figure 1.
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[

xj xj+1

]
.

Cubic interpolant S(x), is a cubic polynomial piecewise function expressed in a general
form as in Expression (2) [21].

S(x) =
m−1
∪

j=0
Sj(x) (2)

In Expression (2), Sj(x) is defined on sub-interval
[
xj xj+1

]
, ∀xj ∈ 0, m− 1. The

boundary conditions for every sub-interval
[
xj xj+1

]
are presented in Relations 3(a–c).

Sj
(

xj
)
= f

(
xj
)
; Sj
(
xj+1

)
= f

(
xj+1

)
; ∀j ∈ 0, m− 1 −“Left”&“Right”Interp. (3a)

Sj
′(

xj+1
)
= Sj+1

′(
xj+1

)
; ∀j ∈ 0, m− 2 − slope−match (3b)

Sj
′ ′(xj+1

)
= Sj+1

′ ′(
xj+1

)
; ∀j ∈ 0, m− 2 − curvature−match (3c)

The degree of the cubic interpolant Sj(x) is 3, deg
(
Sj(x)

)
= 3, and the general expres-

sion for Sj(x) ∀xj ∈ 0, m− 1 is presented in Expression (4) [21].

Sj(x) = aj + bj
(
x− xj

)
+ cj

(
x− xj

)2
+ dj

(
x− xj

)3 (4)

According to Expression (4), it is required to fix the values for coefficient aj, bj, cj and
dj, with respect to the boundary conditions expressed in Relation (3a)–(3c). One of the cubic
interpolant’s properties is to minimize the definite integral, presented in Expression (5), for
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every g function defined on an interval [a b], which approximates function f through nods
xj [21].

I =
∫ xn

x0

( f ′′ (x))2dx (5)

One can introduce notation hj =
(
xj+1 − xj

)
, with respect to the general form pre-

sented in Expression (4), thus the boundary conditions from Relation (3a)–(3c) can be
defined as recursive sequences, presented in Relation (6a)–(6c) [21].

Sj+1
(
xj+1

)
= Sj

(
xj+1

)
→ aj+1 = aj + bjhj + cjhj

2 + djhj
3 (6a)

Sj
′(xj+1

)
= Sj+1

′(xj+1
)
→ bj+1 = bj + 2cjhj + 3djhj

2 (6b)

Sj
′ ′(

xj+1
)
= Sj+1

′ ′(
xj+1

)
→ cj+1 = cj + 3djhj (6c)

The numerical value of coefficient aj results from the function evaluation of f at the
input value of xj, denoted with f

(
xj
)
, as for aj+1 results from the function evaluation

of f at the input value of xj+1, denoted with f
(
xj+1

)
. For the recursive sequences from

Relations (6a)–(6c) it is required the cubic interpolants coefficients as expressions which
depends only on two specific arguments, thus coefficients aj and cj are chosen. Coefficient
dj, can be expressed from Relation (6c), presented in Expression (7) [21].

dj =
cj+1 − cj

3hj
(7)

Substituting Expression (7) in the recursive Sequence (6a,b), Expression (8a,b) can be
expressed [21].

aj+1 = aj + bjhj +
hj

2

3
(
2cj + cj+1

)
(8a)

bj+1 = bj + hj
(
cj + cj+1

)
(8b)

Substituting Expression (8a) in Expression (8b) it is possible to express coefficient bj
with arguments aj and cj, as in Expression (9) [21].

bj =
1
hj
(aj+1 − aj)−

hj

3
(
2cj + cj+1

)
(9)

The recursive Sequences (8b) and (9) can be expressed also for sub-interval
[
xj−1 xj

]
,

therefor Expression (8b) can be written as in Equation (10) [21].

hj−1cj−1 + 2
(
hj−1 + hj

)
cj + hjcj+1 =

3
hj
(aj+1 − aj)−

3
hj−1

(aj − aj−1) ∀j = 1, m− 1 (10)

Equation (10) represents m − 1 equations, and in order to solve a linear system
of equations, two additional relations are required in the form of the natural boundary
conditions expressed in Relation (11) [21].

S0
′ ′
(x0) = 2c0 = 0 → c0 = 0 (11a)

Sm
′ ′
(xm) = 2cm = 0 → cm = 0 (11b)

Therefor the linear sytem of equations, whit respect to Equation (10) and Condi-
tion (11a,b), can be expressed as a matrix-vector Equation (12) [21].

[A]{c} = {a} (12)
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In Equation (12), [A] is the (m + 1) × (m + 1) coefficient matrix of the system whose
implicit from is presented in Expression (13), {c} is a vector made up of the m + 1 unknowns,
presented in Expression (14a), and {a} is the vector made up of the m + 1 right-hand sides
of the equations, presented in Expression (14b).

[A] =



1 0 0 . . . 0
h0 2(h0 + h1) h1 . . . 0
0 h1 2(h0 + h1) . . . 0
0 . . . . . . 0
0 . . . hm 2(hm−2 + hm−1) hm−1
0 . . . 0 0 1

 (13)

{c}T = {c0 c1 . . . cm−1 cm} (14a)

{a}T =

{
0

3(a2 − a1)

h1
− 3(a1 − a0)

h0
. . .

3(am − am−1)

hm−1
− 3(am−1 − am−2)

hm−2
0
}

(14b)

Therefore, the solution of System (12) specifies the numerical values for coefficient
cj. The cubic interpolant’s coefficients defined on n sub-intervals, are presented in Expres-
sions (15a)–(15c) [21].{

aj
}

; ∀j = 0 . . . m− 1; aj = f
(
xj
)
; aj+1 = f

(
xj+1

)
; xj = 0, m− 1; (15a)

{
bj
}

; ∀j = 0 . . . m− 1; bj =
1
hj
(aj+1 − aj)−

hj

3
(
2cj + cj+1

)
; (15b)

{
dj
}

; ∀j = 0 . . . m− 1; dj =
cj+1 − cj

3hj
; (15c)

3.4. Stiffness Matrix Definition for Beam-Type Element with Elastic Restrains

The characterization of a structure or of an element from a structure, presented in
Figure 2, through the geometric aspect, refers to the establishment of the deformed shape
and defining the parameters which can define that specific deformed shape. The geometric
characterization of structural elements highlights the fact that the deformed shape can be
defined if the displacement field is known, displacements which can be translations or rota-
tions. As a consequence of the geometric aspect, it is possible to choose the displacements
as independent parameters to describe the elastic equilibrium state.

The matrix-based formulation of the stability problem assumes the definition of the
displacement field, which represents a function approximation problem. The task is to find a
function that closely matches the displacement field. In the case of a bi-dimensional stability
problem, for the beam-type element presented in Figure 2, the approximation problem
assumes the approximation of the displacement field through a polynomial function of
degree n − 1, presented in Expression (16).

v(x) = α1 + α2·x + α3·x2 + . . . + αk·xk+1 + . . . αn·xn−1 =
n−1

∑
k=1

αkxk+1 = [F]{α} (16)
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the beam-type element; y—is the local reference system ax perpendicular to the beam-type element
axes; v—denotes the general displacement of the cross-section; vi—is the displacement of the cross-
section at joint i; vj—is the displacement of the cross-section at joint j; v(x)—is the displacement
of the cross-section at position x; ϕi—is the rotation of cross-section at joint i; ϕj—is the rotation
of cross-section at joint j; ϕ(x)—is the rotation of cross-section at position x; Q—is the axial force;
Mi—the bending moment at joint i; Mi—the bending moment at joint i; Fy,i—the sheer force at joint i.

In Expression (16), v(x) is the polynomial function which describes the displace-
ment field, n − 1 = deg(v(x)) is the degree of v(x), {F} =

{
1 x x2 . . . xk+1 . . . xn−1

}
is

a vector with the terms of the polynomial function divided by the terms’ coefficient;
{α} = {α1, α2, . . . , αk, . . . , αn}T a vector with the polynomial functions coefficient. For
joints i and j of the beam-type element, the kinematic boundary conditions can be written
as in Relation (17).

x = 0

{
v(0) = vi

ϕ(0) = dv(x)
dx |x=0 = ϕi

x = l

{
v(l) = vj

ϕ(l) = dv(x)
dx |x=l = ϕj

(17)

The accuracy of the approximation of the displacement field depends on the degree of
the chosen polynomial function. Therefore beside the 4 nodal parameters,

{
vi ϕi vj ϕj

}
there are introduced n − 4 non-nodal parameters

{
ap
}

n−4≤p≤n. Consequently, the nodal
displacement and force vectors for the beam-type element in Figure 2, are presented in
Expressions (18) and (19) [22].

{ae} T =
{

vi = a1 ϕi = a2 vj = a3 ϕj = a4 a5 . . . an
}

(18)

{Fe} T =
{

Fyi = f1 Mi = f2 Fyj = f3 Mj = f4 f5 . . . fn
}

(19)

Expression (18) highlights the nodal {a1:4 } and non-nodal {a5:n } parameters. Based
on Expressions (18) and (19) the limit displacement boundary conditions are expressed in
Equation (20).



Appl. Sci. 2023, 13, 1460 10 of 42



ν(0) = α1 + α2 · 0 + α3 · 02 + . . . + αk · 0k+1 + . . . + αn · 0n−1 = νi
ϕ(0) = α2 + 2 · α3 · 01 + · · ·+ (k + 1) · αk · 0k + · · · (n− 1) · αn · 0n−2 = ϕi

ν(l) = α1 + α2 · i + α3 · l2 + . . . + αk · lk+1 + . . . + αn · ln−1 = νj
ϕ(l) = α2 + 2 · α3 · l1 + · · ·+ (k + 1) · αk · lk + · · · (n− 1) · αn · ln−2 = ϕj

α5 = a5
α6 = a6

. . .
αn = an

(20)

The linear system of Equations presented in (20), is figured as a matrix equation in
Equation (21).

