
Citation: Song, A.; Ji, R.; Qi, W.;

Zhang, C. RGCLN: Relational Graph

Convolutional Ladder-Shaped

Networks for Signed Network

Clustering. Appl. Sci. 2023, 13, 1367.

https://doi.org/10.3390/app13031367

Academic Editor: Yu-Dong Zhang

Received: 22 December 2022

Revised: 9 January 2023

Accepted: 17 January 2023

Published: 19 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

RGCLN: Relational Graph Convolutional Ladder-Shaped
Networks for Signed Network Clustering
Anping Song *, Ruyi Ji, Wendong Qi and Chenbei Zhang

School of Computer Science and Engineering, Shanghai University, Shanghai 200444, China
* Correspondence: apsong@shu.edu.cn

Abstract: Node embeddings are increasingly used in various analysis tasks of networks due to
their excellent dimensional compression and feature representation capabilities. However, most
researchers’ priorities have always been link prediction, which leads to signed network clustering
being under-explored. Therefore, we propose an asymmetric ladder-shaped architecture called
RGCLN based on multi-relational graph convolution that can fuse deep node features to generate
node representations with great representational power. RGCLN adopts a deep framework to capture
and convey information instead of using the common method in signed networks—balance theory.
In addition, RGCLN adds a size constraint to the loss function to prevent image-like overfitting
during the unsupervised learning process. Based on the node features learned by this end-to-end
trained model, RGCLN performs community detection in a large number of real-world networks and
generative networks, and the results indicate that our model has an advantage over state-of-the-art
network embedding algorithms.

Keywords: signed graphs; network embedding; sign graph convolution; community detection

1. Introduction

Networks are ubiquitous in our lives, covering all aspects of life, from social networks
to transportation networks to biological systems. The edges between networks can indicate
states or relationships such as friendship, cooperation, trust, and empowerment, or they can
indicate hostility, aversion, distrust, and suppression. Compared with unsigned networks,
signed networks can reflect more complex social relationships [1].

In order to tap the rich information contained in graphs, graph representation learning
techniques have been extensively developed in recent years [2]. By learning the structural
information of the graph, the node attribute information, and the external information,
a low-dimensional feature representation of the nodes is obtained and then used for the
analysis of downstream tasks. This approach has been widely used in the field of graph
structure, but the research of these methods in signed networks has mainly focused on link
prediction tasks [3–9], and there has been relatively little research related to community
detection [5,10–13]. The node embedding methods on community detection tasks are
also basically traditional methods and do not apply to the more popular deep learning
frameworks or ideas currently available.

In traditional embedding methods, a significant portion of sign network embedding
algorithms uses spectral methods [14], the central idea of which is to embed the original net-
work into a low-dimensional space consisting of the first k eigenvectors of the eigenmatrix
associated with a given network. However, it has been shown that matrix decomposition-
based spectral methods have limited representation learning capability in capturing the
highly nonlinear properties of complex network structures, and they also have a very
high computational overhead. Thus, we designed an asymmetric ladder-shaped network
framework based on signed networks combined with deep learning concepts to obtain
node embedding representations that are friendly to signed clustering tasks.
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The core idea of the algorithms currently developed for clustering problems in signed
networks can be summarized by the well-known sociological theory, “balance theory” [15].
Balance theory can be summarized simply by saying that the friend of a friend and the
enemy of an enemy are both friends. This makes most algorithms involving this theory
minimal, excluding nodes that do not satisfy the theory. To address the above problem,
our framework discards this very limiting theory and uses only deep networks to capture
node information.

The node embedding algorithm proposed in this paper is based on a multi-relational
graph convolutional structure and draws on the design concepts of fused spectral graph
convolutional networks and U-Net [16] in GCLN [17]. Due to the particularity of graph con-
volution, there will be an over-smoothing problem during depth stacking, so most models
only obtain first-order and second-order neighbor information [18,19]. However, experi-
ments confirm that our framework can effectively avoid this problem during the deepening
process. To better distinguish the different information represented by positive and negative
links in signed networks, we use relational graph convolution in the ladder-shaped depth
framework, which means that our framework is not strictly symmetric. Thanks to our aban-
donment of balance theory, there is no need to precisely follow balanced paths in the process
of information aggregation and transfer, which significantly simplifies our framework.

