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Abstract: Multi-scale context information, especially long-range dependency, has shown to be
beneficial for speaker verification (SV) tasks. In this paper, we propose three methods to systematically
explore long-range context SV feature extraction based on ResNet and analyze their complementarity.
Firstly, the Hierarchical-split block (HS-block) is introduced to enlarge the receptive fields (RFs)
and extract long-range context information over the feature maps of a single layer, where the multi-
channel feature maps are split into multiple groups and then stacked together. Then, by analyzing
the contribution of each location of the convolution kernel to SV, we find the traditional convolution
with a square kernel is not effective for long-range feature extraction. Therefore, we propose cross
convolution kernel (cross-conv), which replaces the original 3 × 3 convolution kernel with a 1 × 5 and
5 × 1 convolution kernel. Cross-conv further enlarges the RFs with the same FLOPs and parameters.
Finally, the Depthwise Separable Self-Attention (DSSA) module uses an explicit sparse attention
strategy to capture effective long-range dependencies globally in each channel. Experiments are
conducted on the VoxCeleb and CnCeleb to verify the effectiveness and robustness of the proposed
system. Experimental results show that the combination of HS-block, cross-conv, and DSSA module
achieves better performance than any single method, which demonstrates the complementarity of
these three methods.

Keywords: speaker verification; long-range dependencies; hierarchical-split block; cross convolution;
depthwise separable self-attention module

1. Introduction

Speaker verification (SV) aims to identify or verify an individual’s identity from
samples of his/her voice, which has developed rapidly over the years. SV systems based on
neural networks have emerged in recent years and achieved state-of-the-art performance.
SV systems consist of two parts, (i) a front-end, aka feature extractor, that extracts speaker
embedding and (ii) a back-end that produces a likelihood ratio score using the enrollment
and test embeddings. Front-ends generally consist of three parts, one frame-level speaker
feature extractor (hereinafter referred to as feature extractors), one pooling layer for statistics
extraction and one embedding extractor for segment-level speaker embedding extraction.

Various neural network feature extractors are key ingredients to achieving great
improvements in SV tasks. D-vector [1] firstly proposes a neural network feature extractor.
X-vector [2] and ResNet [3–6] are two of the most popular feature extractors in the past
years. X-vector uses the Time Delay Neural Network (TDNN) as a feature extractor to
consider the dependencies of contiguous frames, and ResNet utilizes the convolutional
neural network as frame-level feature extractors to model speaker information. While,
because the TDNN or CNN units can not model dependencies outside the receptive field,
it is challenging to model long-range dependencies due to the limited receptive fields
(RFs). In addition, speech has a rich temporal structure over multiple timescales, and
identity-relevant acoustic information is carried on more than one timescale, such as
10–30 ms for fundamental frequency, 100–300 ms for rhythm, and more than 1000 ms for
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intonation information. Meanwhile, numerous biological researches [7,8] show that the
brain displays a complex multiscale temporal organization to track acoustic dynamics
of different timescales. Thus, enlarging the model receptive field is crucial for SV task.
Here, TDNN can be regarded as a one-dimensional convolution; thus, CNN is used in the
following paper for convenience.

The most straightforward method is to deepen the network by stacking neural network
layers, e.g., DTDNN [9], ResNet101. However, there are two important problems. First, The
features extracted from the serial network generated by stacking layers contain single-scale
speaker information. Second, study [10] shows that the empirical RFs gained by a chain
of convolutions are much smaller than the theoretical RFs by experiments, especially in
deeper layers. Another work [11] has proven that the distribution of impact within an
effective receptive field is limited to a local region and converged to the gaussian. Therefore,
speaker features extracted by the serial network are mostly localized, i.e., short, due to the
limited receptive field and model parameters.

