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Abstract: To feed the ever-increasing population under changing climate scenarios, it is imperative
to investigate the role of halophytes, which are equipped with special adaptation mechanisms to
cope under extreme conditions of salinity. In the current review, we aimed to report newly identified
bioactive secondary metabolites that might play a role in establishing rhizosphere microbe associ-
ations, elucidate the negative impacts of salt stress, and direct the growth and yield of halophytes.
A systematic approach was developed that deciphers those metabolites involved in regulating the
physiological, biochemical, and molecular responses of halophytes to salt stress. The mechanism of
salinity tolerance, recruitment of beneficial microbes, and signaling role of secondary metabolites
were also discussed. The role of halotolerant rhizobacteria’ secondary metabolites in the physiology
and growth parameters of halophytes was also discussed.
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1. Introduction
1.1. Impact of Climate Change on Biosaline Agriculture and the Role of Halophytes

Current climate change poses a serious threat to agricultural productivity. A rise in
the atmospheric CO2 level, heat waves, elevated temperature, soil drought, and salinity are
all major outcomes of climate change that adversely affect the growth of glycophytes [1,2].
Halophyte crops are better alternatives for food, fodder, fiber, fuel, essential oil, and
medicines, as they have developed special characteristics to cope with environmental
extremes. Halophytes possess a greater degree of tolerance than non-halophyte crops. Some
parasitic plants develop succulence when growing on halophytic hosts, and an interesting
finding is that halophytes growing in their natural habitats do not show signs of oxidative
stress [3]. Halogeton glomeratus is an annual herbaceous and succulent halophyte belonging
to the family Chenopodiaceae. It is considered a potential source for oilseed production
and also assists in phytoremediation. Exposure of H. glomeratus to long-term salinity and
drought stress results in decreased chlorophyll and carotenoid content and inhibition of
the photosynthetic rate, transpiration rate, stomatal conductance, water potential, and
biomass [4].

Halophyte plants survive in soil where salinity is around 200 mM NaCl [5]. Plant ecol-
ogists classify halophytes into three main groups. The first is euhalophytes that dilute salt
within their stems or leaves and have a strong capability to endure salt stress. Recretohalo-
phytes secrete salt from their leaves and grow widely around the world, inhabiting inland
saline lands and seawater. Pseudo-halophytes can not only hold up ions in roots but also
minimize their transport to the shoot parts. On the basis of morphology, they are classified
into two groups: excretive and succulent. Based on salt demand and tolerance to NaCl,
they can be classified as obligate halophytes, facultative halophytes, and habitat-indifferent
halophytes. Obligate halophytes are true halophytes, as they need salt for their growth.
Members of the family Chenopodiacea belong to this category. Facultative halophytes gen-
erally grow in soil where salts are in quite low concentrations, but they can also grow under

Appl. Sci. 2023, 13, 1299. https://doi.org/10.3390/app13031299 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031299
https://doi.org/10.3390/app13031299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13031299
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031299?type=check_update&version=2


Appl. Sci. 2023, 13, 1299 2 of 13

saline conditions. Monocots belonging to families Poaceae, Cypraceae, and Juncaceae
and a large number of dicotyledons belong to this group. Habitat-indifferent halophytes
prefer to live in saline-free soil but can also thrive in saline soil. Examples are Festuca rubra,
Agrostis stolonifera, and Juncus bufonius. On the basis of habitat, halophytes are classified
into hydrophalophytes (grow in saline water or salt marshes) and xerohalophytes (grow
in desert). Salinity induces the release of oleanolic acid in the root exudates of Salicornia,
which act as chemoattractants for colonizing halophilic siderophores producing Halomonas
anticariensis FP35T [6]. In return, colonization of this bacterium enhances the positive effects
on the root length, shoot length, germination, and vigor index of S. hispanica [6].

1.2. Halophytes as Crop Plants

For agricultural sustainability under saline conditions, two possible approaches are
needed: (i) improving salt tolerance of cultivated crops, or (ii) domestication of halo-
phytes [5]. The majority of crop plants are non-halophytes. Genetically modified crops
have been developed for biosaline agriculture, but this is time consuming and involves
many genes possessing various pros and cons and causes various allergic reactions, dis-
rupting natural gene flow and increasing the risk factors of human diseases [7].