To show better results in unsupervised tasks and to further avoid extreme divisions,
we add size constraints. The soft constraint prevents individual loss-guided models from
falling into local optima during training. We evaluate the effectiveness of RGCLN in several
real-world networks and generative networks for semi-supervised and unsupervised tasks,
and both end up with good experimental results.

The main contributions of our paper are as follows:

• A novel end-to-end optimized asymmetric ladder-shape framework is designed
for signed networks, which can capture the deep hidden features and domain in-
formation of nodes and well solve the problem that graph convolution cannot be
deeply superimposed.

• The framework behaves as an asymmetric structure, which effectively avoids the
overfitting problem.

• The design concept of end-to-end optimization makes the framework more friendly to
the signed clustering problem.

• The size constraint is defined and incorporated to avoid extreme divisions in unsuper-
vised learning, which dramatically improves the performance of the model.

The rest of this paper is organized as follows. In Section 2, we discuss current work
related to this paper and briefly introduce related research and recent advances in node
embedding on signed networks. Section 3 introduces the model proposed in this paper,
the RGCLN. In Section 4, we implement our proposed approach in experiments and show
a comparison with the baseline approach. Section 5 concludes the paper and highlights
future work.

2. Related Work

In this section, we state the work related to graph representation learning. A large
amount of research work related to graph embedding already exists in unsigned net-
works [20,21]. The presence of negative chains in signed networks leads to the fact that
methods in unsigned networks cannot be directly migrated and applied to signed net-
works. Therefore, all relevant algorithms for signed networks need to be redesigned and
researched. Next, we mainly review various embedding algorithms related to signed
networks. Ref. [22] used a signed Laplacian matrix and its normalized version for signed
clustering. Ref. [23] proposed a multilevel signed network clustering framework based
on a balanced normalized cut level (BNC), which solves the problem of the direct exten-
sion of a signed Laplacian from k > 2 to k-way and can obtain high-quality clustering
results quickly. Ref. [24] derived a simple normalized signed (SNS) graph Laplacian matrix
and a balanced normalized signed (BNS) graph Laplacian matrix, and the embedding
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representation obtained through the matrices have good node characterization capability.
Ref. [13] proposed a regularized spectral clustering algorithm based on solving the gen-
eralized feature problem, which shows better robustness to noisy and sparse matrices
compared to algorithms such as SNS and BNS.

In addition to these Laplacian-based signed algorithms mentioned above, several
studies have explored the possibilities of deep learning frameworks for embedding rep-
resentations of signed network nodes. For example, ref. [25] used the sociological theory
called balance theory to aggregate and transfer information between the nodes of a balanced
path. In [26], a deep network embedding model is proposed to learn low-dimensional
node vector representations with structural balance preservation. The model imposes a
greater weight on the loss of negative chains, allowing the encoder to focus on captur-
ing the more scarce negative connections. A new directed graph neural network model,
SDGNN, was proposed in [27]. This model involves both balance theory and state theory
and reconstructs all three types of features, link symbols, link directions, and directed
triangles simultaneously, with a solid ability to learn node embeddings. The design of the
three-part loss function of the SDGNN model has been explored in more depth by many
subsequent studies. However, the embedding studies mentioned above have all focused
on the link prediction task, and there is still much room for exploration in the community
detection task.

Most of the existing signed network representation learning methods [28–31] were
designed based on balance theory. SIN [1] first learned signed network embeddings using
objective functions guided by balance theory. Ref. [6] proposed a node representation
generation model based on adversarial learning using balance theory as the basis for
determining pseudo-edge generation. Ref. [32] used a masked self-attentive layer to
estimate the importance of different types of links and then aggregated more critical
information from neighboring nodes to generate node embeddings based on balance theory.
A recent research advancement related to our work is [33]. In the SSSNET model proposed
in [33], a new interpretation of the social balance theory of signed network embeddings
takes a neutral stance on whether the enemy of an enemy is a friend. Although the
SSSNET model is a first step towards abandoning balance theory, it is ultimately limited
by the balanced path. The algorithm proposed in this paper does not involve sociological
theory but instead designs a practical depth framework to capture potential information
between neighbors.