Recently, Res2Net, which was proposed in [12], enlarges the model receptive field and
extracts multi-scale features by splitting channels into multiple groups and stacking them
in a single layer. Res2Net module is quickly introduced in the SV field and achieves great
improvements. Quickly, this module is integrated into many SV backbone [13]; ECAPA is
the most famous backbone. In addition, some modified structures are also proposed, such
as SI-Net [14], HS-ResNet [15].

In addition to these methods, enlarging the receptive field of a single layer is another
straightforward method, and we explore it in our prior work [14]. We utilize one large
receptive field branch to extract large-scale features and explore the complementarity
between large-scale features and normal-scale features. Similarly, studies [16–19] shows that
adopting larger kernel-sized convolutions achieves significant performance improvements
in the computer vision field. However, the inference time is intolerable, and the model is
prone to overfitting during training.

The above methods all extract long-range information from a local perspective; other
methods extract long-range information by modeling the pairwise relations globally based
on LSTM and the attention mechanism [20]. In the early years, some studies [21–24]
insert the LSTM on the top of or inside the backbone network for SV tasks to model long-
range information because the LSTM is good at modeling the long-term information. The
authors in [25] combine the BLSTM and ResNet into one unified architecture to model
long-range context information. Recently, the Long-Short Range Attention module [26], a
multi-branch feature extractor, is proposed and utilizes attention to concentrate on global
context. Conformer [17] redesigns the combination of convolution and attention to take
full advantage of the global information extracted from speech. Moreover, numerous
global-based approaches [27–29] based on attention mechanisms have been explored to
promote effective long-range interactions in computer vision (CV) and the speech field.

Overall, these studies indicate that there are three main effective approaches to ex-
tracting long-range context features, stacking layers, enlarging the receptive field of a
single layer, and using the attention mechanism. Thus, this paper has four key aims. First,
we introduce a Hierarchical-Split [15] block to enlarge the RFs in a single block for SV
tasks by splitting multi-channel feature maps into multiple groups and stacking them,
named HS-ResNet. Second, to alleviate the problem of a sharp increase in inference time
and overfitting caused by large convolution kernels, we analyze the contribution of each
location of the convolution kernel to speaker verification by removing some weights at
different spatial locations and observing performance degradation using ResNet34 on
VoxCeleb1. After that, we find the traditional convolution with a square kernel is ineffective
for long-range feature extraction and propose cross-convolution kernels (cross conv) for
speaker verification. Third, we propose the DSSA module, a plug-and-play module based
on the attention mechanism that can be easily plugged into various existing architectures to
improve performance. Fourth, we explore the complementarity of these three approaches.
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We combine these three methods on a single model for comparative experiments to explore
complementarity.

The major contributions are summarized as follows.

• we propose cross-conv to enlarge RFs locally by using the pruning method and the
idea of removing local parameters to evaluate the importance of the location.

• we propose an innovative plug-and-play module based on the attention mechanism,
DSSA module. DSSA module is flexible and extendable, and it can easily be plugged
into multiple mature architectures to improve performance.

• We explore the long-range context information extracted by these three methods by
combining them into one model.

The organization of this paper is as follows. The proposed HS-block is described
detailedly in Section 2. Section 3 demonstrates the DSSA module, which can be taken as
a plug-and-play module based on the attention mechanism. Cross-conv is explored in
Section 4. The experiment settings, results, and analysis are given in Section 5. Section 6
concludes the paper.

2. Related Work
2.1. Speaker Verification System Overview

As introduced in Section 1, two-stage speaker verification systems based on neural
networks, which consist of a front-end and a back-end, are the predominant approach. As
shown in Figure 1, the front-end, that is, the feature extractor, that extracts speaker embed-
dings from utterances, comprises three key components, a frame-level feature extractor, a
pooling layer, and a segment-level feature extractor. The frame-level feature extractor uses
CNN and TDNN to extract frame-level speaker information, the pooling layer converts
frame-level features to segment-level features, and the utterance-level network further
maps the utterance-level features to obtain speaker embeddings. In the training stage,
the parameters of the feature extractor are optimized by using the softmax loss function.
While in the test stage, speaker embeddings generated by the feature extractor are used to
calculate the similarity between the enrollment utterance and the test utterance.