[H]{α} = {ae} (21)

In Equation (21), the matrix [H] represents the coefficient matrix of the limit displace-
ment boundary condition system. By expressing the vector of the polynomial function
coefficients and by introducing it in Expression (16), the interpolation function matrix [N]
can be defined, as in Expression (22) and the polynomial function which describes the
displacement field can be defined as in Expression (23).

v(x) = [F][H]−1{ae} = [N]{ae} (22)

v(x) = N1(x)a1 + N2(x)a2 + . . . + Nk(x)ak + . . . + Nn(x)an = [N]{ae} (23)

In Expression (23), [N] = [N1(x) N2(x) . . . Nk(x) . . . Nn(x) ]1≤k≤n represents the nodal
interpolation function matrix, which links the displacements of the beam-type element
with the nodal displacements, [ae] = [a1 a2 . . . ak . . . an ]T1≤k≤n is the vector of nodal and
non-nodal displacements. Given Expression (23), Figure 3 is highlights the significance
of non-nodal parameters/displacements through 4 interpolation functions of a degree
n − 1 = 9 polynomial function.
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Given Expression (23) and the geometric meaning of the differential relations between
displacements, presented in Figure 4, the slope of the deflected beam axis ϕ(x), expressed
in Expression (24), the strain ε(x), expressed in Expression (25), and the reaction forces
induced in the beam-type element σ(x), expressed in Expression (26), can be defined as a
function of nodal and non-nodal displacements {ae}.
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ϕ(x) =
dv(x)

dx
=

d[N]

dx
{ae} = [S]{ae} (24)

In Expression (24), [S] represents a matrix that links the slope of the deflected beam
axis ϕ(x) with the nodal and non-nodal displacement vector {ae}.

ε(x) = −χ(x) = −dϕ(x)
dx

= −d[S]
dx
{ae} = [B]{ae} (25)

In Expression (25), [B] represents the strain displacement matrix, which can define the
curvature χ(x) depending on the nodal and non-nodal displacements {ae}.

σ(x) = M(x) = E·I·χ(x) = E·I·[B]{ae} (26)

Expression (26) is based on the validity of Hooke’s law and the hypothesis of small
displacements and deformations.

For the beam-type element, presented in Figure 2, the equilibrium is expressed through
the principle of virtual work. According to the mentioned principle, the virtual displace-
ments or the virtual forces are infinitesimal and consistent with the physical and elastic
constraints of the beam-type element. Therefore for virtual displacements and the vir-
tual forces, the same relations can be expressed as for the real displacements and forces,
presented in Expression (27).

v(x) = [N]·{ae}
ϕ(x) = [S]·{ae}
ε(x) = χ(x) = [B]·{ae}
σ(x) = M(x) = E·I·[B]·{ae}

(27)

In Expression (27), {ae} is a vector of the nodal and non-nodal virtual displace-
ments. The mathematical expression of the principle of virtual work is presented in
Relation (28) [22].

Lext = Le f (28)

In Relation (28), Lext denotes the virtual mechanical work of the external forces, and Le f
represents the virtual mechanical work of the internal efforts. The mathematical expression
of the virtual mechanical work of the external forces is presented in Expression (29).

Lext = Lext({Fe}) + Lext(Q) (29)

In Expression (29), Lext({Fe}) represents the virtual mechanical work of the external
forces applied at the joints, Lext(Q) denoted the virtual mechanical work of the axial force
Q, presented in Figure 4. The virtual mechanical work of the external forces applied
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at the joints, Lext(Q) can be expressed depending on the virtual nodal and non-nodal
displacements, presented in Expression (30).

Lext({Fe}) = {ae}T{Fe} (30)

The virtual mechanical work of the axial force Q, in the case of an infinitesimal beam-
type element of length dx, presented in Figure 4, is defined in Expression (31).

Lext(Q) =
∫
D

dLext(Q) (31)

In Expression (31), the elementary virtual mechanical work of the axial force Q, can be
expressed as in Expression (32).

dLext(Q) =

(
dv(x)

dx

)T
Qdv = −{ae}T [S]TQ[S]{ae}dx (32)

By substituting Expression (32) in Expression (31) one can obtain the expression of
the virtual mechanical work of the axial force Q, as a function of the nodal and non-nodal
displacements, which is shown in Expression (33).

Lext(Q) = −{ae}TQ

 l∫
0

[S]T [S]dx

{ae} = −{ae}TQ
[
Kge
]
{ae} (33)

In Expression (33),
[
Kge
]

represents the geometric stiffness matrix, which depends on
the geometric characteristics of the beam-type element. The mathematical expression of the
virtual mechanical work of the internal efforts is presented in Expression (34).

Le f = Le f _internal + Le f _s.joint (34)

In Expression (34), Le f _internal represents the virtual mechanical work of the internal ef-
forts, which is expressed in Expression (35), and Le f _s.joint represents the virtual mechanical
work of the reaction forces of the support connections, presented in Expression (36).

Le f _internal =

l∫
0

{ε}T{σ}dx = {ae}T(

l∫
0

[
B]T ·E·I·[B]dx

)
{ae} = {ae}T [ke]{ae} (35)

In Expression (35), [ke] represents the material stiffness matrix of the beam-type
element.

Le f _s.joint = {v(0)}Tr1{v(0)}+ {ϕ(0)}Tr2{ϕ(0)}+ {v(l)}Tr3{v(l)}+ {ϕ(l)}Tr4{ϕ(l)} (36)

In Expression (36), ri=1:4 denotes the value of the stiffness of the elastic support
connections with respect to the kinematic boundary conditions, presented in Figure 5.

Expressions (35) and (36) are quadratic forms with nodal and non-nodal displacements
as variables, therefor the stiffness coefficients can be obtained by the algebraic sum of the
quadratic form’s coefficents, with respect to the connection indexes. Based on Expres-
sions (35) and (36) the virtual mechanical work of the internal efforts can be written as in
Expression (37).
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Figure 5. Representation of the beam-type element with elastic support connections, where L—is
the length of the beam-type element; x—marks the distance to a current cross-section; X—is the
local reference system axes along the axes of the beam-type element; y—is the local reference system
axes perpendicular to the beam-type element axes; I—the moment of inertia of the cross-section
in a general form; I(x)—the moment of inertia of cross-section at section x; Q—is the axial force;
r1—denotes the stiffness for a hindered transversal displacement for joint i; r2—denotes the stiffness
for a hindered rotation for joint i; r3—denotes the stiffness for a hindered transversal displacement
for joint j; r4—denotes the stiffness for a hindered rotation for joint j.

With regard to Relationships (35) and (36), the procedure for assembling the material
stiffness matrix, Expression (35) can be written as in Expression (37).

Le f = {ae}T [Ke]{ae} (37)

In Expression (37), [Ke] denotes the assembled material stiffness matrix. Based on
Relation (28) and Expression (29) Equation (38) can be expressed.

Le f − Lext(Q) = Lext({Fe}) (38)

Equation (39) can be obtained by substituting Expresions (30), (33), and (37) in Equa-
tion (38).

{ae}T([ke]−Q
[
kge
])
{ae} = {ae}T{Fe} (39)

Equation (39) must be fulfilled for every virtual displacement {ae} 6= {0}, therefore
Equation (40) can be written. (

[Ke]−Q
[
Kge
])
{ae} = {Fe} (40)

A compact form of Equation (40) is presented in Equation (41).

[K]{ae} = {Fe} (41)

In Equation (41), [K] represents the elastic stiffness matrix of a beam-type element.

3.5. Formulation of the Stability Analysis

Based on Equation (41), internal forces {Fe}, can be obtained with respect to the nodal
and non-nodal displacements {ae} and the axial force Q. By expressing the nodal and
non-nodal displacement vector from Equation (41), Expression (42) is obtained [23].

{ae} = [K]−1{Fe} =
1
|[K]| [K]

∗{Fe} (42)

In Expression (42), [K]∗ represents the adjunct matrix of the elastic stiffness matrix,
whose diagonal entries are the determinant of the elastic stiffness matrix [K]. Based on
Expression (42), the failure of a beam-type element occurs when there is an infinitesimal
increase in the axial force Q the displacements tend to infinity. Therefore, in the case of
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beam-type elements, the loss of stability occurs when Equation (43) is satisfied, called an
eigenvalue problem [23].

|[K]| =
∣∣[Ke]−Q

[
Kge
]∣∣ = 0 (43)

Equation (43), denotes the characteristic equation of the eigenvalue problem, which
leads to a homogeneous system of equations, presented in Equation (44) [23].(

[Ke] +
[
Kge
])
{v} = {0} (44)

The solution of the eigenvalue problem and of Equation (44), represents vector {λ}
with the proper eigenvalues λi=1:n and the corresponding eigenvectors in a matrix {vi}.
The minimum value of {λ} represents λ1 which denotes the critical buckling load, and the
corresponding eigenvector {v1} the deflection shape.

3.6. Indirect Variational Method for the Study of the Conditions and Nature of Equilibrium

The potential energy is defined as a function of a function, that is, π = π(v(x)), a
functional presented in Expression (45). The problem consists of determining the condition
of the minimum functional π of one function v of one variable x [20].

π[v(x)] =
∫ l

0
φ(x, v, v

′
, v′′ )dx (45)

In Expression (45), v(x) is presumed to be continuous, with continuous first four
derivates and also appropriate boundary conditions. The mathematical form of the total
potential energy is presented in Expression (46) [23].

π = U −V (46)

In Expression (46), U denotes the strain energy, V represents the potential of the
external forces or the mechanical work of external force applied in joints. In this study, U is
defined in Expression (47) through two energetic quantities.