3. The Proposed Model

We first introduce some definitions that will be covered in the paper and then detail
the specifics and details of the proposed framework.

3.1. Notations

Before presenting the details of the framework, we introduce some definitions and
notations that will be used in our paper. Let G = (V , E) be a signed network, where
V = {v1, v2, . . . vm} is the set of m nodes, and ε ⊂ V × V is the set of links. In particular,
any link eij ∈ ε can be 1 or −1, where eij = 1 denotes a positive link between vi and vj,
while eij = −1 denotes a negative link. We denote the adjacency matrix of the signature
network G by A ∈ Rn×n, where Aij = 1 indicates a positive link from vi to vj, Aij = −1
indicates a negative link, and otherwise Aij = 0 indicates no link from vi to vj. D is the
degree matrix, and the values on the diagonal are the degrees of each point. The task of
clustering is to divide G into K clusters, where the nodes between clusters are as similar
as possible, and the nodes between clusters should remain different. The model in this
paper verifies the performance of unsupervised and semi-supervised clustering, where the
seed nodes are identified with labels before training. The set of seed nodes is denoted as
Vseed ⊆ Vtrain ⊂ V, where Vtrain is the set of all training nodes.
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3.2. Multi-Relational Graph Convolutional Ladder-Shaped Networks

Due to the large variability between non-Euclidean data and data such as images,
in this way, many excellent frameworks in the image domain cannot be used for graph-
structured data. In [17], the authors proposed a graph convolutional ladder network
(GCLN) to solve the over-smoothing problem by borrowing the well-known U-Net structure
from medical image segmentation. The GCLN is a symmetric architecture with a GCN layer
consisting of a systolic path and an extended path. Three contextual feature channels allow
the contextual features captured from the systolic path to be fused with the localization
information learned through the extended path. However, the GCLN framework is only
applicable to general networks. We extend its design idea to signed networks and design the
RGCLN architecture using multi-relational graph convolution instead of base convolution
to address the over-smoothing problem under signed network clustering.

Next, we will focus on the multi-relational graph convolution ladder-shaped network
framework proposed in this paper. We set the underlying graph convolution as multi-
relational graph convolution, which differs from the standard graph convolution shared
parameter settings by using different weights for two different types of edges: positive
and negative edges. We do not make any assumptions about the positive and negative
relations and only use the network to fit the deep structure information. The main part
of our RGCLN model is shown in Figure 1, where it can be found that there are also
contraction paths and expansion paths. However, in the contraction path, the number of
neurons needs to be reduced to one-third of the previous layer. We define the message-
passing process. Specifically, the node v of the lth layer is denoted as Z(l)

v , and its formula is
defined as follows:

h(l)v =
[
z(l−1)

u , Σu∈N+
v

Z(l−1), Σu∈N−v
Z(l−1)

]
Z(l)

v = σ
(

h(l)v · w(l) + b(l)
) (1)

where w(l) denotes the weight matrix of the lth layer, and b(l) denotes the deviation vector
of the lth layer.

Figure 1. Framework of RGCLN.

Due to the convolution of multi-relational graphs, each convolution process has three
parts: the aggregation of node features, positive domain information, and negative domain
information, which makes the dimensionality of nodes expand to three times the original
one after this process. Therefore, the settings of neurons on the expanding path need to refer
to the settings of neurons on the contracted path and keep the principle of dimensionality
consistency. This design is due to the specificity of the multi-relational graph convolution
on the one hand and the need to aggregate the information on the corresponding side of the
contraction path for the expansion path on the other. This makes the structure a non-strictly
symmetric ladder-shaped network. We use Tanh as the activation function because it has
been experimentally shown to work better when it is used.
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3.3. Objective Function and Discussions

Our proposed framework is an end-to-end unified training framework with different
loss functions designed for clustering problems in semi-supervised and unsupervised cases.
By training the network model, we are able to achieve the clustering of similar nodes with
different nodes to achieve a light effect while the loss is gradually reduced.

