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Abstract: Because of the complexity, nonlinearity, and volatility, stock market forecasting is either
highly difficult or yields very unsatisfactory outcomes when utilizing traditional time series or
machine learning techniques. To cope with this problem and improve the complex stock market’s
prediction accuracy, we propose a new hybrid novel method that is based on a new version of EMD
and a deep learning technique known as long-short memory (LSTM) network. The forecasting
precision of the proposed hybrid ensemble method is evaluated using the KSE-100 index of the
Pakistan Stock Exchange. Using a new version of EMD that uses the Akima spline interpolation
technique instead of cubic spline interpolation, the noisy stock data are first divided into multiple
components technically known as intrinsic mode functions (IMFs) varying from high to low frequency
and a single monotone residue. The highly correlated sub-components are then used to build the
LSTM network. By comparing the proposed hybrid model with a single LSTM and other ensemble
models such as the support vector machine (SVM), Random Forest, and Decision Tree, its prediction
performance is thoroughly evaluated. Three alternative statistical metrics, namely root means square
error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), are used
to compare the aforementioned techniques. The empirical results show that the suggested hybrid
Akima-EMD-LSTM model beats all other models taken into consideration for this study and is
therefore recommended as an effective model for the prediction of non-stationary and nonlinear
complex financial time series data.

Keywords: ARIMA; nonlinear complex data; empirical mode decomposition; LSTM; support vector
machine; decision tree; random forest; recurrent neural network; data processing

1. Introduction

The history of modern stocks dates back to 1602 when trade for the Dutch East India
Company used to be made in Amsterdam, the Netherlands. In the early days, the buying
and selling were only for this specific company, the first offshoots were exchanged in 1607,
and the profit dispensation between its shareholders was made several years later [1].

A stock market is a place where shares are converted, merchandised, and distributed.
It turns out to be a significant network for huge corporations to increase assets from
stockholders. On the other hand, after issuing the stocks, a great number of wealth
streams into the stock marketplace, which increases the structure of commercial assets
by encouraging investment attentiveness, which significantly helps the growth of the
product economy. Whereas through the flow of stocks, capital is shared, and the growth of
investment is successfully promoted. Therefore, the stock market is well thought out to
be an indicator of the financial and economic activities in a country or region. Specifically,
the buying and selling prices of the stock market frequently serve as a barometer for
both the value and quantity of stock since they can indicate a connection between supply
and demand.
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At the same time, several determinants, which include political, financial, and the
market with the addition of technologies and shareholder sentiments, will altogether lead
to variations in indices values. Consequently, stock prices are uninterruptedly changing,
and this disparity offers breathing space for hypothetical engagements and upsurges the
insecurity concerned with the indexes. This type of alarming situation not simply carries a
financial deficit to the stockholders but additionally might cause definite restrictions on the
financial development of corporations and states.

To be precise, examining as well as forecasting indexes in an appropriate way is
crucial in respect of stakeholder selections inclusive of state financial constancy. In order
to examine the financial market such as collecting, sorting, and combining numerous
appropriate pieces of evidence, it must be assisted in comprehending as well as forecasting
the tendency relevant to indexes together with conforming stockholder choices in such
a manner to decrease chances of losses along with maximum profits [2]. As long as we
can forecast the difficulties of the stock market precisely, it will offer a robust foundation
for the justifiable growth of the financial sector of a country. Thus, the methodological
examination and prediction of the stock market could be beneficial for the stockholders to
gain profits, which will also be helpful for the growth of national financial resources.

Forecasting indexes is still considered a challenging problem in financial time series
because of their structure of unpredictability. Numerous parallel research articles show
the significance of research in financial economics amidst the alarming situation for the
stockholders to gain maximum profits. Time series analysis is mainly dependent on the
orthodox approach of index projection [3].

De Gooijer et al. [4] examined the research articles available in journals administrated
by the International Institute of Forecasters and concluded that the majority of the re-
searchers utilized time-series methods for prediction. The most well-known and widely
used classical time-series approaches are autoregressive (AR), moving average (MA), au-
toregressive moving average (ARMA), and autoregressive integrated moving average
(ARIMA) [5–8]. The main idea of all such techniques relies upon the time series only
whilst omitting additional key determinants such as the contextual findings. Explicitly,
considering the current values as the dependent variable and their lagged values as an
independent variable to establish a meaningful relationship between them. Additionally,
such techniques frequently demand numerous propositions and earlier understanding,
such as what is the statistical distribution of the data, the justifiable range for numerous
parameters, and their connections. Although, as a complicated structure with a good deal
of effective attributes and an unpredictable situation, the stock market inclines to show
robust attributes, which forms the classical systematic approaches unsuccessful.

Furthermore, the volume of the data used by building the model and then for the
prediction of the stocks are frequently enormous, increasing countless difficulties in training
the model. With such characteristics, it becomes inefficient to forecast the stock market by
implementing the well-known classical approaches. In the recent past, financial experts
have been extensively applying machine learning techniques for prediction problems, espe-
cially support vector regression (SVR) [9], as well as artificial neural networks (ANNs) [10].
Moreover, the development of deep learning techniques became an emerging field for
machine learning because of its outstanding capability to handle nonlinear time series
without any input features to build its architecture. Such techniques have a strong data
handling capacity that became helpful in solving the complexities triggered by such nonlin-
ear financial time series. For this reason, the integration of deep learning and financial time
series has a remarkably outstretched ability, but limited studies are available regarding the
prediction of the stock market with the help of deep learning techniques [11,12].

In this study, we forecast the stock market by integrating our proposed new version of
EMD based on the Akima spline interpolation technique and LSTM network. The main
strength of this research work for the prediction of financial time series is summarized
in the following way. The decomposition method of EMD and its different versions are
ordinary techniques that are extensively implemented in the field of engineering to process
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signals as well as financial time-series investigation and prediction [13], therefore, to extract
the trend component from the stock price time-series data, it was suggested to implement
the new version of EMD. The primary objective is to steadily break down the variations
of the diverse composite time-series data to achieve a sequence of IMFs, and a unique
monotone residue component [14].