U = Le f − Lext(Q) (47)

It is assumed that the equilibrium position corresponds to an extreme value of the
total potential energy, a condition presented in Equation (48) [23].

δπ = {0} (48)

Equation (48) represents the condition for the Euler equation, with the proper bound-
ary conditions. In mechanics, Equation (48) is generally equivalent to the equilibrium
condition [23]. For the study of the nature of equilibrium, there are considered two stages of
deformation, for the intensity λ of the axial force: stage 1, which is defined by displacements
v(x) and total potential energy π(v(x),λ); stage 2, which corresponds to displacements
v(x) + δv(x) and total potential energy π(v(x) + δv(x), λ).

The variation of the total potential energy by passing from stage 1 to stage 2 can be
expressed in Expression (49) [23].

∆π = π(v(x) + δv(x), λ)− π(v(x),λ) (49)

In Expression (49), ∆π is a continuous n-time differentiable function defined on the
interval [0 L], which is expanded into a Taylor series, presented in Expression (50) [20].

∆π = δπ + δ2π + δ3π + . . . = δπ + δ2π + Ts(π) (50)

In Expression (50), δπ set the first-order derivative of the total potential energy, δ2π
denotes the second-order derivative of the total potential energy and Ts(π) represents



Appl. Sci. 2023, 13, 1460 15 of 42

the higher-order derivative of the total potential energy, terms which are neglected in the
modelling process [23].

The beam-type element in this study has a single degree of freedom v(x), which defines
the system’s state. The terms obtained after the expansion into a Taylor series of ∆π, are
presented in Expressions (51a)–(51c) [20].

δπ =
1
1! ∑

i

∂π(v,λ)
∂vi

∂vi (51a)

δ2π =
1
2! ∑

i
∑

j

∂2π(v, λ)

∂vi∂vj
∂vi∂vj (51b)

δ3π =
1
3! ∑

i
∑

j
∑
k

∂3π(v, λ)

∂vi∂vj∂vk
∂vi∂vj∂vk (51c)

With respect to the condition of equilibrium, presented in Equation (48), and to the
fact that the potential of the external forces, for the case of constant loads, is expressed as
V = ∑1≤i≤n Fi·vi, where Fi represents a force associated with displacement vi, which is a
linear displacement function, whose high-order derivative is canceled, the variation of the
total potential energy between stage 1 and 2 is equivalent to the second-order derivative of
the strain energy, presented in Expression (52) [20].

∆π =
1
2
·δ2U =

1
2! ∑

i
∑

j

∂2U(v, λ)

∂vi∂vj
∂vi∂vj (52)

Expression (52) allows the study of the nature of equilibrium, as presented in Table 1.

Table 1. Study of the nature of equilibrium according to the sign of δ2U [20].

Case The State of Equilibrium in
Mathematical Terms A Short Description of the State of Equilibrium

1. sign
(

δ2U
)
< 0 In stable equilibrium, the second-order derivative of the strain energy is

positive-definite, with respect to the Lagrange-Dirichlet theorem.

2. sign
(

δ2U
)
> 0

In unstable equilibrium, the second-order derivative of the strain energy is
not positive-definite, according to the Liapunov stability theorem.

3. δ2U = 0 Neutral equilibrium, corresponds to a limit state immediately before the
loss of equilibrium.

In the case of neutral equilibrium, it is necessary to determine and study the higher-
order derivative of the total potential energy according to Expression (50). The nature of
equilibrium is indicated by the fourth-order derivative of the total potential energy, which
has to be positive-definite, positive definiteness of ∆π guarantees stability [20].

Based on the first theorem of Castigliano the second-order derivative of the total
potential energy with respect to the displacements represents the stiffness coefficient kij,
which indicates a force at i due to unit displacement at j. According to this remark,
Expression (52) can be expressed as in Expression (53) [23].

∆π =
1
2! ∑

i
∑

j
kij∂vi∂vj (53)

Expression (53) is a quadratic from in displacements, which in a matrix form is
presented in Expression (54).

∆π =
1
2
{v}T [K]{v} (54)
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In Expression (54), {v}1≤i≤n is the displacement vector, [K] is the elastic stiffness
matrix of the studied structural element. Based on the condition that the variation of
the total potential energy at the limit equilibrium state must be zero, respectively [K] is
obtained through the assembly of the material stiffness matrix and the geometric stiffness
matrix, the equation of stability can be determined by an energetic method, which assumes
an eigenvalue problem [23].

Continuous structures are analyzed through an indirect variational method, in which
the structure is not discretized. The differential equations are obtained from the minimizing
condition for the potential energy [20]. In contrast to this approach, the stability analysis,
in which the structure is discrete or discretized and the expression of the second variation
of potential energy is reduced to a quadratic form, is the direct variational approach [20].

3.7. Positive Definiteness of ∆π

The positive definiteness of ∆π guarantees stability. The total potential energy
is quadratic from in displacements, and the elastic stiffness matrix [K] determines the
quadratic form. Matrix [K] is a real symmetric matrix, which is positive-definite if and only
if the eigenvalues of matrix [K] are positive [20].

The elastic stiffness matrix [K] is a real, Hermitian matrix and, according to Sylvester’s
criterion, the necessary and sufficient condition for the quadratic from ∆π to be positive-
definite if the leading principle minors are positive, meaning ∆k > 0, for ∀k = 1 : n,
where n represents the dimension of the real vector space of the elastic stiffness matrix,
dim([K]) = deg(v(x)) + 1 [24].

3.8. Boundary Conditions

According to the Lagrange-Dirichlet theorem, the equilibrium is stable if the total
potential energy admits a local minimum. The condition that the potential energy must
be strict minimum determines the differential equation which describes the problem and
the admissible forms of the boundary conditions. The kinematic boundary conditions
in mechanics or the essential boundary conditions in mathematics can be expressed in
Relation (55) [20]. {

v
ϕ

}
=

{
0
0

}
(55)

Equations (56a,b) can be used to express static boundary conditions in mechanics or
natural boundary conditions in mathematics [20].

(EIv′′ )
′
− Pv

′
= V = 0 (56a)

EIv′′ = M = 0 (56b)

The approximate deflection shape v(x), or trial function, must always satisfy all the
kinetic boundary conditions but does not have to satisfy the static boundary conditions.
The static boundary conditions and the differential conditions of equilibrium are a result of
the minimization of π itself. If the static boundary conditions are satisfied, v(x) approxi-
mates the exact buckling shape, and the resulting critical load Pcr1 approximates Pcr more
accurantely [20].

3.9. Rayleigh Quotient

The strain energy is a quadratic form in displacements and the neutral equilibrium
state assumes that the second-order variation of the total potential energy is zero, conditions
presented through a mathematical from in Equation (57) [16].

δ2U =
1
2
{v(x)}T [K]{v(x)} = {0} (57)
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Based on Equation (48) and Expression (23), Equation (57) can be expressed as in
Equation (58).

{ae}T([Ke]− RQ
[
Kge
])
{ae} = {0} (58)

In Equation (58) RQ represents the axial force multiplicator, which is expressed in
Expression (59).

RQ =
{ae}T [Ke]{ae}
{ae}T[Kge

]
{ae}

(59)

Expression (59) represents the Rayleigh quotient, which approximates the axial force,
value dependent on the displacement field v(x). In order to fix the value of RQ, an iterative
process must be launched which has as its starting value a certain displacement vector,
a vector which readjusts after every iteration, with local convergence conditions. The
defection shape at the moment of loss of equilibrium is not known, therefore the presented
method is an approximative one [20].

According to the Lagrange-Dirichlet condition, the equilibrium is stable if P < Pcr
for every displacement v(x) compatible with the system’s kinematic constrains. At the
limit state, the moment before the loss of stability, the critical buckling force represents
Pcr = min

(
{RQ}1≤i≤it

)
, where it defines the number of iterations.

In Expression (59), the numerator represents the mechanical work of the internal
efforts Le f and the denominator the unitary mechanical work of the axial force, in this
case, RQ, Lext(RQ). Expression (59) for a beam-type element can be expressed as in
Expression (60) [16].

RQ(v(x)) =
Le f

Lext(RQ)
=

1
2 ·
∫ L

0 E·I(x)·v(x)
′ ′2dx

1
2 ·
∫ L

0 v(x)′2dx
(60)

In Expression (60), the Rayleigh quotient is defined as an analytic expression concern-
ing the displacement field v(x), and function I(x) is a continuous function that describes the
modification of the moment of inertia of the beam-type element [20].

3.10. Timoshenko Quotient

In the case of statically determined structures with the Timoshenko quotient, one
may obtain a better approximation of the critical buckling load. The method assumes the
appraisal of the strain energy on the basis of the bending moment M, which appears in the
beam-type element due to deformation. The value of the bending moment is approximated
with the product −Q·v(x), instead of the curvature, which assumes an approximative
displacement field [20].

In the case of a structure with linear elastic behavior, the strain energy is a quadratic
form, and if v(x) = {0} it corresponds to the equilibrium position, then the modification of
the total potential energy at the limit of equilibrium coincides with the potential energy.
The modification of the total potential energy at the critical state must be equal to zero, a
condition which can be expressed as in Equation (61) [20].

∆π = Le f − Lext(Q) =
∫ L

0

(Q·v(x))2

2·E·I(x)
dx−

∫ L

0

Q
2
·v(x)

′2dx == Q2·Le f −Q·Lext(Q) = 0 (61)

By expressing the axial force Q from Equation (61), Expression (62) is obtained [20].