3.3.1. Global Size Constraints

A fundamental advantage of deep learning is its flexibility, but extremes can occur if
left unconstrained, especially in clustering problems where extreme divisions may occur.
To circumvent this overfitting situation, similar to that in images, this chapter explores
an algorithm for constrained clustering. Some previous work has explored uniform dis-
tributions, which are only applicable to specific clusters. Here, a more general constraint
is described.

In this paper, the default maximum cluster size will not exceed half of the number of
nodes, and the maximum number of clusters will be penalized if it exceeds this maximum
limit. This definition is consistent with the distribution law of most clusters and can
effectively improve the robustness and reliability of the model. The size constraint is
divided into hard and soft constraints; the former means that the model must satisfy this
constraint to get clustering results, while the soft constraint is not satisfied. Soft constraints
are usually much better than hard constraints, so soft constraints are used here. Let the
total number of clusters be k, the total number of training instances be n, the ratio of the
desired maximum number of cluster nodes to the total number of nodes be up, and qic can
be considered as the degree of instance i belongs to cluster c; then the global size constraint
loss function is defined as:

LSC = min

 ∑
c∈{1,...,k}

·
(

max

(
n

∑
i=1

qic/n

)
− up

), up = 0.5 (2)

The loss function in this paper operates by minimizing the difference between the
desired maximum number of clusters and the actual maximum number of clusters. Con-
sidering a more specific case, the constraint defines that the relevant hyperparameters
can be self-adjusting. The upper limit defined as half of the total number of nodes is the
best assumption based on the real situation of the experimental part of the dataset, which
is also consistent with the cluster distribution pattern of most real-world or generative
networks associated with signed networks. The value of up can be adjusted to achieve the
best constraint based on real-world conditions.

3.3.2. Self-Supervised Loss

The loss function under the self-supervised task contains two components: a differ-
entiable probabilistic balanced normalized cut (PBNC) loss proposed in [33], on which
the size-constrained loss (SC) is defined and introduced. The differentiable probabilistic
balanced normalized cut loss is related to the (non-differentiable) balanced normalized cut
loss proposed in [23]. The PBNC loss formula is defined as follows.

LPBNC =
K

∑
k=1

(
P(:,k)

)T
(D+ −A)P(:,k)(

P(:,k)

)T
DP(:,k)

(3)

where P(:,k) denotes the kth column of the expansion of the probability matrix P and D,
D̄ii = ∑n

j=1
∣∣Aij

∣∣, and D+ −A denotes the non-classical Laplacian graph with all positive
edges in the part of A. D+ is the diagonal matrix associated with the A+ matrix. LPBNC is
similar to the concept of the unhappy ratio in that it is designed so that positive edges are
distributed within clusters, and negative edges appear in clusters between them. Edges
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that violate this rule are considered incorrectly partitioned, and thus losses such as the
unhappy ratio or PBNC are calculated.

However, when using only PBNC as loss self-supervised training, there exists an extreme
division of all nodes into a cluster. To avoid this situation, the global size constraint mentioned
above is added to the self-supervised learning module to help the network adjust.

LPBNC and LPBNC constitute the loss of the self-supervised part of our model, and the
two parts of the loss are assigned weights through the parameter γc, which takes values in
the range 0 ≤ γc ≤ 1. The final total loss function is defined as:

L = (1− γc)LPBNC + γcLSC (4)

3.3.3. Supervised Loss

In the definition of the semi-supervised scene loss function, we minimize the cross-
entropy loss LCE and the triplet state loss as well as Equation (5). The definition can be
used when the labels of some nodes are known. By setting a certain number of seed nodes
Vseed in advance, the similarity between the nodes of any unknown cluster class and the
seed nodes can be obtained. Suppose two societies are drawn from the divided societies in
the middle state of the training process, one of which has two seed nodes i and j, and the
other one has a node k. Applying the similarity calculation formula, we can find that the
relationship between i and j must be closer than that between i and k, i.e., the distance is
closer. The formula is defined as follows:

Ltriplet =
1
|T| ∑

(vi ,vj ,vk)∈T

ReLU
(
CS
(
zi, zj

)
−CS(zi, zk) + α

)
(5)

where T ⊆ Vseed × Vseed × Vseed is a node triple, vi and vj are the two seed nodes set,
and vk is a node randomly selected from different clusters. We use the cosine similarity
CS
(
vi, vj

)
to measure the similarity of the two nodes. α > 0 is used as a bound [34].