Frame-level 
feature 

extractor

Pooling 
layer

Segment-
level feature 

extractor

Speaker 
embedding

Speaker 
embedding

Loss 
function

(a) Training stage

(b) Test stage

utt1

utt2

Feature 
extractor

Feature 
extractor

Back-end Score

Figure 1. Speaker verification system diagram.

X-vector [2] and ResNet [3] are two of the most representative speaker feature extrac-
tors. X-vector employs a multi-layer TDNN structure, which models temporal context
information through the time-delay units. In contrast, ResNet uses stacked convolutional
layers and incorporates a residual connection to mitigate the vanishing gradient prob-
lem caused by deep neural network architectures. Based on the x-vector, various TDNN
architectures have been proposed, such as ETDNN [30], FTDNN [31] and D-TDNN [9],
which improve performance by deepening the network and enhancing the temporal con-
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text modeling capability. The FTDNN architecture, in particular, employs singular value
decomposition to reduce the number of parameters in the model. Furthermore, the ECAPA
architecture utilizes inter-layer channel splitting and stacking to enhance its modeling
capabilities. One of the most well-known variations of ResNet is Res2Net [12], which splits
the multi-group feature maps into multiple groups and stacks them together, resulting in
substantial improvements in speaker verification tasks.

2.2. ResNet

ResNet, proposed by [3], is one of the most popular architectures for speaker verifica-
tion tasks due to its impressive performance. It consists of stacked convolutional layers
divided into four stages (marked with stages 1/2/3/4). The ResNet34 and ResNet50 struc-
tures are among the most widely used, and the detailed configures are shown in Figure 2.
Each stage contains multiple ResNet blocks, each of which consists of several convolutional
layers and a shortcut connection from the input to the output. In addition, s = 2 means
that this stage includes a down-sampling operation through the use of a stride of 2 in the
first convolutional layer. As shown in Figure 2, the output of this stacked structure is fed
into a pooling layer and a fully connected layer to obtain segment-level embedding. Finally,
the output of the fully-connected layer, known as the embedding, is used to calculate loss
and optimize classification during training and to calculate the score during testing.

Layer name ResNet34 ResNet50 Output size

Input — — 𝐵 × 1 × 𝑇 × 𝐹

Conv 3 × 3, 𝐶 3 × 3, 𝐶 𝐵 × 𝐶 × 𝑇 × 𝐹

Stage1

3 × 3, 𝐶
3 × 3, 𝐶

× 3

s = 1

1 × 1, 𝐶
3 × 3, 𝐶
1 × 1, 𝐶

× 3, s = 1 𝐵 × 𝐶 × 𝑇 × 𝐹

Stage2 

3 × 3, 2𝐶
3 × 3, 2𝐶

× 3

s = 2

1 × 1, 2𝐶
3 × 3, 2𝐶
1 × 1, 2𝐶

× 3, s = 2 𝐵 × 2𝐶 ×
𝑇

2
×
𝐹

2

Stage3

3 × 3, 4𝐶
3 × 3, 4𝐶

× 3

s = 2

1 × 1, 4𝐶
3 × 3, 4𝐶
1 × 1, 4𝐶

× 3, s = 2 𝐵 × 4𝐶 ×
𝑇

4
×
𝐹

4

Stage4

3 × 3, 8𝐶
3 × 3, 8𝐶

× 3

s = 2

1 × 1, 8𝐶
3 × 3, 8𝐶
1 × 1, 8𝐶

× 3, s = 2 𝐵 × 8𝐶 ×
𝑇

8
×
𝐹

8

Pooling & 

Flatten
Average pooling

𝐵 × 8𝐶 × 1 ×
𝐹

8
➔ 𝐵 × (𝐹 ∙ 𝐶)

Fc layer Fully connected layer 𝐵 × 512

Final Loss function / Scoring ——

Figure 2. ResNet34 and ResNet50 architecture.