The cultivation of halophytes for food, fodder, edible oil, biofuel, and medicine seems
to be an alternate option, as they are fully equipped with better salt tolerance properties.
Many species of halophytes have the potential to be used as gourmet vegetables and salad,
i.e., Aster tripolium, Atriplex hortensis, Beta maritime, Crambe maritima, Crithmum maritimum,
Inula crithmoides, Salicornia spp., Salsola soda, and Tetragonia tetragonioides. Some wild edible
halophytes are in the genera Bassia, Beta, Cakile, Chenopodium, Plantago, Portulaca, and Suaeda.
Atriplex halimus, Salicornica fruticosa, and Cakile maritime accumulate Na+ in their leaves,
but the content of this ion is lower compared to other culinary halophytes. These plants
can be used as sources of green salt (plant-based salt contains 50 % less Na than common
salt) due to their nutritional value [8,9]. The seeds and lignocellulosic biomass of several
halophyte genera, i.e., Salicornia, Suaeda, Atriplex, Distchlis, and Batis, have been exploited
for the production of biofuel (bioethanol). Suaeda is a high salt tolerant C4 species. This
genus ameliorates contaminated saline soil and is also used in food, fodder, medicine,
and bioenergy.

A wide group of halophyte species (2500–3000) occur naturally in salt marshes, provid-
ing an opportunity to use them as crop plants to combat food security in the future. Seven
species of plants, namely Suaeda glauca, Bassia scoparia, H. glomeratus, Kalidium foliatum,
Medicago falcata, Atriplex canescens, and Artemisia desertorum, can be used as enrichment
materials for Zn and Cu. H. glomeratus has medicinal value in traditional Chinese medicine.
Wang et al. [10] identified secondary metabolites that included flavones, flavonols, flavan-
diols, glucosinolates, isoquinolines, pyridines, indoles, amino acids, lipids, carbohydrates,
and ATP-binding cassette transporters. These metabolites regulate osmotic adjustment and
modulate the adjustment of membrane lipid action in H. glomeratus. These metabolites also
have applications in human cardiovascular diseases, cancers, diabetes, and heart diseases.
Economic importance of some halophytes are listed below in Table 1.

Table 1. Economically important halophytes, their bioactive metabolites, and their role in plants and humans.

Species Secondary Metabolites Economic Value Reference

Apocynum venetum Flavonoids Anti-inflammatory activity [11]

Atriplex triangularis Hydroxyecdysone, flavonoids, and phenolics Nutritional properties rich source of
proteins, vitamin A, and vitamin C [12]

Avicennia marina Saponin, triterpenoid, or phytosterol. As fodder, biological and pharmacological
importance [13]

Beta vulgaris Phenolics, carotenoid, ascorbic acid, betalains food additive, improve redness in tomato
paste and jellies [14]
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Table 1. Cont.

Species Secondary Metabolites Economic Value Reference

Suaeda fruticosa Effective against B. subtilus, P. aeruginosa,
and S. aureus [15]

Cenchurus cilliaris Stigmasta-5, 22-Dien-3-ol,
6,6-Dideutero-nonen-1-ol-3 Used in Pharmaceutical Industry [16]

Chenopodium quinoa Phytoecdisteroids and polyphenols Seed protein content twice that of rice,
contains lysine [17]

Lespedeza bicolor Ptrerocarpans, lespedezol, dihydrolespedezol Significant virucidal activity [18]
Suaeda vermiculata,
Salsola cyclophylla

Camphor, benzoic acid ester, borneol, α
Terpineol, hexahydrofarnesyl acetone antimicrobial and antioxidant activity [19]

Thymus spinulosus,
Satureja cuneifolia thymol, alpha pinene as natural pesticide in organic agriculture [20]

Tamarix africana,
Suaeda fruticosa Rutin, Gallic acid, Kaempferol 3-O-glucoside

bactericidal activity against B. subtilis and
S. auresus, strong antifungal effect against

C. albicans
[21]

Tecticornia sp.
(Samphire) Celossianin II, isocelosianin II, indigenous edible halophyte in Australia [22]

Eryngium
maritimum L.

carvacrol, 2,3-dimethoxybenzoic acid,
naringenin, catechin, and t-cinnamic acid

In vitro inhibition of diabetes-related
enzymes, antioxidant potential [23]