The other part of the loss uses the cross-entropy loss LCE, and the two parts of the loss
are balanced by the parameters γs and γt, which takes values in the range of
0 ≤ γs, γt ≤ 1. Then, the total loss under the semi-supervision of the final RGCLN
model is defined as follows.

L = LPBNC + γs

(
Ltriplet + γtLCE

)
(6)

4. Experiments

In this section, we conduct experiments on several real-world networks and stochastic
block generation networks of different sizes to evaluate our proposed model from all
aspects and verify that our model performs equally well on sparse networks and large data
sets with noise. We analyze the performance of all algorithms by plotting the mean and
standard error of 20 replications.

4.1. Signed Stochastic Block Models

We use signed stochastic block models (SSBM) to generate signed networks with dif-
ferent characteristics that can be artificially defined as containing k number of blocks and n
nodes. Our generative model can be denoted by SSBM (n, K, p, ρ, and η).
p ∈ {0.001, 0.01, 0.1} denotes the edge creation probability, and we set all pairs of nodes
within and between clusters to have the same edge probability. The (approximate) ratio
between the maximum and minimum cluster sizes is ρ, and the signed flip probability is
denoted by η. We define three sizes of network graphs with n = 1000, 10,000, and 30,000 to
test the performance of the model for different sizes of graphs.
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4.2. Real-World Data

We tested six real-world signed networks (Sampson [35], Rainfall [36], S&P1500 [37],
PPI [38], Epinions [1], and Slashdot [1]) and summarize the specific information of the
dataset in Table 1. The context of the Sampson dataset is that the social interactions
between a group of monks recorded by Sampson as a visual experimenter contain four
social relationships (respect/disrespect, like/dislike, positive influence/negative influence,
and praise/blame), which we combined into a network. The Rainfall dataset records
rainfall series about each region of Australia, with edge weights obtained from two-by-
two correlations, which are finally processed into an extended network with nodes of
n = 306. S&P1500 considers the daily prices of n = 1193 stocks in the S&P1500 index for
the period 2003 to 2015, and we construct an extended network with stocks as nodes and
correlations between them as edges. PPI describes a network of protein–protein interactions,
with activation or inhibition relationships between interacting proteins as network features.
Epinions is a consumer review site about whether users trust each other, and we construct
an extended network of trust relationships between users. Slashdot is a website known for
its technology-related news site known for its user community; Slashdot allows users to
mark each other as friends or foes.

Table 1. Statistics of six real-world networks. E+ and E− denote positive and negative
links, respectively.

Dataset N E E+ E−

Sampson 25 166 148 18

Rainfall 306 93,636 64,408 29,228

S&P1500 1193 1,423,249 1,069,319 353,930

PPI 3058 11,860 7996 3864

Epinions 41,178 609,489 508,449 101,040

Slashdot 40,825 448,240 339,415 108,825

We give the labels for each dataset. In particular, for Rainfall, we used the label of
the SPONGE algorithm as the valid label, so SPONGE did not participate in the algorithm
performance comparison under the Rainfall network. For the PPI, Epinions, and Slashdot
networks without ground truth, we used self-supervised loss for training and finally used
the unhappy ratio as an evaluation metric. For these three networks without ground truth,
we set the number of clusters to 10 to facilitate comparison. For the rest of the networks,
Sampson had 5 clusters, Rainfall used 6 clusters set by SPONGE, and S&P1500 used a
sector member network with 10 clusters.