TQ(v(x)) =
Lext(Q)

Le f
=

1
2 ·
∫ L

0 v(x)
′2dx

1
2 ·
∫ L

0
v(x)2

E·I(x)dx
(62)

The major advantage of the Timoshenko quotient is that it is a stationary value, a more
precise value than the Rayleigh quotient.
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4. Work Method
4.1. General Aspects

In this study, it is assumed that the beam-type element is part of a new structural
assembly or part of a structure that requires structural rehabilitation. In the case of a new
structure, a main structural design criterion is to use a minimum number of elements and a
minimum amount of material. Therefore, the design or modelling of the beam-type element
assumes an iterative process of optimization, through which the main goal is to fix the
geometric characteristics of a beam-type element, of length L, subjected to axial force, with
different kinematic constraints at the joints. In this study loads are applied only at the
joints, therefore the state of strain is easier to control. The final failure criteria is a failure
due to excessive stresses rather than buckling.

The modelling process assumes three interconnected iterative cycles, presented in
Figure 6, which assumes obtaining a geometric configuration for the beam-type element
which is not sensible to buckling.

The first iterative cycle has the purpose of fixing the maximum critical buckling
load which can be achieved for a beam-type element with length L, by defining a variation
function for the moment of inertia. To define the variation function of the moment of inertia,
five coefficients are introduced which are associated with five equidistant points on the
element, which indicate the variation of the moment of inertia as against the reference cross-
section. The reference cross-section’s geometric and inertial characteristics are computed
based on the imposed failure condition. At these points, the quantity of material is not
modified, only its distribution on the cross-section. Between these reference points, cubic
interpolation is performed in order to obtain a continuous function to express the variation
of the moment of inertia.

The second iterative cycle starts after fixing the values for the five coefficients, which
describe the variation of the moment of inertia, and the geometric properties of the reference
cross-section. In the case of the 5 critical sections, it is important that the class of the sections
be less than 4, in order to avoid the local verification process as described in SREN 1993-
1-6. The third iterative cycle assumes verifying the failure condition, which presumes
comparing the critical buckling load with the design resistance of the cross-section for
uniform compression.

By undergoing the presented three iterative cycles, it is possible, with respect to the
modelling assumptions, to fix the geometric characteristics for the beam-type element, with
length L and variable cross-section, in order to achieve a favorable failure condition and
avoid the loss of stability of the element.

The abbreviations in Figure 6 are related to a series of subprograms that incorporate
the theoretical aspects from Section 3, as follows.

The subprogram entitled model_section_var sets the cubic interpolation function that
describes the variation of the moment of inertia, as presented in Section 3. The input
arguments are the length of the element L and the cross-section variation coefficients vector
[i1 i2 i3 i4 i5]. The output for this program is the symbolic function Ii, which describes the
modification of the moment of inertia.

The subprogram entitled sbc establishes the critical axial load, identified as the
Rayleigh quotient, based on the variation of the cross-section, the material type, and
the kinematic restraints imposed on the beam-type element. The input arguments are the
length of the element L, the Young modulus E, the symbolic function Ii, and the stiffness
vector for the joints. The outputs are the critical buckling force RQ and the deflection shape
of the element through the displacement vector fp, which are the solution to the eigenvalue
problem.
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The subprogram entitled check_section is a verification program that calculates the
geometric and inertial characteristics of the 5 critical sections and indicates if the class of
the cross-section is greater than 3, based on the geometric characteristics of the reference
cross-section. The input arguments are the cross-section variation coefficients vector, the
outside diameter of the reference cross-section D0 and the thickness of the wall of the
reference cross-section t0. The output of the program is a logical one. If the answer is
TRUE then the variable cross-section beam-type element has no issues. When the answer
is FALSE then modifications are required regarding the geometric entries of the reference
cross-section or the variation coefficients of the moment of inertia.

The subprogram entitled failure_condition checks if the imposed failure condition
is satisfied, regarding the failure due to the resistance of the cross-section for uniform
compression rather than buckling. According to Hooke’s law, conditions can be expressed
in terms of the area of the cross-section. The input arguments are the area of the reference
cross-section A0, the steel-yield strength fy, and the critical buckling load RQ. The outputs
are the elastic resistance of the cross-section Fc,Rd and the critical buckling load Fb,Rd.
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4.2. Aspects Regarding the Input Data
4.2.1. Aspects Regarding the Length of the Beam-Type Element

The starting point of the modelling process is fixing the length of the beam-type
element, L. The length of the element is a numerical value that remains constant during the
iteration cycles and the kinematic constraints imposed on the joints.

In order to obtain a beam-type element with optimal shape from a topological point
of view, the criteria regarding the variation of the cross-section are a necessary but not
sufficient condition. The additional criteria are in close relation to Euler’s critical load,
presented in Expression (1). In Expression (1), the second important factor which influences
the critical buckling load is the length of the element, a numerical value that must be
correlated with the geometric characteristics of the cross-section. Given the length of the
element, a factor of inverse proportionality, there are three possible situations to note.

The possible situations are related to the effective geometric length of the element L
and the critical length of the element Lcr, which is an ideal length for which the failure
condition is fulfilled and the modelling of a variable cross-section makes sense.

In case I, the length of the element is less than the ideal length, or L < Lcr. In this
case, the failure will occur by exceeding the value of the design resistance of the cross-
section for uniform compression. The critical buckling force is net superior. In the present
case, the modelling of a variable cross-section makes no sense, given the computational
effort, the stiffness of the joints, and the technological terms. In this situation, the constant
cross-section is an ideal solution.

In case II, the length of the element is quasi-equal to the ideal length, or L = Lcr.
This case is considered the ideal case. The failure will occur by exceeding the value of the
design resistance of the cross-section for uniform compression. The critical buckling force
is superior. Modelling a variable cross-section is necessary in order to achieve a superior
value for the critical buckling load beyond the design resistance of the cross-section for
uniform compression.

In case III, the length of the element is greater than the ideal length, or L > Lcr. The
failure will occur due to the loss of stability. The material is not used rationally.

For the cases for which the length of the element is a numerical value in the neigh-
borhood of Lcr, there are several optimization methods, one of which is proposed in this
study is to use a minimum quantity of material that has an optimum distribution on the
cross-section.

4.2.2. Material Type and Section Profile

Slender structural elements subjected to a significant amount of compression forces
appear to be characteristic of steel structural assemblies. In the case of steel structures,
the beam-type elements are modeled according to the main stress in the cross-section.
In the case of high axial forces, the most frequently used and recommended profiles are
circular tubular profiles, with s-planes of sectional symmetry, with the inertial properties
are equal in every direction. Given the boundary conditions for the beam-type element,
circular tubular profiles are not sensible to flexural buckling. The recommended steel
circular tubular profiles are presented in EN10219 [25]. In this study, these profiles will
be considered as profiles for the reference cross-sections. The profile types presented in
EN10219 are manufactured for constant cross-section elements. In this study, the reference
cross-section id is presented in Expression (63), which indicates the geometric properties
and material type for the cross-section.

CHS Dxt− L − S355JO− EN10219 (63)

In Expression (63) CHS is the abbreviation for the circular hole section, the type of
profile chosen, D represents the external diameter in [mm], t the thickness of the profile’s
wall in [mm], L represents the length of the beam-type element in [mm], S355JO is the
grade of the steel, which carries a minimum yield strength of 355 [N/mm2], JO indicates
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that the steel has undergone longitudinal Charpy V-Notch impact testing at 27[J] at 0 [◦C],
EN10219 is the reference standard for the profile type [25].

4.2.3. The Stiffness of the Support Connections

In a theoretical study for the hindered displacements in a support connection, infinite
value is associated with the stiffness of the connection. In the MATLAB programming
language, the concept of infinity is associated with a numerical value of 101000 [26]. To
quantify the effects of real support connections which allow small displacements there are
imposed finite numerical values for the stiffnesses of the hindered displacements. In the
case of other not constrained connections, their stiffness is not zero.

In this study, the numerical values imposed on the stiffnesses of the support con-
nections are purely theoretical and they do not result from measurements on a physical
model. In the theoretical model, the support connections are considered absolutely rigid
or absolutely flexible. For any intermediate values of the rigidity of the elastic support, a
flexible joint is obtained [6]. The modelling of elastic support connections resumes fixing
the value of the stiffness for every connection type. The numerical values are computed
based on the stiffness properties of the cross-section at the joints for the beam-type elements.
For example, in the case of a beam-type element that is clamped-clamped the expression for
the support connection stiffnesses, if one considers only the effect of bending, is presented
in Expression (64) [27].

r =
[

12·E·Isn

L3
6·E·Isn

L2
12·E·Isn

L3
6·E·Isn

L2

]
(64)

In Expression (64), E represents Young’s modulus, L represents the length of the ele-
ment, Isn denotes the moment of inertia at the joint cross-section. In Expression (64) for the
first joint, it corresponds to the first and second values, the stiffness for a hindered transver-
sal displacement and a hindered rotation of the joint, and for the second joint corresponds
to the third and fourth value, the stiffness for a hindered transversal displacement and a
hindered rotation of the joint. For every beam-type element, it is possible to fix a reference
cross-section, which is considered the geometric invariant of the iterative process [27].

4.2.4. Aspects Regarding the Variation of the Cross-Section

The cubic interpolant describes the variation of the cross-section of the element on
m sub-intervals. It is necessary to fix the values for the interpolation function at the
limit of the sub-intervals, meaning m + 1 numerical values, indicated through coefficients
i1≤k≤m+1 = [1 : 2]. Due to rational considerations, the maximum modification for the
moment of inertia of the cross-section is 100 [%] concerning the reference cross-section.
The final values for the coefficients are fixed at the end of the iterative process. The
modification of the moment of inertia assumes the modification of the outside diameter of
the cross-section D1≤k≤m+1 and the wall thickness of the cross-section t1≤k≤m+1.