Artemisia campestris
subsp. maritima

quinic, chlorogenic and caffeic acids, coumarin
sulfates, and dicaffeoylquinic acids

Pharmaceutical, cosmetic, and/or
food industries [24]

Limonium algarvense
52 different metabolites present in leaves

extract identified through
LC-ESI(-)-HRMS/MS

Antioxidant, anti-inflammatory,
neuroprotective, and

antidiabetic properties
[25]

Limonium vulgare quercetin and myricetin or myricetin
3-rhamnoside Nutraceuticals and/or pharmaceuticals [26]

1.3. Salt Tolerance Mechanism of Halophytes: Role of Secondary Metabolites

According to Meng et al. [27], halophytes have adapted to thrive under high salinity
conditions by secreting salt crystals through salt glands, regulating cellular ion home-
ostasis and osmotic pressure, detoxifying reactive oxygen species (ROS), and bringing
alterations in membrane composition. A diverse group of secondary metabolites is in-
volved in regulating these functions. Functionally, they are classified as osmoprotectants,
antioxidants, polyamines, and phytohormones. On the basis of their biosynthetic pathway,
they are categorized into (i) phenolic groups (composed of single sugar and benzene rings);
(ii) terpenes and steroids; and (iii) N-containing compounds. In this section, an effort has
been made to explain the role of secondary metabolites in modulating the salt tolerance
strategies of halophytes. The following are adaptations of selected halophytes against
salt stress.

1.3.1. Modification in Morphology or Anatomy

Salt stress induces anatomical modifications in roots, stems, and leaves of halophytes.
Under high salinity, C. cilliaris conserved water by increasing sclerification in the cortex
and pith region and decreasing root thickness with a greater proportion of parenchyma
cells, and rich density of vesicular hairs and trichomes on leaves might be essential for
water conservation and salt excretion [28]. The pattern of adaptation is species specific
and variable among different species, i.e., Salicornia perennans (C3 sp.) showed larger
variation in leaf functional traits, both at the level of cell morphology and membrane
system (chloroplast envelope and thylakoid); however, Climacoptera crassa (C4 sp.) showed
an increase of the mesophyll cell surface, expansion of the interface area between mesophyll
and bundle sheath cells, and an increased volume of the latter [29]. These modifications
were compensated for the scarce CO2 supply and increased salt concentration.

Chloris gayana is a C4 monocot halophyte that tolerates salinity by accumulating the
highest level of Na+ and Cl− in xylem parenchyma and epidermal cells but maintaining the
lowest level in photosynthetically active mesophyll and bundle sheath cells. Furthermore, it
was lowered more than in respective vacuoles [30]. Several genotypes of Trifolium fragiferum
were grown at different salinity levels in controlled conditions. The accumulation of miner-
alome was both genotypic and organ specific. Maximum Na+ and Cl− were accumulated



Appl. Sci. 2023, 13, 1299 4 of 13

in leaf petioles followed by leaf blades and stolons; the Zn concentration increased in all
plant parts, and the Ca+2 and Mg+2 concentrations decreased [31]. In another study, it
was reported that T. fragiferum showed high competitive ability based on better physi-
ological salinity tolerance [32]. Solanum chilense is a halophyte sp. and wild relative of
Solanum lycopersicum that can maintain its reproduction despite the accumulation of Na+ in
its floral organs [33].

1.3.2. SOS System Activate Salt Glands to Exclude Na from Cells

The sodium overly sensitive system (SOS) plays a crucial role in excluding Na+ from
roots and loading to the xylem to regulate ion homeostasis. The SOS system is composed
of SOS1, SOS2, and SOS3. Under salt stress, the increase in cytosolic Ca+2 is perceived by
the SOS3 component, which interacts and activates SOS2, which finally activates the SOS1
Na/H antiporter. SOS1 then mediates Na+ efflux to the apoplast through active transport
driven by the H gradient across the plasma membrane established by H-ATPase.