3. Hierarchical-Split Block

Local-based approaches enlarge the local receptive field through pooling, dilated,
split-stack and other operations usually. A hierarchical-Split block is one of the approaches
by split-stack operations.

The structure of the HS-block is depicted in Figure 3b. The 3× 3 block in the typical
ResNet is modified. After the 1× 1 convolution, the feature maps are split equally into
s groups, denoted by xi, and the 3× 3 convolution filters are also replaced by several
groups, denoted as Fi(). Each xi will be fed into Fi(), and the output feature maps are
denoted by yi. Here, each yi is equally split into two sub-groups, denoted yi,1 and yi,2.
Then, yi,2 is concatenated with the following group xi+1, and then sent into Fi+1(). All
yi,1 are concatenated in the channel dimension as the output of the 3 × 3 convolution
filters, denoted as yi. Especially, each yi,1 has different channels and RFs, and the more
channels yi,1 contains, the larger RFs are gained. In this manner, the feature maps could
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contain detailed information and larger-range dependencies.
⊕

means two feature maps
are concatenated in the channel dimension.

yi =

{
xi, i = 1

Fi(xi
⊕

yi−1,2), 1 < i <= s
(1)

Moreover, the hyperparameters s and t are used to control the HS-ResNet’s parameters
and complexity. s is the group the feature maps are divided into, and t means how many
times the number of channels will be expanded. k means the size of convolution kernel,
w means the number of channels. The computational complexity of the HS-block can be
calculated as follows.

c0 = t× w = t× C
s

ci = c0 +
ci−1

2
(2)

PARAM = k2 × (
s−2

∑
i=0

c2
i + c2

0)

= c2
0 × (4s− 29

3
+ 16× 2−s − 16

3
× 2−2s) (3)

= C2 × (
t
s
)2 × (4s− 29

3
+ 16× 2−s − 16

3
× 2−2s)

Here, we denoted:

β = (
t
s
)2 × (4s− 29

3
+ 16× 2−s − 16

3
× 2−2s) (4)

The parameters of the traditional convolutional layer are C2, and the parameters of
the HS-block are β× C2. By controlling the parameters t and s, β, that is, the parameters of
the HS-block can be precisely designed.

DSSA 
module

Stage 1 Stage 2
Stage 3 Stage 4

𝒄𝟎, 𝟑 × 𝟑,𝒄𝟎

𝑪, 𝟏 × 𝟏,𝒘

𝑪_𝒇, 𝟏 × 𝟏,𝑪

𝑪-channels out

𝒄𝟏, 𝟑 × 𝟑, 𝒄𝟏

𝒄𝟎/𝟐 𝒄𝟎/𝟐

𝑪, 𝟏 × 𝟏,𝒘

𝒄𝟏/𝟐 𝒄𝟏/𝟐

𝒄𝟐, 𝟑 × 𝟑, 𝒄𝟐

𝒄𝟐/𝟐 𝒄𝟐/𝟐

𝒄𝟑, 𝟑 × 𝟑, 𝒄𝟑

𝒄𝟑

concatenate

𝑪, 𝟏 × 𝟏,𝒘 𝑪, 𝟏 × 𝟏,𝒘 𝑪, 𝟏 × 𝟏,𝒘

𝑪-channels in

1D-conv1D-conv1D-conv

MatMul

Scale (Sparse) &Softmax

MatMul

QKV

1D-conv 1D-conv 1D-conv

MatMul

MatMul

Q K V

…  ...

…  ...