Hence, the complex financial time series is decomposed, and then the prediction is
made from the decomposed simple systems to obtain enhanced efficacy. Secondly, we sug-
gest implementing a hybrid LSTM model that is developed by using all the subcomponents
(residue) that are correlated with the actual stock closing prices, and finally, the prediction is
made by aggregating individual forecasts obtained from each hybrid LSTM model. Though
several researchers have practiced deep learning for financial time series prediction, many
of them utilized it for classification problems, and considerably few scholars have used
it for regression problems. Additionally, amongst various frequently used deep learning
techniques, such as convolutional neural networks (CNN), deep belief networks, and LSTM,
we selected the improved hybrid LSTM model with multiple hidden layers having the
outstanding ability to examine the dependencies among time-series data at various time
points through its memory function. Thus, an effort has been made to forecast the stock
market with the help of implementing the aforementioned hybrid new version of EMD
based on the Akima spline interpolation technique and LSTM network. Specifically, we
integrated LSTM with Akima-EMD and suggested a stock market forecasting model. The
characteristics of our proposed model are twofold, i.e., to improve the forecast accuracy as
well as to minimize time delay.

To sum up, a financial time series forecasting model that combines Akima-EMD and
hybrid LSTM is suggested. The remaining sections of this article are summarized in the
following order: related work in Section 2, methodology and proposed ensemble hybrid
model in Section 3, investigational results in Section 4, model comparison in Section 5, and
conclusion of the paper in Section 6.

2. Literature Review

As a type of recurrent neural network (RNN), LSTMs are capable of learning long-term
interdependencies in data. This makes them an appropriate technique for processing and
forecasting significant scenarios with comparatively extended intervals and delays in time
series. In this section of the study, the research work related to the advancement of LSTM
and its implementation for stock market prediction is discussed. It is witnessed from the
previous studies that RNN is a widely used technique to forecast the indexes [15–17].

However, this technique suffers from the vanishing gradient problem, which makes
the prediction results misleading. An LSTM network can be used to solve the problem of
vanishing gradients since it replaces the hidden layer units of RNNs with memory cells,
making it more suitable for stock price prediction [18].

Several studies have demonstrated that the LSTM network produces better predictions
than any other neural network. Based on this characteristic, LSTM turns out to be a signifi-
cant tool in natural language recognition [19–21], time series prediction [22–24], specifically
stock price prediction [25–28], as well as other areas such as water desalination [29–31],
material sciences [32], welding of materials [33], laser technology [34,35], metal cutting [36],
and material processing [37].

To forecast the KOSPI 200 index, a novel hybrid model that integrates LSTM and a
type of GARCH model was proposed by [38]. According to this study, the proposed hybrid
model outperforms the other models in terms of minimum values of several statistical
metrics, including MAE, mean squared error (MSE), heteroscedasticity-adjusted MAE
(HMAE), and heteroscedasticity-adjusted MSE (HMSE).

The decomposition-and-ensemble framework is a well-known hybrid method that
works on the principle of “divide-and-conquer” [39,40]. The core idea of such hybrid
models for the purpose of forecasting complex financial time series is to divide the actual
data into small components, technically known as IMFs, and a monotone residue. Now it is
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quite simple for the model to predict this subseries correspondingly. Furthermore, the final
prediction results of the actual series can be obtained by combining the forecasted values
obtained from ensemble modeling of the different independent IMFs.

In particular, a hybrid attention-based EMD-LSTM model to forecast the indexes was
proposed by [41]. The LSTM forecasting model that works on the mechanism of attention is
capable for obtaining the association between the forecasted values and input attributes, to
reduce the prediction error. With the help of regression analysis, the value of the coefficient
of correlation is nearly equal to one, suggesting a better prediction performance from
the suggested EMD-LSTM-ATTE technique. The EMD-LSTM-ATTE model prediction
performance is better than the competing forecasting models, according to numerical
values of statistical metrics such as MAE, RMSE, and MAPE.

The model proposed by [42] for forecasting the stock market utilizes stockholders’
emotional tendencies to build a deep learning algorithm. Firstly, the investor’s sentiment is
taken into consideration, which can successfully enhance the prediction performance of
the model. Secondly, since the stock price data is very complex and nonlinear, therefore,
its accurate prediction is often not only difficult but also challenging. Thirdly, the stacked
LSTM model is implemented because of its use of examining associations amongst time-
series data through its memory function. Based on the investigational results, it is evident
that the revised stacked LSTM model provides the best prediction performance and reduces
the time delay at the same time.

To forecast stock values, the authors of [43] presented a hybrid deep learning neural
network built on the CEEMD, transformer, LSTM, GRU, and high-frequency adaptive
structure. The efficiency of the suggested model is checked on 100 stocks selected from CSI-
300. Various methods, including SVM, LSTM, and CNN, are compared with the proposed
model. In terms of minimum values for MSE and MAE, the proposed model, which is
called FDG-trans, outperforms all other models.

To detect the distributed denial of service attack (DDoS), Ref. [44] proposed an effective
and adaptive intrusion detection system by using LSTM and convolution neural network
(CNN). Based on the CIC-DDoS2019 dataset, a proposal has been developed for detecting
different types of DDoS attacks. A CICFlowMeter-V3 network was used to develop the
dataset. Several performance measures were used to evaluate the model, including preci-
sion, recall, F1-score, and accuracy. It was found that the proposed CNN-LSTM model was
capable of reaching a high degree of precision (100%) concerning all the evaluation metrics.

To predict noisy intraday stock prices, Ref. [45] proposed a hybrid model combining
CEEMD, entropy, GRU, and history attention (CEGH). Four steps make up the implemen-
tation of the suggested model. In the first step, the complex stock price data is decomposed
into different components, technically known as IMFs, with the help of complete ensemble
empirical mode decomposition (CEEMD). Then, for each IMF, the sample entropy (Sam-
pEn) values and approximation entropy (ApEn) values are used to remove noise. The
remaining IMFs were then aggregated into four groups, and a feedforward neural network
(FNN) or recurrent gate unit with historical attention (GRU-HA) was used to forecast the
comprehensive signals. Integrating the outcomes of each group’s predictions yields the
final forecast. For checking the prediction performance of the suggested model, two stock
markets such as China and U.S., are used as a real-world scenario. It is evident from the
empirical results that the proposed CEGH model outperforms the other models in terms of
prediction accuracy.