Recretohalophytes show higher salt tolerance potential than other halophytes due
to the presence of salt glands, which secrete excess salt crystals onto the leaf surface
to maintain cellular ion homeostasis. The genera of recretohalophytes that show such
mechanisms include Limonium and Tamarix. Ions secreted through salt glands include
cations i.e., Na+1, K+1, Ca+2, Mg+2, Mn+2, and Fe+2, and anions (Cl−1, Br−1, I−1, SO4

2−,
PO4

3−, and NO3
−1). Suaeda salsa exhibited greater expression of the S. salsa SOS1 gene in

roots, which was correlated with the increased exclusion of Na by roots [34].

1.3.3. Succulence Mechanism and Epidermal Bladder Cells

Halophytes exhibit selective Na+1 transport; if the concentration is high, then it is
sequestered in vacuoles. Na+1 sequestration is possible though the NHX family Na/H
antiporter in the tonoplast and V-H-ATPase, which create a pH gradient between the
cytoplasm and vacuole, allowing Na+1 to enter into the vacuole against the electrochemical
gradient. The compartmentalization of Na+1 in the vacuoles contributes not only to ion
homeostasis and cell turgidity but also protects metabolic enzymes from ion toxicity.
Some halophytes exhibit the succulence property as they have thick leaves and stems to
accumulate excess Na+1 and Cl−1 in vacuoles, increasing the size of mesophyll cells, and
have smaller intercellular spaces to enhance water content and cause a high turgor pressure.

Duan et al. [35] reported that Glycine max showed a metabolic response to salt stress by
producing isoleucine, serine, and aspartic acid. Similarly, three halophytes
(Frankenia pulverulenta, Atriplex prostrata, and Plantago coronopus) showed increased con-
tent of alkaloid derivative, polyamines (spermidine + spermine ratio) against 400 mM
NaCl stress [36]. Epidermal bladder cells, also known as salt bladders, contain vacuoles
that store excess Na+ and Cl−. They also store ROS-scavenging metabolites and organic
osmoprotectants.

1.3.4. Osmotic Adjustment through Osmolytes

Halophytes synthesize osmolytes in response to low external water potential to adjust
osmosis and maintain positive turgor pressure. Some examples of osmolytes are proline,
aquaporin, and glycine betaine. Salicornia and Sarcocomia species have a long history of
human consumption and are ideal models for developing halophyte crops. Osmotic adjust-
ment in both species is related to sequestration of Na+1, Cl−1, Ca+2 in the shoot that might
be achieved via production of high levels of glycine betaine [37]. Yadav et al. [38] reported
that amino acids, sugars, organic acids, quinidine acid, kaempferol, and melatonin contents
were increased under elevated stress conditions (500 mM NaCl and 5% polyethylene glycol)
for 24 h.

1.3.5. Regulation of ROS by Secondary Metabolites

Reactive oxygen species (ROS) play a role in the signaling pathway, but their increased
accumulation in cells triggers oxidative stress. Halophytes are equipped with powerful
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antioxidant systems with enzymatic and non-enzymatic components to regulate ROS in
the cell. Cakile maritima exhibited stimulation of amino acid biosynthesis and decreased
sugar content and GABA to 400 mM NaCl stress at day 20 [39]. Three wild spp. of
Suaeda synthesize betacyanin to regulate ROS and avoid oxidative stress [40]. Salinity
also induces the production of various flavonoids and phenolic compounds in halophytes
against ROS.

Pungin et al. [41] reported that two halophytes, Spergularia marina and Glaux maritima,
inhabiting salt marshes showed an increased content of flavonoids (hesperetin, epicate-
chin, apigenin derivative, luteolin derivative) and protocatechuic acid, which were also
correlated with increased antioxidant activity. Linic et al. [42] reported an increased accumu-
lation of phenolic acids, particularly hydroxycinnamic acids, and decreased accumulation
of caffeic, salicylic, and 4-coumaric acid in three Brassica spp., upon short-term exposure to
200 mM NaCl stress. Myo-inositol, a derivative of inositol upregulated stress responsive
genes in Chenopodium quinoa, is related to antioxidant enzyme activities and increased
accumulation of free amino acids and soluble sugars under salt stress [43].