4.3. Baselines

Here we present some existing state-of-the-art signed network embedding methods.
The baselines are as follows:

• A: A partitioning algorithm based on the direct relation of the symmetric adjacency
matrix denoted as A∗ = 1

2
(

A + (A)T).
• SNS [24] and DNS [24]: SNS and DNS are two spectral methods based on the ran-

dom walk normalized Laplacian, both extended from the unsigned random walk
normalized graph Laplacian [39].

• L: the Laplacian matrix L∗, using a signed network adjacency matrix.
• Lsym: This is the symmetric normalized version of L.
• BNC [23] and BRC [23]: direct extensions of the signed Laplacian to the k-way cluster-

ing problem. BNC and BRC denote two algorithms for optimizing balanced ratio cuts
and balanced normalized cut objectives, respectively.
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• SPONGE [13]: introduces a principle and theoretically sound spectral method for
k-way clustering in signed graphs and proposes a regularized spectral clustering
algorithm based on solving the generalized feature problem.

• SPONGEsym [13]: a variant of SPONGE that uses the minimum of k generalized eigen-
vectors to generate embeddings, called the symmetric Laplacian operator of SPONGE.

• SSSNET [33]: redefines the balance path in balance path and asks “is the enemy of
the enemy?” A neutral position is taken, and it then proposes an end-to-end GNN
framework for semi-supervised signature network clustering.

4.4. Evaluation Metrics

To evaluate the performance of various algorithms on different datasets, we used
two widely used metrics, namely the adjusted Rand index (ARI) [40] and the normalized
mutual information (NMI) metric [41].

Given a set of n objects S = {O1, O2, . . . , On}, let the external evaluation criteria be
U = {u1, . . . , uR}, and the clustering result be v = {v1, . . . , vC}, satisfying⋃R

i=1 ui = S =
⋃C

j=1 uj, ui ∩ ui∗ = ∅ = vi ∩ vj∗ , where 1 ≤ i 6= i∗ ≤ R and 1 ≤ j 6= j∗ ≤ C.
Then set four statistics. a is in U belonging to the same category and also belongs to the
same category in V; b is the number of data point pairs that belong to the same category in
U but are different in V. c is the number of data point pairs that do not belong to the same
category in U but belong to the same category in V, and d is the number of data point pairs
that do not belong to the same category in U but also do not belong to the same category in
V. The Rand coefficient [42] is defined as:

RI =
a + d

a + b + c + d
(7)

Hubert and Arabie proposed the adjusted Rand index in 1985. The adjusted Rand
index assumes that the hyper distribution of the model is a stochastic model. Then, the
adjusted Rand index is defined as:

E(RI) = E

(
∑
ij

(
nij
2

))
=

[
∑

i

(
ni.
2

)
∑

j

(
n.j
2

)]
/
(

n
2

)

max(RI) =
1
2

[
∑

i

(
ni.
2

)
∑

j

(
n.j
2

)] (8)

ARI =
RI + E(RI)

MAX(RI)− E(RI)
(9)

In order to evaluate the similarity between the real partition and the partition obtained
by using the algorithm to divide the network, NMI is widely used for evaluation. Assuming
that A and B are two partitions of a network, the NMI between A and B is written as:

NMI =
−2 ∑CA

i=1 ∑CB
j=1 Cij log

(
CijN/Ci.C.j

)
∑CA

i=1 Ci. log(Ci./N) + ∑CB
j=1 C.j log

(
C.j/N

) (10)

where N is the number of network nodes, and C is the fusion matrix. Cij equals the number
of nodes shared by community i in partition A and by community j in partition B. CA(CB)
is the number of communities in structure A(B) and Ci.(Cj) is the sum of elements of C in
row i(column j). NMI(A,B) = 1 means that the A and B partitions are exactly the same.

4.5. Results on Dataset

We first report the results on six real-world networks, and the results of all methods
on the association partitioning task are shown in Table 2. The first three datasets reflect the
performance of the model under the semi-supervised task, which highlights the superiority
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of our deep model from the side. The other three datasets reflect the unsupervised task,
and it is clear that our model also shows superior performance under the unsupervised
signed clustering task.