In this study, the interpolation function, which describes the variation of the moment
of inertia, is modeled on 4 sub-intervals. Therefore it is necessary to fix the value at five
reference points, according to Expression (65).

iv = [i1 i2 i3 i4 i5] i1≤k≤5 ∈ [1 : 2] (65)

4.3. Aspects Regarding Subprogram Check_Section

The potential points where it is recommended to modify the value of the moment of
inertia are indicated by the defection shape of the compressed element. At the limits of m + 1
sub-intervals, the values of the moment of inertia get local maximum values. Subprogram
Check_section determines the outside diameter of the cross-section D1≤k≤m+1 and the
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wall thickness of the cross-section t1≤k≤m+1 as a function of the reference cross-section. At
the limit of a sub-interval, m Expression (66) can be written.

I1≤k≤m+1 = i1≤k≤m+1·I0 (66)

In Expression (66), I0 denotes the numerical value of the reference cross-section, which
is fixed for the constant cross-section beam-type element according to the imposed failure
condition. The numerical value of parameter i is correlated with the amplitude of the
deflection shape with respect to the kinematic boundary conditions.

Modelling the cross-section is based on Cavalieri’s principle. The area of the cross-
section is equal for every cross-section, presented in Relation (67).

A1≤k≤m+1 = A0 = const. (67)

In Relation (67), A0 represents the area of the reference cross-section, and it is high-
lighted the proposed modelling principle of the redistribution of material in the cross-
section, highlighted also in Figure 7. The numerical value for every cross-section is fixed for
the constant cross-section beam-type element according to the imposed failure condition.
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Figure 7. Variable cross-section beam-type element, where L—is the length of the beam-type element;
x—marks the distance to a current cross-section; X—is the local reference system axes along the
axes of the beam-type element; y—is the local reference system axes perpendicular to the beam-type
element axes; I—the moment of inertia of the cross-section in a general form; I(x)—the moment of
inertia of the cross-section at section x; Dk—the outside diameter of the transversal cross-section k;
dk—the inside diameter of the transversal cross-section k; tk—the thickness of the wall of transversal
cross-section k; 0—the center of cross-section k-k.

In Figure 7 it is shown that a longitudinal and transversal cross-section of a variable
cross-section beam-type element. Cross-section 1-1 corresponds to a section at the first joint,
and cross-section 2-2 represents a current cross-section where a considerable modification
of the moment of inertia is recorded. For cross-section 1-1 and cross-section 2-2 one may
define the geometric and inertial characteristics presented in Expressions (68a)–(68d).

A1 =
π

4
·
(

D2
1 − d2

1

)
(68a)

A2 =
π

4
·
(

D2
2 − d2

2

)
(68b)

I1 =
π

64
·
(

D4
1 − d4

1

)
(68c)

I2 =
π

64
·
(

D4
2 − d4

2

)
(68d)

In Expression (67), Ak represents the area of the cross-section; Ik denotes the moment
of inertia of the cross-section; Dk represents the outside diameter and dk represents the
inside diameter of the cross-section, for ∀k = 1 : 2. By substituting Expressions (68a)–(68d)
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into Expression (67) the system of Equations (69) is obtained, which can be expressed as in
Equation (70) due to a computational artifice.{

π
64 ·
(

D4
2 − d4

2
)
= i2· π

64 ·
(

D4
1 − d4

1
)

π
4 ·
(

D2
2 − d2

2
)
= π

4 ·
(

D2
1 − d2

1
) (69)

{ (
D2

2 − d2
2
)
·
(

D2
2 + d2

2
)
= i2·

(
D2

1 − d2
1
)
·
(

D2
1 + d2

1
)(

D2
2 − d2

2
)
=
(

D2
1 − d2

1
) (70)

By substituting Equation (2) in Equation (1) from the system (70) and with Equation (2)
from the System (71), is obtained.{ (

D2
2 + d2

2
)
= i2·

(
D2

1 + d2
1
)(

D2
2 − d2

2
)
=
(

D2
1 − d2

1
) (71)

If Equation (1) is gathered with Equation (2), from the system (71), than Equation (72)
can be written, from which the outside diameter of cross-section 2-2 can be obtained as a
function of the geometric characteristics of cross-section 1-1, concerning the modification of
the moment of inertia, presented in Expression (73).

2·D2
2 = (i2 + 1)·D2

1 + (i2 − 1)·d2
1 (72)

D2 =

√
(i2 + 1)·D2

1 + (i2 − 1)·d2
1

2
(73)

If Equation (2) is subtracted from Equation (1), from the system (71), Equation (74)
can be written, from which the inside diameter of cross-section 2-2 can be obtained as a
function of the geometric characteristics of cross-section 1-1, concerning the modification of
the moment of inertia, presented in Expression (75).

2·d2
2 = (i2 − 1)·D2

1 + (i2 + 1)·d2
1 (74)

d2 =

√
(i2 − 1)·D2

1 + (i2 + 1)·d2
1

2
(75)

If a ratio, p, is accepted between the outside and inside diameter of the cross-section
for cross-section 1-1 Relation (76) can be written.

D1

d1
= p ≥ 1 (76)

It is admitted the same ratio, p, between the outside and inside diameter of the cross-
section for corss-section 1-1 Relation (77) can be written.

D2

d2
= p ≥ 1 (77)

Expressions (78) and (79) are obtained by squaring Relation (76) and substituting the
outside diameter for cross-section 1-1 in Expressions (73) and (75).

D2 = d1·
√

i2·(p2 + 1) + (p2 − 1)
2

(78)

d2 = d1·
√

i2·(p2 + 1)− (p2 − 1)
2

(79)
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If Relation (77) is squared and Expressions (78) and (79) are substituted, Equation (80)
is obtained.

−i2·
(

p2 + 1
)
·
(

p2 − 1
)
+
(

p2 + 1
)
·
(

p2 − 1
)
= 0 (80)

The solution to Equation (80), with respect p 6= 1, highlights that the assumed ratio
for both of the cross-sections is valid if the beam-type element has a constant cross-section.
According to the reductio ad absurdum principlee, it is not possible to associate the same
ratio for both of the cross-sections, therefore Relations (81) and (82) are written.

D1

d1
= p1 ≥ 1 (81)

D2

d2
= p2 ≥ 1 (82)

At this phase, the task is to determine ratio p2 as a function of ratio p1. Therefore by
dividing Expression (78) with Expression (79) and based on Relation (82) the expression of
ratio p2 can be expressed as in Expression (83).

p2 =

√
i2·(p1

2 + 1) + (p1
2 − 1)

i2·(p1
2 + 1)− (p1

2 − 1)
(83)

To be able to control the modified cross-sections, the thickness of the profile wall of
cross-section 2-2 is expressed as a function of the thickness of the profile wall of cross-section
1-1. Cross-section 1-1′s thickness of the profile wall can be expressed as in Equation (84).

D1 − d1 = 2·t1 (84)

From Equation (84) the inside diameter of secion 1–1, d1, can be expressed, which is
introduced in Expressions (78) and (79) one may obtain Expressions (85) and (86).

D2 =
2·t1

(p1 − 1)
·
√

i2·(p1
2 + 1) + (p1

2 − 1)
2

(85)

d2 =
2·t1

(p1 − 1)
·
√

i2·(p1
2 + 1)− (p1

2 − 1)
2

(86)

If Expression (86) is substracted from Expression (85) the expression for the thickness
of the profile’s wall for cross-section 2-2 is obtained, as a function of the thickness of
cross-section 1-1′s profile wall and ratio p1, as in Expression (87).

t2 =
t1

(p1
2 − 1)

·
(√

i2·(p1
2 + 1) + (p1

2 − 1)
2

−
√

i2·(p1
2 + 1)− (p1

2 − 1)
2

)
(87)

Based on Expressions (85) and (87), the new sections can be controlled preliminary
during the modelling phase, in order to define the class of the modified cross-section. By
modifying the moment of inertia of the cross-section and by keeping constant the area,
based on Cavalieri’s principle, the thickness of the profile’s wall will thin out. The iterative
process must keep in mind this phenomenon, to avoid slender sections and to keep the
class of the cross-section under 4, as to avoid further verification as presented in SREN
1993-1-6. By representing the buckling stress as a function of slenderness as in Figure 8,
the target zone in this study is the shaded zone. The classification of the cross-section was
performed as presented in SREN1993-1-1.
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of the slenderness; E-Young’s modulus.

4.4. Aspects Regarding the Failure Condition

The optimization process assumes defining the configuration of the beam-type el-
ement through the moment of inertia of the cross-section in order to achieve a failure
due to exceeding the design resistance of the cross-section under uniform compression
rather than the design buckling resistance of the compression member. A limit state is
characterized by appropriate values of the design resistances, which is a clear objective of
the optimization process. The mentioned condition is expressed in a mathematical form as
in Relation (88) [28].

1.05·Fc,Rd = Fb,Rd (88)

In Relation (88), the symbols as in EN1993-1-1, Fc,Rd represent the design resistance
of the cross-section under uniform compression and Fb,Rd represent the design buckling
resistance of the compression member. The margin of error is considered 5 [%], and the
empirical value, is quantified in Relation (88) by coefficient 1.05 [28].

4.5. Estimating the Error of the Iterative Process

The convergence criteria of the iterative process is to compute a numerical value for the
critical buckling load which exceeds the value of the resistance of the cross-section under
uniform compression, by modelling a variable cross-section for the beam-type element. To
highlight the precision of the proposed method, a parameter is introduced to verify if the
displacement field defined based on the defection shape of the beam-type element through
the proposed method describes neutral equilibrium at critical load.