A hybrid model that combines the features of a Graph Convolutional Network (GCN)
and a Bidirectional Long Short-Term Memory (BiLSTM) network was suggested by [46]
to predict crude oil prices. It provides new possibilities for the analysis of time series
and improves existing results used in previous studies. Based on the minimum values
of RMSE, MSE, MAPE, and the R-squared (R2), the prediction accuracy of the proposed
BiLSTM-GCN is better than the BiLSTM, GCN, and the orthodox models.

A slope-based method (ISBM) is based on empirical mode decomposition (EMD) and
feed-forward neural networks (FNN), namely, the EMD-ISBM-FNN method proposed
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by [47] to decompose and forecast crude oil prices. The complex nonlinear and nonsta-
tionary Brent crude oil data are divided into several IMFs and single montone residues
in the first step of the EMD approach. In order to train the architect of the FNN model,
these subcomponents are then used as input features. Compared to the single FNN and
EMD-FNN, the performance of the suggested model, known as the EMD-ISBM-FNN, is
higher.

The available literature is the motivation factor behind implementing a hybrid Akima-
EMD-LSTM model to forecast the stock market index. Since it is difficult to predict the
nonlinear and nonstationary patterns of the stock market with the help of the classical time
series and other models used in the previous literature. Hence, consideration is given to
EMD and its different types, including the proposed new version of breaking down the
complex stock prices into simple subcomponents that can be modeled easily with the help
of the LSTM network. In this research article, we propose a new version of EMD that is
based on the Akima spline interpolation technique and then integrate this new method
with the LSTM network that uses the correlated subcomponents (residue) with the actual
data. Detail description of our proposed model is given in Section 3.5.

3. Materials and Methods

The method of EMD, EEMD, SEMD, the deep learning algorithm known as the LSTM
network, and the proposed new version that is based on the Akima spline interpolation
technique is comprehensively described in the following subsection.

3.1. Empirical Mode Decomposition (EMD)

The method of EMD was introduced by [48] in 1998. The complex signal is divided
into distinct oscillatory components that range in frequency from low to high using the well-
known Hilbert-Huang transform (HHT) approach, leaving just a single monotone residue.
There are two essential requirements for any IMF: (i) the upper and lower envelopes must
have zero means, and (ii) the number of zero-crossings and the number of extrema must
differ by one. With a signal y(t), the EMD method can successfully separate signals into
their many components. This approach is often used for prediction problems simply
because it is reliable, straightforward, and effective and doesn’t depend on any major
model assumptions [49–51]. The following is a description of the EMD process:

Step 1: Identify every local extremum (local maximum and minimum) in the signal {yi (t)}.
Step 2: Determine the upper signal envelope {U (t)}, and lower envelope {L (t)}.
Step 3: To obtain the meaning of the upper and lower envelopes, i.e., M (t), join all the

minima and maxima using the cubic spline interpolation approach.

Mean(t) =
U(t) + L(t)

2
(1)

Step 4: In order to acquire the first component, the mean envelope determined in step
3 is subtracted from the actual signal, i.e.

k1(t) = y(t)−Mean(t) (2)

If k1 (t) satisfies the two requirements for the IMF as described above, it should be
treated as the first IMF; otherwise, steps 1 through 4 are repeated by treating k1 (t) as a
novel signal.

Step 5: In order to produce r1 (t), the first IMF identified in step 4 will be subtracted
from the signal, i.e.,

r1(t) = y(t)− k1(t) (3)

Step 6: The filtering procedure from step 1 is used once more in this step, where r1 (t)
is treated as a new signal. The aforementioned procedure will keep going till the final IMF
is extracted from the signal. Finally, the real signal y (t) can be decomposed in such a way
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that the overall trend of the signal will be a smooth monotonic residue established in the
final stage of EMD, mathematically:

y(t) =
n

∑
i=1

ki(t) + rn (4)

where k1(t), k2(t) . . . kn(t) are several IMFs with varying frequencies that range from high to
low, and rn is the residual. Figure 1 depicts the flowchart for this decomposition.
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3.2. Ensemble Empirical Mode Decomposition (EEMD)

Mode mixing is the main disadvantage of the classical EMD while decomposing
complex signals into different subgroups. To remove this drawback, Wu and Huang [52]
suggested the ensemble empirical mode decomposition (EEMD) technique in 2009. The
procedure of this technique is outlined below:

Step 1: Select the ensemble number, m, and the white noise amplitude, n.

Step 2: To create a new series,
′
yi(t), add a white noise series, wi(t) to the actual

signal, y(t).
′
yi(t) = y(t) + wi(t) (5)

Step 3: Divide the signal
′
yi using EMD into several IMFs and a monotone residue.

Step 4: Repeat the above steps 2 and 3 by adding diverse white noise series, respec-
tively, and

Step 5: Attain the (ensemble) means of the appropriate IMFs of the decompositions as
the concluding outcome.

3.3. Statistical Empirical Mode Decomposition (SEMD)

The method of SEMD introduced by [53] uses smoothing instead of cubic spline
interpolation for the purpose of extracting the first mode. The smoothing technique
is somehow more useful than cubic spline interpolation, specifically when the signal is
corrupted with noise. The step-by-step procedure of this method is outlined in the following
lines.

Step 1: Make K test datasets T1, . . . , Tk, . . . , TK from a signal x(t).
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Step 2: To generate T̃k impute the kth test dataset using the local average of two nearby
points.

Step 3: Apply the SEMD technique to break down the composite signal T1, . . . , Tk−1,
T̃k, Tk + 1, . . . , Tk into an h1,λ, and the remaining signal rλ with the specified smoothing
parameter.