1.3.6. Activation of Hormonal Signaling

Abscisic acid (ABA), jasmonic acid, and ethylene are the main plant hormones pro-
duced in response to salt stress. They act as signaling molecules to activate salt tolerance
strategies, i.e., halotropism is the tropic movement of Na in the roots, in which halophytes
obtain optimum salt in order to maintain growth and development, while non-halophytes
show negative halotropism to avoid salt stress. Limonium bicolor is a recretohalophyte with
multicellular salt glands. This plant showed positive halotropism, as evidenced from root
elongation when treated with 200 mM NaCl stress. IAA was involved in regulating this
phenomenon [44]. Phytohormones also maintain the high vitality of anthers and pollens
in some halophytes under salt stress. Guo et al. [45] reported a higher number of pollens
and pollen activity in Suaeda salsa under saline conditions. GA signals partially act with
JA signals via regulation of JA biosynthesis that participate in stamen development under
saline conditions.

1.3.7. Maintaining Biogenetics

Haloxylon salicornicum is a xero-halophyte found in saline and arid regions of the
world. Panda et al. [46] used GC-QTOF–MS and HPLC-DAD to analyze the expression
of metabolites in shoot samples of H. salicornicum treated with 400 mM NaCl. Out of
56 identified metabolites, 47 were significantly changed in response to salt stress. These
metabolites were mainly amino acids, organic acids, amines, sugar alcohols, sugars, fatty
acids, alkaloids, and phytohormones. Some amino acids, e.g., alanine, phenylalanine,
lysine, and tyramine, were upregulated. These metabolites upregulated the tricarboxylic
(TCA) cycle by optimal production of coenzymes (NADH and FADH2) and ample quantity
of ATP during stress conditions.

Carix pumila was treated with 200, 300, 400, and 500 mM NaCl for 60 h, and leaf
samples were analyzed to identify metabolites involved in the regulation of glycolysis,
the pentose phosphate pathway, and the TCA cycle [47]. Heat map of hierarchical cluster
analysis revealed changes in 39 metabolites, including 16 organic acids (galactaric acid,
succinic acid, benzoic acid, fumaric acid, glyceric acid, malonic acid, gluconic acid, glutaric
acid, malic acid, hexadecanoic acid, propanoic acid, octadecanoic acid, phosphoric acid,
hexacosanoic acid, and hydroxycarbamic acid), 9 amino acids (alanine, proline, aspartic
acid, valine, serine, asparagine, glycine, threonine, isoleucine), 9 kinds of sugars (glucose,
mannopyranoside, galactopyranose, glucopyranose, galactose, allose, sucrose, fructose,
mannose), 3 sugar alcohols (glycerol, galactinol, myo-inositol), and 2 amines (ethanolamine,
hydroxylamine) [48].
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1.4. Halobacteria Diversity

Halobacterium species are obligate aerobic, rod-shaped archaea enveloped by a single
lipid bilayer membrane surrounded by an S-layer made from the cell-surface glycopro-
tein [7]. They can use amino acids for their growth in aerobic conditions, but they can also
grow in an anaerobic environment, given the correct conditions [7]. Halobacteria can be
found in highly saline lakes, such as the Great Salt Lake, the Dead Sea, and Lake Magadi.
Halobacteria are candidates for a life form present on Mars. These microorganisms develop
a thin crust of salt that can moderate some of the ultraviolet light and make it opaque
through their photosynthetic pigment bacteriorhodopsin [7].

Halobacteria are able to survive under a wide range of salinities. According to their
survival potential, they are classified as halotolerant or halophilic bacteria. Halotolerant
bacteria can survive in media up to 25% NaCl, whereas halophile bacteria require salt to
grow. They have been isolated from different halophyte plants across the world, i.e., the
rhizosphere of Leymus chinensis, Puccinellia tenuiflora, and Suaeda glauca, are highly enriched
with the phyla of bacteria Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Firmi-
cutes, Gemmatimonadetes, Haloarchaea, and Proteobacteria [49–51]. The Firmicutes phylum
consisted of genera Bacillus, Virgibacillus, Salincoccus, Marinococcus, Halobacillus, Planococcus,
Thalassobacillus, and Salimicrobium; in phylum Actinobacteria, Nocardiopsis was the repre-
sentative genus; in phylum Proteobacteria, Halomonas, Idiomarina, and Psychrobacter were
representative genera [48]. Halobacteria exhibit a highly complex network of diversity than
endophytic bacteria and bacteria from bulk soil. Gao et al. [52] reported Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria in the rhizosphere of Salicornica europaea, Ka-
lidium foliatum, and Borsczowia aralocaspica. These bacteria exhibit a variety of mechanisms
that have multiple roles, e.g., safeguard halophytes from salt stress, promote their growth,
and remediate soil contamination (Figure 1).