The definition of the control parameter, Error, is conditioned by the assumption that
at the state of neutral equilibrium at critical load, the variation of the total potential energy
is zero. The displacement field which describes the equilibrium state is approximated
through a polynomial function. Therefore the variation of the total potential energy is not
equal to zero. To quantify this amount of energy, it is related to the algebraic sum of the
strain energy and the energy stored in the elastic support connection due to deformation.
The mathematical form of the control parameter is presented in Expression (89).

Error =
Le f −Q·Lext(Q)

Le f + Lreazem
(89)

If the numerical value of the control parameter, defined in Expression (89), is a small
finite value, then axial force Q is appropriate to the critical buckling load.
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4.6. Determining the Degree of the Polynomial Function v(x)

The displacement field is approximated through a polynomial function of degree n− 1.
To fix the degree of the polynomial function, an analysis is performed on an axially loaded
Euler column, a joint-supported statically determined system, for which the Rayleigh
quotient and the Timoshenko quotient are calculated. This analysis is performed based on
the first iteration cycle, with input values for the length of the element, Young’s modulus,
and the moment of inertia of the reference cross-section unitary.

Based on the two methods of approximating the critical buckling loads, the analysis
assumes the variation of the polynomial function’s degree until the numerical values for
the critical buckling load are equal. The analysis is performed on an Euler column with
a constant cross-section with results presented in Table 2 and on an Euler column with
variable cross-section, with the coefficients which describe the variation of the moment of
inertia iv = [1 1.9 2 1.9 1], results presented in Table 3.

Table 2. The results of the analysis for the constant cross-section Euler column.

deg(v(x)) RQ [N] TQ [N] (RQ–TQ)·103 [N]

12 9.869 9.869 0.000
10 9.869 9.869 0.000
8 9.869 9.869 0.000
6 9.869 9.869 0.025
5 9.875 9.870 5.1286
4 9.875 9.870 5.1286

In the case of the constant cross-section Euler column, the maximum error is 0.519%.
The numerical values in Table 2 are presented in a graphical form in Figure 9.
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Figure 9. The variation of the critical buckling force for the constant cross-section Euler column.

Based on the data from Table 2, for the constant cross-section Euler column, it is
sufficient to model the displacement field through a polynomial function of degree eight.

In the case of the variable cross-section beam-type element, the maximum error is
0.573%. The numerical values in Table 3 are presented in a graphical form in Figure 10.

Based on the data from Table 3, for the variable cross-section Euler column, it is
sufficient to model the displacement field through a polynomial function of degree six.
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Table 3. The results of the analysis for the variable cross-section Euler column.

deg(v(x)) RQ [N] TQ [N] (RQ–TQ)·103 [N]

12 19.0701 19.0701 0.0032
10 19.0702 19.0701 0.0276
8 19.0704 19.0701 0.2438
6 19.0792 19.0704 8.7387
5 19.0814 19.0704 10.9261
4 19.0814 19.0704 10.9261

4.7. Aspects Regarding the Modelling Phase concerning the Rayleigh Quotient

The approximation of the critical buckling load, through the Rayleigh quotient, pre-
sumes an iterative process through it is assumed a particular deflection shape, then after
h iteration cycles, the critical buckling load is approximated concerning the modelling
assumptions. The number of iteration cycles h is established based on the number of
deflection shapes taken into account, through the moment of inertia of the cross-section.

In this study, it is assumed a particular variation of the moment of inertia of the
cross-section, approximates the deflection shape of the beam-type element. By modifying
the coefficients which describe the variation of the moment of inertia it is obtained a new
defection shape, which is more appropriate to the real deflection shape, therefore the
Rayleigh quotient decreases to a value more appropriate to the critical buckling load.

With the modification of the shape of the beam-type element, a new displacement field
is obtained, and also the elastic stiffness matrix is changing therefore the critical buckling
force increases. This is the basis of the first iterative cycle.

5. Case Study/Parametric Study/Computational Examples

The computational examples assume the study of statically determinate and indeter-
minate beam-type elements, six situations with ideal support connections, and also the
consequence of the elastic support connections.

The starting point of every individual study is fixing the „reference” beam-type el-
ement, with a constant cross-section. The given element is modeled to achieve a critical
buckling load superior to the resistance of the cross-section at uniform compression, explic-
itly to avoid the loss of stability.

The modelling of the beam-type element assumes knowing the kinematic boundary
conditions. The kinematic boundary conditions in the case of ideal support connections
can be defined as a zero displacement field. Regardless of the imposed kinematic boundary
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conditions the beam-type elements are considered with an equal geometric length of
6000 [mm], Young’s modulus of 2.1·105 [N/mm2], and yield strength of the steel, fy, with
the value of 355 [N/mm2].

a) The hinged-hinged beam-type element

The hinged-hinged beam-type element is presented in Figure 11a, which highlights the
kinematic boundary conditions. The type of profile imposed on the reference cross-section
is CHS163.8x8–6000–S355JO–EN10219, respectively values for the stiffness of the support
connections are [inf 0 inf 0]. The results of the iterative optimization phase are presented in
Table 4 and the graphical representation of the data from Table 4 is presented in Figure 12.
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Figure 11. The hinged-hinged beam-type element: (a) Schematic representation of the kinematic
boundary conditions, where v—denotes the transversal displacement; Q—the axial force; (b) The vari-
able cross-section beam-type element concering the imposed boundary conditions; (c) Longitudinal
section of the modeled beam-type element which highlights the variation of the cross-section.

Table 4. The data from the modelling process of the hinged-hinged beam-type element.

Id. i1 i2 i3 i4 i5 Fc,Rd [N]
(·103)

Fb,Rd [N]
(·103) ∆Fb,Rd % Error%

(·10−5)

1. 1 1 1 1 1 1263.7 685.8 - -
2. 1 1.3 1.5 1.3 1 1263.7 933.1 36.06 0.054
3. 1 1.8 1.9 1.5 1 1263.7 1195.5 74.32 0.021
4. 1 1.9 2 1.9 1 1263.7 1325.2 93.23 0.166

In Table 4 as a function of the variation of the moment of inertia the resistance of the
cross-section for uniform compression, Fc,Rd, and the buckling resistance, Fb,Rd, is computed
and in the last column is presented the estimated error of the iteration cycle. The modeled
hinged-hinged beam-type element is presented in Figure 11b,c.

In the case of the hinged-hinged beam-type element through the variation of the
cross-section, without material addition, a significant increase of 93.23% for the critical
buckling load is obtained and ensuring a proper failure condition as presented in Figure 12.
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Figure 12. The critical buckling force variation as against the resistance of the cross-section to uniform
compression based on the data from Table 4.

b) The clamped-free beam-type element

The clamped-free beam-type element is presented in Figure 13a, which highlights
the kinematic boundary conditions. The type of profile imposed on the reference cross-
section is CHS323.9x12.5–6000–S355JO–EN10219, respectively values for the stiffness of
the support connections are [inf inf 0 0]. The results of the iterative optimization phase are
presented in Table 4 and the graphical representation of the data from Table 5 is presented
in Figure 14.
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Figure 13. The clamped-free beam-type element: (a) Schematic representation of the kinematic bound-
ary conditions, where v—denotes the transversal displacement; Q—the axial force; (b) The variable
cross-section beam-type element concerning the imposed boundary conditions; (c) Longitudinal
section of the modeled beam-type element which highlights the variation of the cross-section.
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Table 5. The data from the modelling process of the clamped-free beam-type element.

Id. i1 i2 i3 i4 i5 Fc,Rd [N]
(·103)

Fb,Rd [N]
(·103) ∆Fb,Rd % Error%

(·10−5)

1. 1 1 1 1 1 3946.5 2136.9 - -
2. 2 1.8 1.5 1.3 1 3946.5 3632.2 69.97 0.015
3. 2 1.8 1.7 1.6 1 3946.5 3846.5 80.03 0.016
4. 2 2 1.9 1.8 1 3946.5 4183.9 95.79 0.043
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Figure 14. The critical buckling force variation against the resistance of the cross-section to uniform
compression based on the data from Table 5.

In Table 5 as a function of the variation of the moment of inertia the resistance of the
cross-section for uniform compression, Fc,Rd, and the buckling resistance, Fb,Rd, is computed
and in the last column is presented the estimated error of the iteration cycle. The modeled
clamped-free beam-type element is presented in Figure 13b,c.

In the case of the clamped-free beam-type element through the variation of the cross-
section, without material addition, a significant increase of 95.79% for the critical buckling
load is obtained and ensuring a proper failure condition as presented in Figure 14.

c) The guided-hinged beam-type element

The guided-hinged beam-type element is presented in Figure 15a, which highlights
the kinematic boundary conditions. The type of profile imposed on the reference cross-
section is CHS323.9x12.5–6000–S355JO–EN10219, respectively values for the stiffness of
the support connections are [0 inf inf 0]. The results of the iterative optimization phase are
presented in Table 6 and the graphical representation of the data from Table 6 is presented
in Figure 16.

In Table 6 as a function of the variation of the moment of inertia the resistance of the
cross-section for uniform compression, Fc,Rd, and the buckling resistance, Fb,Rd, is computed
and in the last column is presented the estimated error of the iteration cycle. The modeled
guided-hinged beam-type element is presented in Figure 15b,c.

In the case of the guided-hinged beam-type element through the variation of the
cross-section, without material addition, a significant increase of 94.81% for the critical
buckling load is obtained and ensuring a proper failure condition as presented in Figure 16.
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Figure 15. The guided-hinged beam-type element: (a) Schematic representation of the kinematic
boundary conditions, where v—denotes the transversal displacement; Q—the axial force; (b) The vari-
able cross-section beam-type element concerning the imposed boundary conditions; (c) Longitudinal
section of the modeled beam-type element which highlights the variation of the cross-section.