Step 4: Determine the forecasted values for the remaining signal that was assessed at
the kth segment, namely rk

λ(t).
Step 5: Steps (ii) through (iv) should be repeated for k = 1, . . . , K, and the prediction

error is computed as

PE(λ) =
1
n

n

∑
i=1

{
x(t)− rk

λ(t)
}2

(6)

3.4. Long Short-Term Memory (LSTM) Network

The extended recurrent neural network (RNN) is known as the long short-term mem-
ory (LSTM) network. There are several internal connections between nodes in the hidden
layer of the RNN, which allows information to pass backward or forwards without restric-
tions [54–56]. The output of the RNN may be seen as a response to both the input layer and
the previous state of each hidden unit, and the state of the preceding node can be considered
as the input. The following two reasons explain why its effectiveness in the investigation is
far less efficient than expected. At first, it could be difficult for an RNN to determine the
right window size for historical observations, which can lead to insufficient retrieval of the
data’s variational properties. Secondly, the gradient of an RNN could potentially exhibit an
ascending expansion or decline whilst utilizing the technique of gradient descent to handle
historical data, which specifically results in gradient explosion. The extended connection
structure of an RNN retains a lot of unimportant information without filtering, which is the
motivation for the aforementioned approach. The conventional RNN is, therefore, a poor
choice for handling long-term data. The hidden layer nodes of the RNN are replaced by
unique memory cells (blocks) that employ filtering as well as the conversion of previous
states and information in LSTM’s expressive “gate” structure, which optimizes the RNN.
Figure 2 shows the basic structure of memory cells. Input gate it, forget gate ft, and output
gate ot make up each of the three gates that make up a memory cell. Based on the most
recent timestamp, the input gate determines the amount of current information in the cell.
The forget gate’s contribution is to determine how much information from the previous
cell state should be maintained and how much should be discarded, which prevents the
internal cell values from increasing without bounds. The structure of the output gate allows
it to filter the new state and output the filtered data. Following are the steps that describe
the procedure of the LSTM network.

Firstly, the initial gate it filters and draws additional information belonging to the
input xt appearing in the current state (time t), as well as computes the value of the memory
cell c̃t for updating the state.

it = δ(Zi·[ht−1, xt] + ai) (7)

c̃t = tanh(Zc·[ht−1, xt] + ac (8)

Determine the value of the forget gate ft. The forget gate refines and stores the prior
information to such an extent that they can represent long-term tendencies and eliminates
irrelevant information.

ft = δ
(

Z f ·[ht−1, xt] + aF

)
(9)

By removing a piece of the information from the old cell, moreover adding together
the filtered candidate value, the old cell state ct−1 is restructured to the new cell state ct.

c = ft ∗ ct−1 + it ∗ c̃t (10)
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The * symbol in the last equation defined above is known as the dot product between
matrices. Conclusively, the previously mentioned output gate ot filters the updated state
ct, and the resulting output is determined based on the updated state and the output gate
state.

ot = δ(Zo·[ht−1, xt] + a0) (11)

ht = ot ∗ tanhtanh (ct) (12)

In the above Equations, (7)–(12) ht is the hidden layer technically known as the
activation of the memory cell, Zc, Zf, and Zo, are suitable weight matrices, ai, ac, af, and a0
represent the respective bias vectors, and σ (·) and tanh (·) are the sigmoid functions and
hyperbolic tangent function, correspondingly. The schematic view of the LSTM network is
presented in Figure 2.
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3.5. Proposed New Version of EMD Based on Akima Spline Interpolation Technique

The proposed new EMD algorithm is based on the Akima spline interpolation tech-
nique for clean as well as noisy signal y(t) is summarized as follows.

• Extract the first oscillatory component k∗(t) from the noisy signal y(t) by the Akima
spline interpolation technique.

• Determine the upper signal envelope {U (t)} and lower envelope {L (t)}.
• Join all the minima, and maxima through the Akima spline interpolation technique

concerning to find out the mean of both the upper and lower envelope, i.e., M (t):

M(t) =
U(t) + L(t)

2
(13)

• In order to acquire the first component, the mean envelope determined in step 3 will
be subtracted from the actual signal, i.e.,

k(t) = y(t)−M(t) (14)

• Repeat steps 1–4 for the component k(t) until a stopping criterion is satisfied, and take
the resulting k(t) as k∗(t).

If the remaining signal, i.e., r(t) = y(t) − k∗(t) has still some oscillation compo-
nents, then it can be further decomposed with the help of a new EMD. The addition
of |δi+1 + δi|/2, and|δi−1 + δi−2|/2 terms forces di = 0 when δi = δi+1 = 0, i.e., di = 0
when vi = vi+1 = vi+2, and hence it eliminates the overshoot problem when the data are
constant for more than two consecutive nodes. After developing the proposed method, we
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will integrate it with the LSTM network to develop our new hybrid model for stock price
prediction. The proposed method can be thought of as a two-stage process in which the
EMD, EEMD, SEMD, and the new novel method are used in the first stage to implement the
decomposition of the nonlinear and nonstationary stock price time series data into various
subgroups known as IMFs, and the hybrid LSTM model has been built for prediction in the
second stage. Figure 3 depicts the entire process graphically before going over each step of
how to do it.
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Step 1: Real-world stock index time series data for this study were gathered from the
yahoo finance website. The original stock index time series data were then preprocessed
to ensure that they met the requirements for the breakdown of the EMD and its various
versions, including the proposed new one.

Step 2: The actual stock price time series data are divided into various IMFs using the
EMD, EEMD, SEMD, and new Akima-EMD methods, having left only one residual.

Step 3: In this step, the Pearson coefficient of correlation between each IMF (residue)
and actual stock prices are calculated. Those IMFs having approximately zero correlation
with the original data are separated, and the remaining strongly correlated components
with the actual data are used to build the hybrid Akima-EMD-LSTM model. The results
of the Pearson coefficient of correlation and other statistical measures are presented in
Section 4.2.
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Step 4: In this step, we used different ensemble models such as EMD-LSTM, EEMD-
LSTM, SEMD-LSTM, and the proposed Akima-EMD-LSTM for prediction. It is evident
from the empirical results presented that our proposed hybrid ensemble model (Akima-
EMD-LSTM) outperforms the other hybrid ensemble models in terms of minimum values
of statistical metrics such as RMSE, MAE, and MAPE.