1.5. Climate Change Modulates Rhizosphere Microbial Community

The main factors governing the diversity of the rhizosphere microbiome are (1) cli-
matic factors (precipitation, temperature, salinity, drought, etc.), (2) soil physicochemical
properties (pH, EC, cation exchange capacity, organic C content), and (3) root exudation
pattern and composition [45]. Lashini et al. [53] isolated rhizobacteria from the rhizosphere
soil of olive trees grown in semiarid and arid areas of Morocco. The strains were 85%
halotolerant and 65% thermotolerant, and they were able to overcome high salinity (≥4%)
and temperature stress (≥45 ◦C). They were identified as Bacillus licheniformis, Arthrobacter
globiformis, and Bacillus megaterium. About 21% of photosynthetically fixed C is transferred
into plant roots and root exudates in the form of soluble sugars, phenolic acids, amino
acids, and organic acids. The elevated level of such compounds alters the community
composition and structure of active bacteria [54]. The greater input of liable C via root
exudates may increase microbial N demand, as competition occurred between microbes
and plants for available N. Thus, N dynamics are likely to change under elevated CO2. It
also affects the community of N-fixing bacteria [54]. Salinity influences the structure of the
rhizosphere microbiome of halophytes. Mukhtar et al. [55] conducted a study to compare
the composition of the rhizosphere microbiome of halophytes Urochloa, Kochia, Salsola, and
Atriplex inhabiting the moderate and high saline environment of Khewra salt rang, Pakistan,
with that of non-halophyte Triticum. Analysis of the 16S rRNA gene showed that Acti-
nobacteria were dominant in the saline soil. Other identified groups were Euryarchaeota,
Ignavibacteriae, and Nanohaloarchaeota. Soil physicochemical properties, i.e., pH, EC, and
SOC, also influence the microbe community. For example, TS, Cl−, SO4

2−, HCO3
−1, Na+,

and Mg+ are the main factors influencing the rhizosphere microbiome structure [56]. Soil
pH is one of the key factors shaping halophytic rhizosphere soil bacterial community com-
position and diversity, and SWC content is a possible factor affecting bacterial community
functions [57].
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Figure 1. Mechanism of halobacteria in ameliorating salt stress and improving growth and yield of
halophytes under saline conditions.

1.6. Secondary Metabolites Recruit Beneficial Rhizospheric Microbes

Root exudates are crucial in modulating the composition and functional diversity of
rhizosphere microbes. Mucilage is actively released from the roots, while diffusates are
passively released due to osmotic differences between the soil solution and the cell. Both
types include organic compounds, which are classified into low and high molecular weight
compounds. Heavy molecular weight compounds (i.e., mucilage, cellulose) are not easily
used by microbes and make up the majority of C released from roots. Low molecular
weight compounds are highly diverse and have a wide array of functions. These consist
of organic acids, amino acids, proteins, sugar, phenolics, and other secondary metabolites
(including benzoxazinoids, coumarins, flavonoids, indole compounds, and terpenes) that
shape the rhizosphere microbiome [58].

Plant secondary metabolites have differential effects on soil microbiota. Two indole
metabolites, benzoxazolinone and gramine, produced by different Graminae species, and
quercetin, a flavonoid synthesized by many dicot species, revealed significant effects on
soil bacteria, with benzoxazolinone showing a predominantly inhibitory effect preventing
the accumulation of many predominantly harmful taxa, while gramine and quercetin
mostly exert their function by attracting beneficial bacteria [58]. Oleanolic acid possesses
chemoattractant properties and is the principal constituent of Salicornia root exudates
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that have the potential to expand the colonization of salt-tolerant Salicornia hispanica by
halophilic siderophore-producing bacteria Halomonas anticariensis FP35T [6].