Scale (Sparse) &Softmax

concatenate

LayerNorm

(c)

(b)

(a)

Hierarchical-Split block

Depthwise
Separable Self-
Attention module

ResNet series’backbone

𝑥0
𝑥1 𝑥2 𝑥3 𝑥4

ℱ0 ℱ1 ℱ2 ℱ3

𝑦0,1 𝑦0,2 𝑦1,1 𝑦1,2 𝑦2,1 𝑦2,2 𝑦3

Figure 3. Detail structure of HS-ResNet50 and Depthwise Separable Self-Attention module for the
combined system.

4. Depthwise Separable Self-Attention Module

The attention mechanism is generally used to model the pairwise relations from the
global perspective. In this section, we introduce our proposed method, the DSSA module.
Scaled Dot-Product Attention, a core module of the famous Transformer architecture, is
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also the core of our module. Scaled Dot-Product Attention consists of three inputs: queries,
keys, and values. The output of each query will be calculated by the dot products with
outputs of all keys; the results are divided by

√
dk and applied a softmax function to obtain

the weights of the values’ output. Here, dk means the dimension of keys, and dq and dv are
similar. In practice, the above calculations are implemented in the form of matrices. The
outputs are computed as

Attention(Q, K, V) = so f tmax(QKT/
√

dk)V (5)

In the equation, dq = dk = dv = din = d, the projection matrices WQ, WK, WV ∈ Rd×d.
din means the dimension of the frequency axes of the input feature map.

Here are a few challenges when using Multi-Head Scaled Dot-Product Attention in
CNN structures, especially the parameters. The depthwise separable convolution strat-
egy, which decomposes ordinary convolutions into depthwise convolution and pointwise
convolution, is introduced in the module to avoid the massive parameters.

In the DSSA module, the depthwise separable convolution applies a Scaled Dot-
Product Attention to each input channel. As decipted in Figure 3c, the input feature maps F
are split into several groups, and the number of groups is equal to the number of channels
C in the feature maps, Fi, i = 1, ..., C, F ∈ RC×T×W . That is, each group only contains one
channel of the feature maps. Then, each group is fed into three independent 1D-convolution
to generate the queries, keys, and values, Qi, Ki, Vi. The dimension of these is the same as
the input. Specifically, the DSSA module inputs a C× T ×W feature map and produces
three independent C× T ×W feature maps after the convolution layers.

Qi, Ki, Vi = Conv1dQ,K,V(Fi) (6)

After that, the dot products between each query and each key are calculated and
divided by

√
dk. Before applying a softmax function to obtain the weights on the values’,

another square operation acts on the weights, which is to maintain weights in the normal
range and avoid it being too big or too small.

Di =
√

QiKT
i /
√

dk

Yi = So f tmax(Di)Vi

(7)

We perform the layer-norm operation on output of each group Yi in parallel. Finally,
the outputs of groups are concatenated to get y.

y = LayerNorm(x + Y) (8)

In addition, to facilitate the processing of speech with a long duration, the explicit
sparse attention mechanism is designed in this module. The explicit sparse attention only
pays attention to the nearest k frames. The attention weights degenerate to the sparse
attention through k-nearest selection. The weights of k nearest frames of each row in the
attention weight matrix are selected, and the others are replaced with −∞.

M(Di, k)mn =

{
Di,mn, i f m ≥ n− k/2 & m ≤ n + k/2
−∞, else

(9)

where Di,mn means the value of row m and column n in i channel.

5. Cross-Convolution Kernel

Although enlarging the RFs of the convolution kernel is rather straightforward to
extract long-range features, it causes problems of difficult training and slow inference.
The main reason is parameters, and we propose a cross-convolution kernel to solve
this problem.
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Firstly, we analyze the contribution of each location of the traditional 3× 3 convolution
kernel to speaker verification by using the pruning method and the idea of removing
local parameters to evaluate the importance. The training dataset and evaluation set are
VoxCeleb1 and Vox1-O, and ResNet34 is used as a feature extractor. EER on Vox1-O and the
accuracy of the training set are used to evaluate the performance degradation. The initial
EER is 3.807, and the training accuracy is 99.99%.