Step 6: Once the hybrid Akima-EMD-LSTM model is developed for the correlated
subcomponents with the actual data, our next step is to predict the future daily closing
stock prices from our proposed model.

Step 7: Finally, the final predicted values are obtained, and a comparison is made
between the predicted and hold-out datasets. Furthermore, the suggested model is com-
pared with other machine learning methods based on different performance metrics such
as RMSE, MAE, and MAPE.

4. Results and Discussion
4.1. Preprocessing of the Data

In order to check the efficiency in respect of the suggested hybrid Akima-EMD-LSTM
model, the daily closing price of the KSE-100 index of Pakistan Stock Exchange Limited is
used. The historical data has been taken from the Yahoo Finance website (https://finance.
yahoo.com) accessed on 31 August 2022. The length of the data is between 1 January 2015
and 25 August 2022. A visual representation of the data presented in Figure 4 confirms
our claim that the stock prices are nonstationary, nonlinear, and volatile. The descriptive
statistics of the data are also presented in Tables 1 and 2. Furthermore, the data are sliced
into training and testing in such a way that 90% of the data are used for training, whereas
the remaining 10% is used for testing the model. Because of numerous factors, there exist
non-trading days on the stock market, data on these days are not included, and only the
data for the trading days are considered for analysis.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 26 
 

other machine learning methods based on different performance metrics such as RMSE, 

MAE, and MAPE. 

4. Results and Discussion 

4.1. Preprocessing of the data 

In order to check the efficiency in respect of the suggested hybrid Akima-EMD-LSTM 

model, the daily closing price of the KSE-100 index of Pakistan Stock Exchange Limited is 

used. The historical data has been taken from the Yahoo Finance website 

(https://finance.yahoo.com) accessed on 31 August 2022. The length of the data is between 

1 January 2015 and 25 August 2022. A visual representation of the data presented in Figure 

4 confirms our claim that the stock prices are nonstationary, nonlinear, and volatile. The 

descriptive statistics of the data are also presented in Tables 1 and 2. Furthermore, the data 

are sliced into training and testing in such a way that 90% of the data are used for training, 

whereas the remaining 10% is used for testing the model. Because of numerous factors, 

there exist non-trading days on the stock market, data on these days are not included, and 

only the data for the trading days are considered for analysis. 

Table 1. Descriptive statistics of KSE-100 index daily closing price. 

Index  Count Mean Minimum  Maximum St. Dev. 

KSE-100 1895 40,210 27,229 52,876 5345.791 

Table 2. Descriptive statistics of yearly KSE-100 index closing price. 

Year 
Number of Trading 

days  

Average Closing 

Price 
Minimum Maximum 

2015 249 33,649 28,927 36,229 

2016 248 37,617 30,565 47,807 

2017 249 45,621 37,919 52,876 

2018 246 42,153 36,663 46,638 

2019 247 36,064 28,765 41,769 

2020 251 38,311 27,229 43,767 

2021 247 45,959 42,780 48,726 

2022 158 43,577 39,832 46,602 

 

Figure 4. The daily closing price of the KSE-100 index Figure 4. The daily closing price of the KSE-100 index.

Table 1. Descriptive statistics of KSE-100 index daily closing price.

Index Count Mean Minimum Maximum St. Dev.
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Table 2. Descriptive statistics of yearly KSE-100 index closing price.

Year Number of
Trading Days

Average
Closing Price Minimum Maximum

2015 249 33,649 28,927 36,229

2016 248 37,617 30,565 47,807

2017 249 45,621 37,919 52,876

2018 246 42,153 36,663 46,638

2019 247 36,064 28,765 41,769

2020 251 38,311 27,229 43,767

2021 247 45,959 42,780 48,726

2022 158 43,577 39,832 46,602

It can be seen from Table 1 that the minimum value of the index is 27,229, that is
recorded on 25 March 2020, whereas the maximum value was 52,876, recorded on 24
May 2017. The minimum value is because of the COVID-19 pandemic that affected the
majority of the well-known stock indexes across the world [57,58]. However, the KSE-100
index of the Pakistan stock exchange recovered and soon gained potential because of the
government’s bold decision to keep open the business sector across the country [59].

The Pakistan stock market showed strong resistance during the period of the pandemic,
which might be the government’s strategies to control the outbreak while keeping an eagle
eye on the positivity rate and implementing smart lockdowns in specific areas of the country
to avoid large lock-downs that crippled the economy of the most developed countries.
The mean value that is observed during the seven years is 40,210, whereas the largest
value of 5345.791 of the standard deviation verifies that the nature of the stock market is
very chaotic.

Furthermore, Table 2 shows a yearly descriptive summary, such as the average closing
price, minimum and maximum closing price, and the number of trading days of the KSE-
100 index. It is evident from Table 2 that the maximum average closing price from 2015
to 2022 is 45,959 recorded in the year 2021. The minimum closing price in these years is
33,649, recorded in the year 2015. It is worth mentioning here that the average closing price
during 2020 was 38,311, which is more than the year 2015, signifying our claim that the
KSE-100 index showed more resistance to the COVID-19 pandemic.

4.2. Decomposition with EMD, EEMD, SEMD, and Akima-EMD

The actual closing prices of the KSE-100 index are decomposed into numerous IMFs
and monotone residues by implementing EMD, EEMD, SEMD, and the proposed new
method. It can be seen from Figure 5 that the IMFs extracted by implementing the procedure
of EMD, EEMD, and the proposed new method are the same, whereas the number of IMFs
produced by the SEMD method is less than the benchmark EMD, EEMD, and the new
method. The first few IMFs represent high-frequency components in the actual data and
have a very low Pearson coefficient of correlation with the original stock prices. Therefore
these high-frequency components are not considered to be modeled with the help of the
LSTM network, as these sub-parts represent only noise in the stock price data.
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As a first step, the KSE-100 index closing prices are decomposed with the help of
EMD, EEMD, SEMD, and the proposed new method. After decomposing the data, the
Pearson correlation coefficient is used to separate the correlated IMF and residue from
the actual stock data. To normalize the correlated IMFs in the range of ‘0’ and ‘1’, the
well-known MinMaxScaler is used. This method of normalizing the data subtracts the
minimum value from the actual data and then divides it by its range. The key characteristic
of MinMaxScaler is that it preserves the shape of the original time series data. It does
not meaningfully change the information embedded in the original data. However, in
case of any outliers in the data, this method is not recommended, and in such scenarios,
the RobustScaler method for normalization is preferred. Following is the mathematical
structure of MinMaxScaler.