Table 6. The data from the modelling process of the guided-hinged beam-type element.

Id. i1 i2 i3 i4 i5 Fc,Rd [N]
(·103)

Fb,Rd [N]
(·103) ∆Fb,Rd % Error%

(·10−5)

1. 1 1 1 1 1 3946.5 2136.9 - -
2. 2 1.9 2 1.8 1 3946.5 3828.2 79.14 0.318
3. 2 1.9 1.7 1.5 1 3946.5 3906.3 82.81 0.014
4. 2 2 1.9 1.7 1 3946.5 4163.0 94.81 0.008
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Figure 16. The critical buckling force variation as against the resistance of the cross-section to uniform
compression based on the data from Table 6.
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d) The clamped-guided beam-type element

The clamped-guided beam-type element is presented in Figure 17a, which highlights
the kinematic boundary conditions. The type of profile imposed on the reference cross-
section is CHS193.7x8–6000–S355JO–EN10219, respectively values for the stiffness of the
support connections are [inf inf 0 inf ]. The results of the iterative optimization phase are
presented in Table 7 and the graphical representation of the data from Table 7 is presented
in Figure 18.
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Figure 17. The clamped-guided beam-type element: (a) Schematic representation of the kinematic
boundary conditions, where v—denotes the transversal displacement; Q—the axial force; (b) The vari-
able cross-section beam-type element concerning the imposed boundary conditions; (c) Longitudinal
section of the modeled beam-type element which highlights the variation of the cross-section.

Table 7. The data from the modelling process of the clamped-guided beam-type element.

Id. i1 i2 i3 i4 i5 Fc,Rd [N]
(·103)

Fb,Rd [N]
(·103) ∆Fb,Rd % Error%

(·10−5)

1. 1 1 1 1 1 1506.2 1160.4 - -
2. 1 1.3 1.5 1.3 1 1506.2 1350.9 16.42 0.0089
3. 1 1.5 1.2 1.5 1 1506.2 1503.8 29.59 10.7241
4. 1 1.8 1 1.8 1 1506.2 1704.7 46.91 157.371

In Table 7 as a function of the variation of the moment of inertia the resistance of the
cross-section for uniform compression, Fc,Rd, and the buckling resistance, Fb,Rd, is computed
and in the last column is presented the estimated error of the iteration cycle. The modeled
clamped-guided beam-type element is presented in Figure 17b,c.

In the case of the clamped-guided beam-type element through the variation of the
cross-section, without material addition, a significant increase of 46.91% for the critical
buckling load is obtained and ensuring a proper failure condition as presented in Figure 18.
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Figure 18. The critical buckling force variation as against the resistance of the cross-section to uniform
compression based on the data from Table 7.

e) The hinged-clamped beam-type element

The hinged-clamped beam-type element is presented in Figure 19a, which highlights
the kinematic boundary conditions. The type of profile imposed on the reference cross-
section is CHS127x5–6000–S355JO–EN10219, respectively values for the stiffness of the
support connections are [inf 0 inf inf ]. The results of the iterative optimization phase are
presented in Table 8 and the graphical representation of the data from Table 8 is presented
in Figure 20.
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Figure 19. The hinged-clamped beam-type element: (a) Schematic representation of the kinematic
boundary conditions, where v—denotes the transversal displacement; Q—the axial force; (b) The vari-
able cross-section beam-type element concerning the imposed boundary conditions; (c) Longitudinal
section of the modeled beam-type element which highlights the variation of the cross-section.
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Table 8. The data from the modelling process of the hinged-clamped beam-type element.

Id. i1 i2 i3 i4 i5 Fc,Rd [N]
(·103)

Fb,Rd [N]
(·103) ∆Fb,Rd % Error%

(·10−5)

1. 1 1 1 1 1 618.5 420.6 - -
2. 1 1.7 1.2 1.7 1 618.5 587.5 39.68 9.8526
3. 1 1.5 1.6 1.5 1 618.5 600.7 42.82 0.0611
4. 1 1.9 1.6 1.9 1 618.5 681.9 62.13 19.1213
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Figure 20. The critical buckling force variation as against the resistance of the cross-section to uniform
compression based on the data from Table 7.

In Table 8 as a function of the variation of the moment of inertia the resistance of the
cross-section for uniform compression, Fc,Rd, and the buckling resistance, Fb,Rd, is computed
and in the last column is presented the estimated error of the iteration cycle. The modeled
hinged-clamped beam-type element is presented in Figure 19b,c.

In the case of the hinged-clamped beam-type element through the variation of the
cross-section, without material addition, a significant increase of 62.13% for the critical
buckling load is obtained and ensuring a proper failure condition as presented in Figure 20.

f) The clamped-clamped beam-type element

The clamped-clamped beam-type element is presented in Figure 21a, which highlights
the kinematic boundary conditions. The type of profile imposed on the reference cross-
section is CHS101.6x6–6000–S355JO–EN10219, respectively values for the stiffness of the
support connections are [inf inf inf inf ]. The results of the iterative optimization phase are
presented in Table 9 and the graphical representation of the data from Table 9 is presented
in Figure 22.

In Table 9 as a function of the variation of the moment of inertia the resistance of the
cross-section for uniform compression, Fc,Rd, and the buckling resistance, Fb,Rd, is computed
and in the last column is presented the estimated error of the iteration cycle. The modeled
clamped-clamped beam-type element is presented in Figure 21b,c.

In the case of the clamped-clamped beam-type element through the variation of the
cross-section, without material addition, a significant increase of 28.25% for the critical
buckling load is obtained and ensuring a proper failure condition as presented in Figure 22.
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Figure 21. The clamped-clamped beam-type element: (a) Schematic representation of the kinematic
boundary conditions, where v—denotes the transversal displacement; Q—the axial force; (b) The vari-
able cross-section beam-type element concerning the imposed boundary conditions; (c) Longitudinal
section of the modeled beam-type element which highlights the variation of the cross-section.

Table 9. The data from the modelling process of the clamped-clamped beam-type element.

Id. i1 i2 i3 i4 i5 Fc,Rd [N]
(·103)

Fb,Rd [N]
(·103) ∆Fb,Rd % Error%

(·10−5)

1. 1 1 1 1 1 581.6 476 - -
2. 1 1.4 1 1.4 1 581.6 536.6 12.73 142.042
3. 1 1.1 1.4 1.1 1 581.6 553.5 16.28 0.1849
4. 1 1.2 1.7 1.2 1 581.6 610.5 28.25 2.3417
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Figure 22. The critical buckling force variation as against the resistance of the cross-section to uniform
compression based on the data from Table 9.
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g) The clamped-clamped beam-type element

The beam-type element with elastic supports is presented in Figure 23a, which
highlights the kinematic boundary conditions. The type of profile imposed to the ref-
erence cross-section is CHS101.6x6–6000–S355JO–EN10219, respectively values for the
stiffness of the support connections are [0.002 [kN/m] 28.935 [kNm/m] 0.002 [kN/m]
28.935 [kNm/m]]·104 established according to Expression (64). The results of the iterative
optimization phase are presented in Table 10 for ideal and elastic restraints.
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Figure 23. The beam-type element with elastic supports: (a) Schematic representation of the kinematic
boundary conditions, where L—is the length of the beam-type element; Q—is the axial force; r1—
denotes the stiffness for a hindered transversal displacement for joint i; r2—denotes the stiffness
for a hindered rotation for joint i; r3—denotes the stiffness for a hindered transversal displacement
for joint j; r4—denotes the stiffness for a hindered rotation for joint j; (b) The variable cross-section
beam-type element concerning the imposed boundary conditions; (c) Longitudinal section of the
modeled beam-type element which highlights the variation of the cross-section.

Table 10. The data from the modelling process of the beam-type element with elastic supports.

Id. i1 i2 i3 i4 i5 r1 r2 r3 r4

1a. 1 1.2 1.7 1.2 1 inf inf inf inf
1b. 1 1.2 1.7 1.2 1 fin fin fin fin
2a. 1 1.9 2 1.9 1 inf inf inf inf
2b. 1 1.9 2 1.9 1 fin fin fin fin

In Table 10, the symbol fin represents the finite numerical value for the corresponding
stiffness of the elastic support, determined according to Expression (64). The symbol inf
represents the ideal beam-type element support connections stiffness. In Table 10 it is high-
lighted that considering finite numerical values for the stiffness of the support connections
the critical buckling load decreases radically, for example in case 1b the buckling force
decreases by 84.07% and in case 2b buckling force decreases with 55.31%.

To avoid such sudden changes, which influence negatively the failure condition,
another type of cross-section is chosen, with superior geometric and inertial characteristics.
In Table 11 the data from modelling a beam-type element with elastic support is presented
with the reference cross-section CHS139.7x6–6000–S355JO–EN10219, and the numerical
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values for the stiffness of the support connections [0.007 [kN/m] 78.996 [kNm/m] 0.007
[kN/m] 78.996 [kNm/m]]·104 determined according to Expression (64).

Table 11. The data from the modelling process of the beam-type element with elastic supports with
the new reference cross-section.

Id. i1 i2 i3 i4 i5 Fc,Rd [N]
(·103)

Fb,Rd [N]
(·103)

Fb,Rd,1/
Fb,Rd,i

Error%
(·10−5)

1. 1 1 1 1 1 813.3 51.1 1 0
2. 1 1.4 1.6 1.4 1 813.3 433.4 4.95 0.131
3. 1 1.7 1.8 1.7 1 813.3 805.9 14.2 1.392
4. 1 1.9 2 1.9 1 813.3 932.6 18.3 0.302

In Table 11 as a function of the variation of the moment of inertia the resistance of the
cross-section for uniform compression, Fc,Rd, and the buckling resistance, Fb,Rd, is computed
and in the last column is presented the estimated error of the iteration cycle.