In Figure 4a, we remove one weight of the convolution kernel. As we can see, the
middle row is more important for speaker verification compared with other locations. Then,
we remove two weights from the convolution kernel. As shown in Figure 4b, the white
block represents the weight of this location is set to 0, and the weights of the orange block
are reserved. Because removing the center of the convolution kernel causes significant
performance degradation, we do not show these. Figure 4b shows that some patterns,
especially (4) and (8), are not important for speaker verification, while patterns of (1), (3),
(6) are important for speaker verification compared with others. These results show that
the traditional convolution with a square kernel is redundant for speaker verification.

EER = 18.84

Train acc= 43.29%
EER = 10.30

Train acc= 62.39%

EER = 15.58

Train acc= 35.90%
EER = 8.87

Train acc= 93.14%

EER = 8.57

Train acc=94.91%
EER = 14.85

Train acc= 27.99%

EER = 9.00

Train acc= 92.13%

EER = 8.24

Train acc= 94.26%
(a)

(b)

EER=8.45

Train-acc=

98.03%

EER=5.88

Train-acc= 

99.45%

EER=6.70

Train-acc= 

98.67%

EER=11.25

Train-acc= 

82.52%

EER=8.12

Train-acc= 

84.79%

EER=10.05

Train-acc= 

84.45%

EER=5.98

Train-acc= 

99.58%

EER=5.45

Train-acc= 

99.55%

EER=6.32

Train-acc= 

99.17%

(c)

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 4. Performance degradation after removing local parameters.

Thus, considering the convenience and the importance of each location, we utilize
1 × 5 and 5 × 1 convolution kernels for replacing the original 3 × 3 convolution kernels and
proposing cross-convolution kernels to enlarge RFs and enhance the ability of long-range
feature extraction, as shown in Figure 4c. Because the output feature maps are calculated
by sliding the convolution kernel over the input feature maps, the feature maps generated
using cross-convolution contains all patterns except for (4) and (8).

6. Experiments

In this section, we first describe the datasets used for our experiments, VoxCeleb and
CnCeleb. Then, the training details, including pre-processing, training strategies, and
evaluation metrics, are presented.

6.1. Datasets and Augmentation

We conduct experiments on three datasets, VoxCeleb1&2 (Vox1&2) [32,33], and CnCeleb
1&2 [34,35].

The experiments are classified into two series according to the training set, the Vox
series and the Cn series. The dev part of Vox1&2 are used as the training part of the
Vox series, respectively, which contains 1211 speakers and 5994 speakers separately. Data
augmentation is not used in all VoxCeleb experiments. Vox1-O, Vox1-E, and Vox1-H are
used as evaluation sets. The Vox1-O sets are used in the analysis part mainly, while
the VoxCeleb1-E and Vox1-H are used to prove the generalisability and robustness of
our model.

VoxCeleb1&2 and CnCeleb1&2 are used as the training sets of the CN series, which
contains 7205 speakers and 2793 speakers, respectively. Two types of augmentation meth-
ods are adopted: (1) adding reverberation using RIR Noise dataset [36], (2) adding noise
using MUSAN [37] dataset. CN-eval database is used as an evaluation set. The evaluation
sets are described in Table 1.
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Table 1. The detail of test datasets.

Datasets Spks Utts Trials

Vox1-O 40 4708 37,611
Vox1-E 1251 145,160 579,818
Vox1-H 1190 137,924 550,894
CN-eval 196 17,973 3,484,292

6.2. Data Preprocessing

We use 64-dimensions FBanks as the raw acoustic features, which are extracted from
25 ms frames with 10 ms overlap, spanning the frequency range 0–8000 Hz. No voice
activity detection (VAD) is applied.