′
y(t) =

y(t)−min(y(t))
y(t)− y(t)

(15)
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where
′
y(t) denotes the corresponding normalized IMF and monotone residue that we used

to build our proposed hybrid LSTM network.

4.3. IMF’s Statistics

The variance and its proportion with each IMF have been calculated, as well as the
Pearson coefficient of correlation between each IMF (residue) and the real stock prices.
Tables 3–6 display the relevant details regarding this decomposition. The correlations
between each IMF (residue) and the observed stock prices are simultaneously measured
using the Pearson product-moment correlation coefficient. We utilized the percentage of
variance to illustrate how much each IMF (residue) contributed to the overall movement
of the observed stock price because these IMFs (residue) are independent of one another.
The variance of these IMFs and residue, however, does not necessarily equal the overall
variance due to various constraints, as can be seen, for instance, from Tables 3–6 that there
is a 23.262% (123.258–99.996%), −27.75% (72.495–99.99%), 2.257% (102.260–100.003%), and
−17.35(82.638–99.988) differences when the actual time series data are decomposed with
EMD, EEMD, SEMD, and the new method. It can also be verified from Table 3 that when
the decomposition is carried out with EMD, the dominant mode is the deterministic trend
in terms of IMF8 with a Pearson coefficient of correlation of 0.758. We also found out that
the variance of this deterministic trend accounted for 71.883% of the total variance. The sum
of the variations for these significant components, namely IMF5, IMF6, IMF7, IMF8, IMF9,
and trend, accounts for 97.8491% of the total variation. Contrarily, IMF1, IMF2, IMF3, and
IMF4 have very low correlation coefficients with the original stock price and only contribute
2.147 of the total variance, indicating that they have little influence on stock price and are
therefore not included in the development of the proposed Akima-EMD-LSTM model.

Table 3. Statistical measures of IMFs and residue extracted by implementing EMD.

Description Pearson
Correlation Variance Variance as %

of the Actual
Variance as % of
(∑IMFs+Residue)

Actual - 285,774,84 - -

IMF1 0.071 54,819.13 0.191 0.155

IMF2 0.053 69,825.12 0.244 0.198

IMF3 0.088 15,5121.3 0.542 0.440

IMF4 0.060 477,278.4 1.670 1.354

IMF5 0.122 537,974 1.882 1.527

IMF6 0.331 2,803,518 9.810 7.958

IMF7 0.102 5,288,340 18.505 15.012

IMF8 0.758 20,542,369 71.883 58.315

IMF9 −0.111 389.3048 0.0013 0.0011

Residue 0.399 5,296,823 18.53 15.036

Total 35,226,457 123.2583 99.9961

Furthermore, it can be verified from the results presented in Table 4 that the dominant
modes (based on the values of the Pearson correlation coefficient) when decomposition is
carried out with the help of EEMD are IMF3, IMF4, IMF5, IMF6, IMF7, IMF8, and IMF9
with moderate to high Pearson coefficient of correlation with the actual data. Similarly, the
sum of the variances of IMF1, IMF2, and residue accounts for only 14.686% of the total
variation (72.4955%) as well as a very low correlation with the actual stock prices, which
shows that these components have very little impact on the variation in the stock prices,
and shows only noise in the actual time series data.
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Table 4. Statistical measures of IMFs and residue extracted by implementing EEMD.

Pearson
Correlation Variance Variance as %

of the Actual
Variance as % of
(∑IMFs+Residue)

Actual - 28,577,484 - -

IMF1 0.049 31,847.84 0.111 0.153

IMF2 0.072 33,497.54 0.117 0.161

IMF3 0.103 67,152.56 0.234 0.324

IMF4 0.139 219,347.2 0.767 1.058

IMF5 0.374 467,575.5 1.636 2.256

IMF6 0.763 2,118,902 7.414 10.226

IMF7 0.749 3,713,021 12.992 17.921

IMF8 0.639 9,935,052 34.765 47.952

IMF9 −0.267 445.702 0.0015 0.00215

Residue 0.0977 4,131,881 14.458 19.942

Total 20,718,722 72.4955 99.995

Table 5. Statistical measures of IMFs and residue extracted by implementing SEMD.

Pearson
Correlation Variance Variance as %

of the Actual
Variance as % of
(∑IMFs+Residue)

Actual - 25,829,097 - -

IMF1 0.0720 67,535.05 0.261 0.255

IMF2 0.090 90,198.41 0.349 0.349

IMF3 0.082 146,130.4 0.565 0.553

IMF4 0.0733 746,324.3 2.88 2.825

IMF5 0.397 3,162,753 12.244 11.973

IMF6 0.227 1,907,672 7.385 7.22

IMF7 0.859 18,470,085 71.508 69.921

Residue 0.360 1,824,661 7.064 6.907

Total 26,415,359 102.26 100.003

When the decomposition is conducted with the proposed new method, namely the
Akima-EMD, we obtain the statistical measures as presented in Table 6. The dominant
modes are now IMF5, IMF6, IMF7, IMF8, IMF9, and residue that contributes to 82.214% of
the total variation with Pearson correlation coefficients of 0.139, 0.204, 0.495, 0.641, 0.688,
and 0.523. Similarly, the sum of the variances of other components, in contrast to the
dominant modes that include IMF1, IMF2, IMF3, and IMF4, accounts for only 0.2224%
of the total variation (82.638%) as well as having nearly zero correlation with the actual
stock prices, and therefore, has no serious impact on bringing changes in the KSE-100
index closing price. To summarize, the results presented in Tables 3–6 indicate that the low
correlated components with the actual KSE-100 index closing price are considered as noise
in the signal and kept aside before building our proposed hybrid Akima-LSTM model. The
remaining components that have moderate to high correlation with the actual data are
used to build our proposed hybrid model, and the tuning parameters of each correlated
sub-components to build the LSTM network are outlined in the following sub-section.
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Table 6. Statistical measures of IMFs and residue extracted by implementing a new method.