In the case of the beam-type element with elastic supports through the modification
of the cross-section, without material addition, a significant increase of 1725.05% for the
critical buckling load is obtained as against the new reference cross-section beam-type
element, and it is ensured a propper failure condition as presented in Figure 24. Figure 23b,c
are presented the beam-type element with elastic supports. In Table 12 a comparison is
presented of the critical buckling forces without and with elastic support, with the variation
coefficients of the moment of inertial extracted from Table 10.
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Figure 24. The critical buckling force variation as against the resistance of the cross-section to uniform
compression with respect to the data from Table 11.

Table 12. The data comparison from the modelling process of the beam-type element without and
with elastic supports.

Id. i1 i2 i3 i4 i5 r1 r2 r3 r4

1a. 1 1.2 1.7 1.2 1 inf inf inf inf
1b. 1 1.2 1.7 1.2 1 fin fin fin fin
2a. 1 1.9 2 1.9 1 inf inf inf inf
2b. 1 1.9 2 1.9 1 fin fin fin fin

Case 1b from Table 12 highlights the fact that by adding elastic supports the failure
occurs due to the loss of stability and variation modelling a variable cross-section for
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the beam-type element is not appropriate and the reference cross-section with superior
geometric and inertial properties is required.

Case 2b from Table 12 highlights that by adding elastic supports for a reference cross-
section with superior geometric and inertial properties the failure occurs due to exceeding
the resistance of the cross-section under uniform compression and variation modelling a
variable cross-section for the beam-type element is necessary. Adopting elastic support
instead of ideal support connections at least a 55% decrease is noticed in case of the critical
buckling force.

The explanation for the radical decrease of the critical buckling force in the case of
elastic support connections may be found in an analysis of the displacement field of a
constant cross-section beam-type element loaded with axial forces and bending moments at
the joints. In the case of the hinged-hinged beam-type element the displacements associated
with the bending moment M, are proportional with M·L2 divided by the stiffness coefficient
E·I, expressed in Relation (90a). The displacements associated with the axial force Q,
are proportional with Q·L divided by the stiffness coefficient E·A, presented in Relation
(90b) [29].

aM(x) ∼ M(x)·L2

E·I , ∀ xε[0 : L] (90a)

aN(x) ∼ Q(x)·L
E·A , ∀ xε[0 : L] (90b)

The quantities expressed in Relation (90a,b) have the same order of magnitude if con-
ditions from Relation (91a,b) are satisfied, with respect to Brachmann-Landau notation [30].

aM(x) = O(aN(x))〈=〉∃ c1 ∈ R∗as i f |aM(x)| < c1·aN(x), ∀ xε[0 : L] (91a)

aN(x) = O(aM(x))〈=〉∃ c2 ∈ R∗as i f |aN(x)| < c2·aM(x), ∀ xε[0 : L] (91b)

For the quantities defined in Relation (91a,b), Relation (92) can be expressed, for a
node in [0 : L] interval [29].

M·L2

E·I ∼ Q·L
E·A (92)

By expressing ratio M/Q from Relation (92) with respect to Hooke’s law and Navier’s
relation, Expression (93) is obtained [31].

σM
σN
∼ I

W·L (93)

In Relation (93), σM represents stress associated with the bending moment, σN repre-
sents the stress associated with the axial load, and for a tubular circular cross-section ratio,
I/W is equal to a maximal distance of section point from the neutral axis that crosses the
centroid, in the present situation it represents the half of the outside diameter of the profile,
D, which leads to Relation (93) and thus Relation (94) [29].

σM
σN
∼ D

2·L (94)

The right part of the Relation (94) represents a considerably small ratio, representing
the ratio between the outside diameter and the length of the element, therefore σM has
the same order of magnitude compared to σN . Based on the mathematical relation of the
Euler-Bernoulli beam theory, Relation (94) can be expressed as Relation (95) [29].

εM
εN
∼ D

2·L (95)
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In Relation (95) εM serve as the maximal strain associated with the bending moment
and εN denote the strain associated with the axial load. Based on the expression of the
maximal strain of the cross-section, ε, Expression (96) is obtained [29].

ε ∼ εN ·
(

1 +
D

2·L

)
(96)

In Relation (96) is highlighted the influence of strain associated with the bending
moment on the displacement field of the beam-type element, with in this case is practically
insignificant. In this manner by adding elastic support connections with finite values for
the stiffnesses, computed based on the Expression (64), regardless of the imposed boundary
conditions, the beam-type element’s behavior is practically identical to the Euler column.

The method through the ideal support connection is replaced with elastic support
connection, with finite numerical values for the stiffness coefficients computed based on the
deformability of the structural assembly, must consider the fact that the numerical value of
the critical buckling load can be half as computed. To better understand the phenomena,
one can make an analogy with a planer truss with rigid nodes and structural assemblies
with high statical indeterminacy, due to the axial strain of the structural elements, in the
joints of the beam-type elements bending moments will occur as a function of the relative
rotation of the trusses, an effect which has been proven to be a secondary one.

6. Conclusions
6.1. Aspects Referring to the Precision of the Proposed Method

The first important aspect which needs to be highlighted is the high precision of the
proposed method, which approximates the critical buckling load for the case of a beam-type
element with a variable cross-section. The high precision is in the first place to the adopted
methodology, more precisely by adopting a cubic interpolant to express the variation of
the cross-section and by modelling the displacement field through a polynomial function
with a degree greater than five. Secondly, it is possible to achieve such precision due to
the numerical properties of an irrational number, which is closely related to Expression
(1), Euler’s critical buckling load. In Expression (1) the irrational number π appears which
decimal representation never ends, respectively its decimals do not enter a permanently
repeating pattern. This property makes it possible to estimate with high accuracy the
variation of the total potential energy at neutral equilibrium at critical load.

6.2. The Influence of the Statical Determinacy of the Structural Element

The case study represents a numerical but especially analytical analysis, which is a
different kind of approach for stability analysis. It assumes linking two theories, namely
Cavalieri’s principle and elastic buckling theory, in order to perform a comprehensive
stability analysis in the elastic domain to increase the elastic buckling load for the beam-
type element, through geometric modelling of the cross-section for the beam-type elements,
with specific boundary conditions.

The case study ranges from statically determinate to statically indeterminate structural
elements, concerning the imposed kinematic boundary conditions. In the case of statically
indeterminate structural assemblies, it is not possible to establish a unique numerical value
for the stress ratios of the elements, due to the fact that modifying the axial stiffness of an
element influences the stress redistribution in the whole structure. In the case of statically
determined structural assemblies, it is possible to compute a unique value for the unitary
efforts in the structural elements. The case study has proven that in the case of statically
determinate structural elements have achieved the highest increase of the critical buckling
load. The final result in therm of the achieved increase rates is presented in Figure 25.
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Figure 25. The increase of the critical buckling load for the beam-type element concerning the
imposed kinematic boundary conditions.

A very important result is highlighted in Figure 25 for the beam-type element with
elastic supports. The elastic support connections modify significantly the behavior of
the structural element under axial loads and influence excessively the critical buckling
load. In the case of constant cross-sections increasing the area of the cross-section is not
a rational solution and a favorable failure condition is practically impossible to achieve.
Modelling a variable cross-section beam-type element is a practical solution to increase
the critical buckling load above the value of the resistance of the cross-section subjected
to uniform compression. A correct modelling of the shape of the beam-type element,
through the moment of inertia, may point to a considerable increase of the critical buckling
load, up to 1725% in the present case as against the constant cross-section, with respect
to Cavalieri’s principle. A very important aspect is that by imposing elastic support
connections instead of ideal ones the critical buckling load is influenced and a significant
decrease is observed, up to at least 55% in the studied case. This remark is very important
for structural engineers when they establish the geometric and inertial characteristics of a
structural element subjected to considerable axial load.

A certain fact is that statically determinate structures have lack of structural redun-
dancy, but the state of stress and strain can be easily controlled through the whole elastic
behavior domain of the beam-type element. By adopting beam-type elements with variable
cross-sections it is possible to fix significant numerical values for the length of the elements,
with respect to the secondary effects of the rigid joints.

Based on the presented aspects the adopted beam-type elements with variable cross-
sections are recommended in the case of high-span planar or spatial trusses. The mentioned
structural assemblies must be statically determinate, made up of a minimum number of
elements, with significant length, and using high-quality materials.

6.3. Aspects Regarding the Common Undesired Failure Conditions

The failure of a structural assembly and in essence structural elements must take place
with a high amount of warning signs which enables the evacuation of persons and material
goods from the potentially affected area. In this manner, there must be warning signs,
easily to be identified. Due to the state of stress and strain in the structural elements, the
elements failure can occur without any warning signs. The undesired failure types are
considered failure through compression, shear force, torsion, and buckling.
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In some particular situations, due to the topology of the structural assembly, the
structural elements are subjected to a state of stress and strain due to other types of loads
than has been expected at the structural design phase. In the case of beam-type elements,
compression forces can lead to unexpected failure, due to the joints which are considered
potential tension concentrators. The failure through shear forces and torsion are in close
relation with the state of stress and strain in the structural element, respectively to avoid
them one can take actions on a local scale regarding the design of the structural element.
The measures include adopting appropriate cross-sections and quantities of materials.
The loss of stability due to extensive axial loads is high in the case of slender beam-type
elements. To avoid the present phenomena the critical buckling load must be increased
above the value of the elastic resistance of the cross-section. This is possible by modelling
beam-type elements with variable cross-sections and by designing statically determinate
structural assemblies for which the state of stress and strain can be computed uniquely and
using high-quality materials.
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