Terpene is a highly diverse group of secondary metabolites that play an important role
in plant microbe interaction. Arabidopsis thaliana root exudates contain triterpenes, namely
thalianin, thalianyl medium-chain fatty acid esters (three steps), and arabidin, that are
involved in belowground communication and able to directly modulate A. thaliana-specific
root bacterial communities in a very selective manner [59]. Xiong et al. [60] reported that or-
ganic acids (2-methylbutyric acid, stearic acid, palmitic acid, palmitoleic acid, and oleic acid)
found in the root exudates of Limonium sinesis promoted the chemotaxis of the rhizosphere
PGPR strain Bacillus flexus KLBMP 4941. Strigolactone is a new class of phytohormone that
acts as a signaling molecule in symbiosis to recruit root- and rhizosphere-associated micro-
biomes. Kim et al. [61] analyzed the bacterial and fungal microbial communities of 16 rice
genotypes differing in exudation of root strigolactone. The results showed that structural
differences in the exuded strigolactones affected different sets of microbes, i.e., the relative
abundance of phosphate solubilizing microbes; Burkholderia, Caballeronia, Paraburkholderia
and Acidobacteria were linked to orobanchol strigolactone, whereas 4-deoxyorobanchol was
associated with genera Dyella and Umbelopsis [61].

1.7. Halobacteria for Biosaline Agriculture

Halobacteria possess plant growth promoting characteristics, i.e., Reang et al. [62]
isolated halotolerant and halophilic bacteria belonging to Halomonas pacifca, H. stenophila,
Bacillus haynesii, B. licheniformis, and Oceanobacillus aidingensis. These isolates were able to
produce indole acetic acid, solubilized phosphate, and potash and showed N-fixing capacity.
There is a growing number of publications on plant growth promotion by halophilic
rhizobacteria isolated from the roots of halophyte species [63,64].

Endophytic halophiles (Halomonas and Bacillus) isolated from the roots of halophiles
showed maximum salt tolerance up to 4 mM NaCl [65]. When these isolates were used
to inoculate alfalfa seedlings, they stimulated plant growth in the presence of 1% NaCl,
a level that significantly inhibited the growth of uninoculated plants. Exopolysaccha-
rides (EPS) are commonly produced metabolites by halotolerant bacteria, which exhibit
40–90% extracellular matrix of bacteria under stress conditions [66]. EPS exhibits antioxi-
dant activity and confers tolerance to bacteria against reactive oxygen species. This property
can be exploited to alleviate salt stress damage in crops [67].

Robinia pseudoacacia seedlings exposed to VOCs of the JZ-GX1 strain showed increases
in biomass, plant development, and lateral root numbers. Additionally, decreases in malon-
dialdehyde, superoxide anion (O2

−) and hydrogen peroxide (H2O2) contents and increases
in proline contents and superoxide dismutase, peroxidase, and glutathione reductase ac-
tivities were observed in Acacia leaves. Notably, the sodium–potassium ratio in the roots,
stems, and leaves of Acacia exposed to VOCs of the JZ-GX1 strain were significantly lower
than those in the control samples [68]. Swiss Chard inoculated with halotolerant PGPR
and watered with 85 nmol L−1 NaCl showed higher values of leaf dry weight than control
plants [69]. Furthermore, PGPR inoculation reduced electrolyte leakage and Na+ uptake
and improved the chlorophyll a fluorescence parameters, chlorophyll, and carotenoid
concentrations, stomatal conductance, and antioxidant capacity of Swiss chard. Nijafi
Zilaie et al. [70] reported that two halotolerant bacteria Bacillus pumilus and Zhihengliuella
halotolerans were able to reduce the content of ascorbic acid, flavonoid, total phenol, proline,
malondialdehyde, and catalase activity, and ultimately improved the antioxidant capacity
of Haloxylon aphyllum (Table 2).

Ullah and Bano [71] reported that methanolic extracts of Suaeda fruticosa leaves at
a concentration of 0.5 mg/mL and 0.35 mg/mL were found active against B. subtilis,
S. aureus, E. coli, P. aeruginosa, Candida tropicalis, and Candida albicans. Suaeda fruticosa
aqueous extract showed hypoglycemic (41%) and anti-hyperglycemic (53%) effects in the
hypercholesterolemic and insulin-resistant sand rats. The endophytes residing in the roots
of halophytes have a better adaptation to saline conditions. Hassan et al. [72] demonstrated
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that application of root powder of Cenchrus ciliaris, a halophytic weed grown in Khewra
salt range, induces salt tolerance in wheat, which was mediated by 3 PGPR, B. cereus,
P. moraviensis, and Stenotrophomonas maltophilia, inhabiting the roots of the halophytic weed.