6.3. Training Setting

As shown in Figure 2, the ResNet-50 architecture are used in our experiments. The
initial number of channels is set as 32. To maintain a similar number of parameters with
ResNet50, t is set as 1.5 when s is set as 8 in the following experiments according to
Equation (3) in the HS-ResNet. Moreover, experiments show that inserting the DSSA
module between stages 3 and 4 achieves better improvements. Thus, for convenience, the
DSSA module is applied between stages 3 and 4 if not specially specified.

In the training stage, a mini-batch size of 32 is used to train models in all experiments.
Softmax with cross-entropy loss is used to train models of the Vox series, and circle loss is
used to train models of the Cn series if not specially specified. Stochastic gradient descent
(SGD) with momentum 0.9, weight decay 1× 10−3 is used. The learning rate is set to 0.1,
0.01, and 0.001 and is switched when the training loss plateaus. Each speech sample in
the training stage is sampled for L frames from each speech sample. The chunk size L is
randomly sampled from the interval [L1; L2], and the interval is set to [200, 400], [300, 500],
and [400, 600] in the three training stages.

6.4. Evaluation Metrics

In the testing stage, cosine similarity is applied as the back-end scoring method. The
performance of different systems is gauged in terms of the EER and minDCF. We set the
prior target probability to 0.01.

7. Results and Analysis

In this section, we compare and analyze three methods with baseline and other main-
stream speaker verification methods in the same experimental setting. First, we present
performance, EER, and minDCF, in three methods and analyze the complementarity be-
tween the three methods. In addition, we plot detection error trade-off (DET) on Vox1-H
to further analyze performance. Then, class activation mapping (CAM) [38] is demon-
strated for comparative analysis of three methods. Further, performance on CnCeleb is
presented to further prove the generalisability and robustness of our proposed method.
Finally, we compare the combination of three methods with other mainstream speaker
verification methods.

7.1. Comparison and Analysis of Three Methods on the Vox Test Sets

We experiment with three methods on three test datasets, Vox1-O, Vox1-E, and Vox1-H.
EER and minDCF are used as metrics. The training dataset of all experiments in this part
only contains Vox2-dev without augmentation. As displayed in Table 2, three methods and
their combinations are compared.
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Table 2. Results of three methods and their combination on the Vox1-O/E/H.

Vox1-O Vox1-E Vox1-H
EER minDCF EER minDCF EER minDCF

ResNet50 2.03 0.196 1.86 0.209 3.28 0.319
HS-Net50 1.46 0.136 1.34 0.163 2.58 0.243

ResNet50+cross 1.57 0.150 1.43 0.176 2.61 0.254
ResNet50+DSSA 1.76 0.157 1.55 0.173 2.84 0.264
HS-Net50+cross 1.26 0.104 1.22 0.144 2.39 0.226
HS-Net50+DSSA 1.27 0.101 1.19 0.147 2.29 0.219

HS-Net50+cross+DSSA 1.10 0.099 1.02 0.113 2.10 0.202

Firstly, we analyze the results of three methods. Three methods all achieve perfor-
mance improvements. HS-ResNet50 exceeds the ResNet50 by 30% on EER and minDCF.
The stronger ability to model long-range dependencies with HS-ResNet has proven that it is
able to achieve great performance improvements through experiments. Its unique split-stack
structure effectively collects more long-scale features and more long-range information.
The cross-conv module achieves 20% improvements on EER and minDCF, compared with
the no cros-conv method. By replacing the original 3 × 3 convolution kernel with a 1 × 5 and
5 × 1 convolution kernel, the RFs of the model are enlarged, and the ability of long-range
feature extraction is enhanced. DSSA module achieves 15% improvements on EER and
minDCF, which uses an explicit sparse attention strategy to capture effective long-range
dependencies globally in each channel, and its parameters are increased just a little.