Pearson
Correlation Variance Variance as % of the

Actual
Variance as % of
(∑IMFs+Residue)

Actual - 28,577,484 - -

IMF1 0.0492 31,804.79 0.111 0.191

IMF2 0.0340 2337.712 0.0081 0.014

IMF3 0.0510 28,818.89 0.100 0.173

IMF4 0.0882 58,590.39 0.205 0.351

IMF5 0.139 1,187,075.1 4.153 0.713

IMF6 0.204 3,232,701.8 11.312 1.99

IMF7 0.495 1,275,910 4.464 7.663

IMF8 0.641 4,527,298 15.842 9.173

IMF9 0.688 7,556,977 26.443 45.390

Residue 0.523 5,715,661 20.00 34.330

Total 16,648,875 82.638 99.988

4.4. Training Phase of the Models and Prediction Results

To achieve efficient forecasts from the sub-series (IMFs), as well as the monotone
residue that is correlated with the actual data, the optimal hyper-parameters values, i.e.,
the number of epochs, the batch size, number of layers along with units in each hidden
layer, and dropout are presented in Tables 7–10. Because of the different patterns of each
IMF and residue, the values of these hyper parameters are different from each other.

Table 7. Hyper-parameters of EMD-LSTM model.

Epochs Batch Size Dropout Hidden Units Hidden Layers

IMF5 200 32 0.2 50 04

IMF6 150 32 0.2 50 04

IMF7 100 32 0.2 50 04

IMF8 100 16 0.2 50 04

IMF9 150 16 0.2 50 04

Residue 100 16 0.2 50 04

Table 8. Hyper-parameters of the EEMD-LSTM model.

Epochs Batch Size Dropout Hidden Units Hidden Layers

IMF3 300 64 0.2 50 04

IMF4 300 64 0.2 50 04

IMF5 250 32 0.2 50 04

IMF6 250 32 0.2 50 04

IMF7 150 32 0.2 50 04

IMF8 150 32 0.2 50 04

IMF9 100 32 0.2 50 04
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Table 9. Hyper-parameters of SEMD-LSTM model.

Epochs Batch Size Dropout Hidden Units Hidden Layers

IMF5 250 32 0.2 50 04

IMF6 250 32 0.2 50 04

IMF7 150 32 0.2 50 04

Residue 150 32 0.2 50 04

Table 10. Hyper-parameters of the Akima-EMD-LSTM model.

Epochs Batch Size Dropout Hidden Units Hidden Layers

IMF5 250 64 0.2 50 04

IMF6 250 64 0.2 50 04

IMF7 200 32 0.2 50 04

IMF8 250 32 0.2 50 04

IMF9 200 32 0.2 50 04

Residue 100 16 0.2 50 04

The tuning phase of the hyper-parameters of the LSTM network is of extreme impor-
tance, and any wrong selection may distort the prediction accuracy. The number of epochs
and batch size that play a significant role in the training of our model varies from high to
low-frequency IMFs and residue. It can be seen from the results presented in the above
Tables that from high to low-frequency IMFs and single monotone residue components, the
number of epochs and batch size reduced systematically as it is easy to train the model for
such non-complex subcomponents that have a smooth trend in an upward direction. The
low-frequency IMFs and residue component shows the long-term oscillation in the data,
and modeling such components with the help of a hybrid LSTM model is not a difficult
task with a lower number of epochs and batch size. The reason is that the network learns
very easily from the pattern of these components that are not chaotic.

4.5. Prediction Results

The prediction results of the sub-series for the KSE-100 index closing stock price are
presented in Figures 6–9. The prediction accuracy of the low correlated IMFs with the
actual stock price is relatively low due to the high amplitude and high frequency of the
components, whereas for the high correlated IMFs, including the single monotone residue
that represents the long-term trend of the index data the predicted value is close to the
actual value.

According to Figures 6–9, there is a small difference between the predictive and actual
values of the sub-components of the KSE-100 index closing price obtained by implementing
the hybrid Akima-EMD-LSTM. The proposed new version of EMD has the potential to solve
the problem of overshoot and undershoot, and wiggles at both ends using the benchmark
EMD, and hence the prediction accuracy improves the prediction accuracy. It can also
be seen from Table 8 that the forecast accuracy in terms of RMSE, MAE, and MAPE of
our proposed hybrid Akima-EMD-LSTM model is maximum than the hybrid EMD-LSTM,
EEMD-LSTM, SEMD-LSTM model and therefore used for the final prediction of the KSE-
100 index closing price. The actual prediction results of the KSE-100 index are visualized
in Figure 10 below, which shows that our proposed hybrid model not only predicted the
stock price values precisely but also predicted its up, and down pattern in a more accurate
way than the usual classical time series or any other machine learning methods without
hybridization.
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5. Comparison of the Proposed Model

To check the prediction accuracy and resilience of the proposed models, three different
statistical metrics, i.e., RMSE, MAE, and MAPE, are utilized. The mathematical expressions
of these performance metrics are given as follows:

RMSE =

√√√√ 1
N

N

∑
t=1

(At − Pt)
2 (16)

MAE =
1
N

N

∑
t=1
|At − Pt| (17)

MAPE =
1
N

N

∑
t=1

∣∣∣∣At − Pt

At

∣∣∣∣ (18)

whereas At, and Pt denote the actual and predicted values, and N is the total number of
trading days used in the testing data set. The smaller values of these three statistical metrics
signify that there is less variation between the actual and predicted values. Furthermore,
among these three statistical measures, it is easy to interpret and understand the MAPE.
Hence, it is used as a key evaluating metric to check the prediction performance of our
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proposed model. In this research article, we used EMD, EEMD, and SEMD, proposed a
new method to decompose the actual signal, and then built our model for the correlated
subcomponents using the LSTM network. We calculated these three main statistical mea-
sures to compare all four hybrid models and select the best prediction model in terms of
minimum values of RMSE, MAE, and MAPE. It can be seen from the investigational results
presented in Table 11 that the best model to predict the KSE-100 index closing price is our
proposed hybrid Akima-EMD-LSTM model having minimum values of RMSE, MAE, and
MAPE as compared to the other hybrids models. After selecting the best model among
the four proposed hybrid models, our next goal is to compare it with other models. The
following subsection will describe the details of such a comparison.