The Glutamicibacter genus is a promising candidate for phytoremediation of saline soil
due to multiple potential plant growth promotion traits and tolerated a high concentration
of NaCl (Table 2). Glutamicibacter halophytocola isolated from roots of Limonium sinesis
significantly promoted the growth of L. sinesis under NaCl stress. Inoculation of L. sinesis
with this bacteria increased the concentrations of total chlorophyll, proline, antioxidative
enzymes, flavonoids, K+, and Ca2+ in the leaves; the concentrations of malondialdehyde
(MDA) and Na+ were reduced [73].

Table 2. Effect of halobacteria on the growth and physiology of some halophytes.

Halobacteria Host Plant Effect on Host Plant Reference

Alcaligenes faecalis SBN01 and
SBN02 Wheat Plant biomass increased at 600 mM NaCl,

accumulation of Total Chl, and Carotenoid [74]

Glutamicibacter halophytcola Tomato seeds At 200 mM NaCl, Root biomass increased,
K+/Na+ ratio changed [75]

Bacillus pumilus FAB10 Wheat At 250 mM NaCl, internal CO2 increased,
reduced CAT, SOD, and glutathione reductase [76]

Aneurinibacillus aneurinilyticus,
Paenibacillus sp. Phaseolus vulgaris root (220%) and shoot (425%) biomass and total

chlorophyll content (57%) increased [77]

Klebsiella sp. Avena sativa
Increased relative water content, proline content,

electrolyte loss, MDA content in shoots, and
decreased SOD and POD

[78]

Bacillus tequilensis, Bacillus
aryabhattai Rice Increase photosynthetic rate, transpiration,

stomatal conductance, grain yield [79]

B. marisflavi, Zhihengliuella
flava and H. nanhaiensis Zea mays L.

Root and shoot length increased in 200 to
400 mM NaCl, high accumulation of proline

compared with the non-inoculated plants
[80]

S. chartreusis, S. tritolerans, and
S. rochei Salicornia bigelovii

enhanced shoot and root dry biomass by
32.3–56.5% and 42.3–71.9%, respectively, 69.1%

increase in seed yield
[81]

Alcaligenes sp. AF7 Rice enhanced the fresh and dry biomass of rice at
170 mM NaCl (EC 9 dS/m) [82]

Halomonas sp. Exo1 Rice enhanced germination index upto 83%,
enhanced length and weight of vegetative parts [83]

P. plecoglossicida, B. flexus, and
B. safensis Bacopa monnieri Increased in shoot Na+/K+ ratio, increased the

growth, and increased bacoside A yield [84]

Staphylococcus sp., Salicornia sp. At 200 MNaCl, plant growth index was
increased by 13.9–47.0% [85]

Halomonas, Bacillus Alfalfa Increased shoot fresh weight, increased biomass
by 2.4 times higher than control [65]

2. Conclusions and Future Perspective

Halophytes offer an ecofriendly alternative to meet the food demand of growing pop-
ulations by re-vegetating saline lands. They can be utilized as an excellent source of biofuel
because they contribute to C balance and inhibit greenhouse gas emission problems. Their
root exudates contain some metabolites that recruit beneficial microbes in the rhizosphere.
Halophytes synthesize phenolics, flavonoids, and a plethora of bioactive compounds that
exhibit antioxidant and antimicrobial properties. The microbes associated with halophytes
also produce a diverse group of bioactive secondary metabolites that modulate the growth
and yield of crops under stress. Halophyte root pieces habilitating halotolerant bacteria
may comprise a good source of biofertilizer or a carrier for biofertilizers. Halophytes are
tools for understanding the salt tolerance mechanism of plants and for adapting agriculture
to climate change. They can be used as cash crops for biosaline agriculture and also for
rehabilitation of arid and semiarid regions. Halophytes also act as good phytoremediators
for contaminated lands. The need is to have a deeper insight into the cross communication
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between halophytes and microbe’s secondary metabolites in rhizosphere to understand
and decipher mechanism that inculcate biosaline agriculture.
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