Then, we analyze the complementarity between the three methods. The HS-block and
cross-conv focus on enlarging the local receptive field by stacking convolution filters and
enlarging RFs in a single layer, respectively. The DSSA module focuses on integrating long-
range information and extracting long-range context features globally. In theory, they are
complementary to each other. Thus, we combined these methods into ResNet50. Compared
with HS-Net50, HS-Net50+cross and HS-Net50+DSSA both achieve 15% improvements
on EER and 25% improvements on minDCF, and HS-Net50+cross+DSSA achieve 25%
improvements on EER and 35% improvements on minDCF. These demonstrate that there
are strong complementarities between the three methods. The detection error trade-off
on Vox1-H are shown in Figure 5. As can be seen from the figure, our proposed method
achieves significant performance improvements.
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Figure 5. DET curves for all systems.

7.2. Comparison of Long-Range Feature Extraction Visually for Three Methods

Class activation mapping is used to demonstrate the impact of the three methods
and combinations on speaker verification visually. We randomly select one utterance
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in the VoxCeleb sets and perform the visualization analysis by Grad-CAM [39], which
derives the attention weight distribution of the model on the feature map from the gradient
information. The CAM heatmaps of three methods are shown in Figure 6. With these
three approaches incorporated, the model tends to model long-time dependencies and
extracts long-range features, which further demonstrates the effectiveness of our methods
in extracting long-time features.

Figure 6. CAM heatmaps for three methods.

7.3. Comparsion of Proposed Methods on the CnCeleb Dataset

To further measure the generality and robustness of our method, we conduct experi-
ments on CnCeleb sets. The experimental results are shown in Table 3 and are similar to
the Voxceleb test. Each method and combination achieve performance improvements.

Table 3. Results of three methods and their combination on CN-eval.

Training-Data System
CN-Eval

EER minDCF

CN & Vox

ResNet50 6.89 0.398
ResNet50+DSSA 6.20 0.376
ResNet50+cross 6.46 0.388

HS-Net50 5.97 0.360
HS-Net50+cross 5.62 0.369
HS-Net50+DSSA 5.43 0.360

HS-Net50+cross+DSSA 5.33 0.347

ResNet293+LM [40] 5.23 0.316
RepVGG-A2 [41] 5.85 0.293

7.4. Comparison of Mainstream Methods on the Voxceleb Dataset

To compare with other state-of-the-art models, we use another experimental setup
for training our proposed methods on VoxCeleb2. Different from Section 6, we first use
the SoX speed function with speeds 0.9 and 1.1 to generate extra twice speakers. Then,
we use MUSAN and RIRs noises to perform online data augmentation. 80-dimensional
FBank are used as input features instead of the original 64-dimensional Fbank. The training
protocol is the same as [42]. The results are shown in Table 4. Our proposed methods
achieve great performance.
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Table 4. Comparison of EERs of our proposed model with others.

Vox1-O Vox1-E Vox1-H
EER minDCF EER minDCF EER minDCF

ECAPA-TDNN [13] 0.87 0.107 1.12 0.132 2.12 0.21
SimAM-ResNet34 [43] 0.64 0.067 0.84 0.089 1.49 0.146

MBFA-MW-ECAPA-TDNN [44] 0.87 0.115 1.22 0.135 2.31 0.222
HS-Net50+cross+DSSA(ours) 0.52 0.039 0.76 0.081 1.38 0.142

8. Conclusions

In this paper, we propose three methods to capture long-range dependencies and
improve performance for speaker verification. The first method replaces the 3 × 3 con-
volution with an HS-block to enlarge the local RFs of a single layer. The second method
proposes the DSSA module, which integrates information from the global perspective in
each channel of the feature maps. The third method is the cross-convolution kernel, which
replaces the traditional 3 × 3 convolution kernel with a 1 × 5 and 5 × 1 convolution kernel.
These methods capture long-range dependencies from different perspectives and are highly
complementary. To evaluate the robustness of our methods, we conduct experiments in
VoxCeleb and CnCeleb sets. By integrating them into one model, we achieve state-of-the-art
performance in VoxCeleb sets and CnCeleb sets.
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