Table 11. Performance metrics of different hybrid models.

Model RMSE MAE MAPE

Hybrid EMD-LSTM 490.664 383.899 0.941
Hybrid EEMD-LSTM 567.813 491.061 0.79

Hybrid Akima-EMD-LSTM 299.541 234.34 0.578
Hybrid SEMD-LSTM 987.98 756.985 2.328

It is evident from the empirical results presented in Table 11 that the most efficient
prediction model among the four hybrid models is our proposed Akima-EMD-LSTM. Now
the performance of the proposed new model is compared with other models, including
the single LSTM, EMD-SVM, EEMD-SVM, SEMD-SVM, Akima-EMD-SVM, EMD-Random
Forest, EEMD-Random Forest, SEMD-Random Forest, Akima-EMD-Random Forest, EMD-
Decision Tree, EEMD-decision tree, SEMD-decision tree, and Akima-EMD-decision tree.
The deep learning LSTM network does not require any input features, and the actual
stock price data can be used directly to build the single LSTM network, whereas the other
ensemble models use the correlated subcomponents (IMFs), and the residue obtained by
decomposing it with the help EMD, EEMD, SEMD and proposed new model.

The prediction performance of the proposed model is similarly effective in all scenarios,
i.e., for each IMF and residue obtained from the KSE-100 index actual closing price, which
is a key strength of this research. The investigational results shown in Table 12 make it
simple to confirm that the three statistical measures of the suggested model are minimal;
for example, the value of RMSE is 299.5416, which is minimal among other models. Akima-
EMD-SVM, which has an RMSE of 309.345, is the second-best model in this competition,
and the same SVM model with the EEMD ensemble, which has an RMSE of 322.675, is
in third place. Similarly, the MAE and MAPE values of our proposed hybrid model are
234.340 and 0.578, respectively, which are also minimum as compared to the other models.
Interestingly, the ensemble Akima-EMD-SVM model stands second in comparison with the
proposed model, but the performance of this model is much better than the other ensemble
random forest and decision tree models.

A snapshot will more accurately depict the scope of this research work rather than
presenting the actual and forecasted values, which are not presented here. The actual and
predicted values are schematically shown in Figures 6–10 to make the prediction simple
and comprehensible for each subseries and the actual closing KSE-100 price. Yet, there is a
slight difference between the actual and predicted values, but the direction accuracy of our
prediction is more than any other model.

In a nutshell, the hybrid model that is a combination of LSTM and the proposed new
version of EMD, shortly written as Akima-EMD, consistently achieves the highest accuracy
in terms of RMSE, MAE, and MAPE, with less variation between the predicted and actual
KSE-100 index closing price.
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Table 12. Performance metrics of different hybrid models.

Model RMSE MAE MAPE

LSTM 473.319 354.75 0.87
EMD-SVM 317.504 246.675 0.711

EEMD-SVM 322.675 280.937 0.65
SEMD-SVM 324.494 285.268 0.724

Akima-EMD-SVM 309.345 242.879 0.726
EMD-Random Forest 406.554 289.891 0.748

EEMD-Random Forest 389.023 253.851 0.65
SEMD-Random Forest 521.028 338.445 1.611

Akima-EMD-Random Forest 367.987 256.987 0.712
EMD-Decision Tree 480.217 352.165 0.896

EEMD-Decision Tree 742.619 411.442 1.067
SEMD-Decision Tree 630.078 377.376 0.973

Akima-EMD-Decision Tree 443.91 345.1 0.709
Hybrid Akima-EMD-LSTM 299.541 234.34 0.578

6. Conclusions

For data scientists and practitioners, predicting the stock market indices is a fascinating
and difficult area of research. Precise forecasting of the stock market is of prime importance
as it will help not only the investors to maximize their profits, but the governments as
well because the stock markets are the backbone of every country’s economy. This section
summarizes and presents the major findings of this research study. In the previous literature,
the researchers employed a single time series or machine-learning model to predict the
accurate values of the stock prices and hence, were criticized for their low prediction ability.
The primary goal of this study is to suggest a unique approach for effectively and correctly
forecasting the daily closing prices of the KSE-100 index. The fact that we presented a
hybrid technique that combines the best features of both the Akima-EMD and the LSTM
network. As a result, the proposed approach is extremely effective for prediction with
nonlinear and nonstationary data. The suggested model is not an ensemble model since we
used subcomponents after decomposing the data into various IMFs and a single monotone
residue using the Akima-EMD approach. The Pearson coefficient of correlation was utilized
to find out which IMFs (residue) is correlated with the actual data and then construct the
proposed hybrid model. Comparison is made with other ensemble models that are based
on other machine learning techniques such as SVM, random forest, and decision tree.
The findings of four statistical measures, namely RMSE, MAE, and MAPE, show that the
suggested model surpassed the other models, implying that it is a useful addition to stock
market prediction. Interestingly, the hybrid ensemble SVM model stands second in this
competition and outperformed the individual LSTM, random ensemble forest, and decision
tree models even though the single LSTM model, which is a type of RNN, performs better
than all the ensemble machine learning models except the proposed one.

In future work, the proposed method can be used for other countries’ stock markets
data, and comparisons could be made with XGBoost, SVM, and ANN. Whereas the SVM
and ANN models can be constructed using different variables such as investor sentiments,
interest rates, the political climate of the country, news, and exchange rates as inputs.
Furthermore, we will also find out the prediction accuracy of our proposed model on other
nonlinear and non-stationary time series, such as exchange rates, crude oil prices, wind
speed, temperature, rainfall, earthquakes, and tourist arrival. However, for the current
research work, we proved that the proposed hybrid Akima-EMD-LSTM model performs
better in predicting the daily closing price of the KSE-100 index.
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