Table 2. Clustering performance on the real dataset; best outcomes are in bold. The first three columns
are evaluated using ARI, where higher scores represent better classification results, and the rest of the
dataset is evaluated by the unhappy ratio (%), where lower is better.

Dataset Sampson Rainfall S&P1500 PPI Epinions Slashdot

A 0.32 ± 0.1 0.62 ± 0.09 0.2 ± 0.02 0.57 ± 0.0 0.6 ± 0.0 0.59 ± 0.02

SNS 0.11 ± 0.05 0.29 ± 0.03 0.0 ± 0.0 0.47 ± 0.0 0.16 ± 0.0 0.24 ± 0.0

DNS 0.3 ± 0.1 0.65 ± 0.04 0.06 ± 0.01 0.47 ± 0.0 0.17 ± 0.0 0.24 ± 0.0

L 0.16 ± 0.05 0.45 ± 0.08 0.06 ± 0.01 0.47 ± 0.0 0.18 ± 0.03 0.24 ± 0.0

Lsym 0.35 ± 0.09 0.54 ± 0.05 0.24 ± 0.04 0.47 ± 0.0 0.17 ± 0.0 0.32 ± 0.09

BNC 0.32 ± 0.12 0.61 ± 0.07 0.04 ± 0.01 0.47 ± 0.0 0.17 ± 0.0 0.24 ± 0.0

BRC 0.21 ± 0.11 0.47 ± 0.05 0.0 ± 0.0 0.52 ± 0.0 0.16 ± 0.0 0.24 ± 0.0

SPONGE 0.36 ± 0.11 - 0.29 ± 0.05 0.48 ± 0.0 0.17 ± 0.0 0.25 ± 0.01

SPONGEsym 0.34 ± 0.11 0.73 ± 0.08 0.32 ± 0.04 0.46 ± 0.0 0.17 ± 0.0 0.24 ± 0.0

SSSNET 0.54 ± 0.11 0.76 ± 0.11 0.63 ± 0.04 0.21 ± 0.01 0.18 ± 0.01 0.24 ± 0.0

RGCLN 0.56 ± 0.18 0.81 ± 0.11 0.59 ± 0.06 0.15 ± 0.01 0.14 ± 0.03 0.24 ± 0.01

RGCLN outperforms the SSSNET model, which is also based on a deep GNN model,
proving our initial idea that following the setting of the balance principle in a single way
makes it difficult to consider the overall community structure from a global perspective.
Although the SSSNET model makes an effort to consider the balancing principle at this
point, it only adopts a partially balanced path. However, from the experimental results, we
can try to abandon sociological theory altogether and reap unexpected good results instead.
On the S&P1500 dataset, our model is slightly lower than SSSNET, which due to S&P1500,
owns many balanced triangulations.

Figure 2 shows a visualization of the meaningful sorted adjacency matrix found by
the algorithm under the Rainfall dataset. Here, k = 6, except for algorithms such as L and
brc, which divide the number of communities to be less than a set value, so all algorithms
recover essential information in the cluster.

Next, we conducted experiments on the SSBM. We designed multiple sets of exper-
iments and multiple evaluation metrics, and the results are shown in Figure 3. We set
two groups of node sizes n = {1000, 10,000, 30,000} and different parameters. Figure 3a
shows that the performance of the division with a relatively small number of nodes gradu-
ally decreases as the Rand coefficient is adjusted and the flip probability η increases; the
decreasing trend is more moderate in the NMI metrics, but all outperform the benchmark
algorithm with the same variables. Figure 3b shows the case where the number of nodes is
high, but the number of clusters is all low.

When the noise level is low, both the benchmark algorithm and RGCLN maintain
extremely high clustering levels, but as the noise gradually increases, only SSSNET,
SPONGEsym and RGCLN still maintain good performance, which corroborates the ex-
cellent noise immunity of the model proposed in this chapter.

The number of network nodes and clusters is higher in Figure 3c. The relevant
performance of the model under large-scale sparse networks is reflected in Figure 3d.
The accuracy of the benchmark algorithm in the clustering task and the robustness of the
model are observed by varying the generation probability of the edges, i.e., the parameter p.
When p = 0.001, the network is relatively sparse when algorithms such as BRC have
completely failed, while the RGCLN model still exhibits the best performance for different
network densities and noise levels. Although there exist individual models that are not
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very different from the RGCLN model in such settings, in general, RGCLN still has the best
performance and is the most stable.

(a) A (b) dns (c) brc

(d) L (e) Lsym (f) bnc

(g) SPONGE (h) SSSNET (i) RGCLN

Figure 2. Sorted adjacency matrix of Rainfall dataset (k = 6).
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Figure 3. Stochastic block generation network with different sizes and different parameter settings.

4.6. Ablation Studies

In order to verify the impact of our model on the performance of the whole framework
during message delivery and whether its own features are involved in the delivery, we
design two variants. RGCLN1 only considers aggregating messages of positive and nega-
tive neighbors, while RGCLN2 needs to aggregate its own features, messages of positive
neighbors and messages of negative neighbors during the delivery process. Under the same
settings, we verified the friendliness of these two variants in the downstream clustering task
for six real datasets. The results are shown in Table 3, where it can be found that including
one’s own features is more helpful for the model in most networks. Unless otherwise stated,
all references to the RGCLN model in this paper refer to RGCLN2.
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Table 3. Two variants for validating the validity of ontology features. The first three rows are
evaluated with the ARI metric, while the remaining dataset without the ground truth is evaluated
with the unhappy ratio.

Dataset Metric RGCLN1 RGCLN2

Sampson ARI 0.65 ± 0.18 0.56 ± 0.10

Rainfall ARI 0.76 ± 0.13 0.81 ± 0.11

S&P1500 ARI 0.52 ± 0.06 0.59 ± 0.06

PPI Unhappy ratio 0.19 ± 0.06 0.15 ± 0.01

Epinions Unhappy ratio 0.14 ± 0.01 0.14 ± 0.03

Slashdot Unhappy ratio 0.24 ± 0.00 0.24 ± 0.01

4.7. Parameter Sensitivities

In this section, we investigate the sensitivity of the model to the parameters. Figure 4a
shows the model in a semi-supervised environment, exploring the effect of the ratio of seed
nodes on the results, where only a tiny-sized seed needs to be set to achieve the desired
results. Figure 4b shows the evaluation of the help of the size constraint for training in an
unsupervised environment. The PPI network clusters best with γc set to 0.2, but we use the
default setting of 0.5 to obtain more general results and consider that the primary purpose
of including size constraints is to prevent extreme clustering results rather than to optimize
the metric evaluation results. In general, our model is not very sensitive to changes in
hyperparameters, and the main features are still reflected in the network. The main features
are in the network architecture design and training optimization.
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size_ratio
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(a) Vary seed ratio.
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(b) Vary γc in Equation (4)

Figure 4. Hyperparametric analysis (a,b). Figure (a) in SSBM (n = 10,000, k = 5, p = 0.01, ρ = 1.5) and
Figure (b) in PPI network environment. Figure (a) compares the ARI, while Figure (b) compares the
unhappy ratio tested.

5. Conclusions

In our paper, we propose a deep ladder network based on relational graph convolu-
tion that can perform unsupervised and semi-supervised learning end-to-end on signed
network community partitioning tasks. In contrast to traditional balance theory-based
representation learning approaches, our proposed model learns the intrinsic laws and rep-
resentation hierarchy of sample data purely from a deep framework. This goes beyond the
common thinking in the field and provides an entirely new method of research. Extensive
experimental results on generated and real-world networks demonstrate the effectiveness
of RGCLN, achieving optimal accuracy and solving domain problems.

For future work, we will try to extend RGCLN to the detection of directed signed
networks since the directional information given will have more positive effects on signed
clustering. Another direction worthy of continued research is with respect to time series
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prediction. It would also be interesting to study the evolution of node states and rela-
tionships through dynamic signed network data elements containing time series to infer
target-predictive information with the application or research value.
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