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Abstract: Satellite remote sensing images contain adequate ground object information, making them
distinguishable from natural images. Due to the constraint hardware capability of the satellite remote
sensing imaging system, coupled with the surrounding complex electromagnetic noise, harsh natural
environment, and other factors, the quality of the acquired image may not be ideal for follow-up
research to make suitable judgment. In order to obtain clearer images, we propose a dual-path
adversarial generation network model algorithm that particularly improves the accuracy of the
satellite remote sensing image super-resolution. This network involves a dual-path convolution
operation in a generator structure, a feature mapping attention mechanism that first extracts important
feature information from a low-resolution image, and an enhanced deep convolutional network to
extract the deep feature information of the image. The deep feature information and the important
feature information are then fused in the reconstruction layer. Furthermore, we also improve the
algorithm structure of the loss function and discriminator to achieve a relatively optimal balance
between the output image and the discriminator, so as to restore the super-resolution image closer to
human perception. Our algorithm was validated on the public UCAS-AOD datasets, and the obtained
results showed significantly improved performance compared to other methods, thus exhibiting a
real advantage in supporting various image-related field applications such as navigation monitoring.

Keywords: remote sensing image; super-resolution; attention mechanism; navigation monitoring

1. Introduction

Satellite remote sensing imaging is a popular and efficient method to achieve indirect
acquisition of surface information, by analyzing the radiation characteristics and electro-
magnetic wave reflection characteristics of ground objects. An ideal image is set to contain
objects that are objectively and accurately identifiable, such as mountains, rivers, vehicles,
and buildings. However, due to the complexity of the satellite imaging system circuit and
unknown electromagnetic environment, the data acquisition process is often interfered
by a bad natural environment, noise, and other factors, resulting in a lower quality of the
output image. This deterioration of the quality can decrease the identification accuracy of
the object and the usability of the image, thus introducing more difficulties to the follow-up
research. Therefore, in current applications, additional preprocessing techniques such as
noise reduction and super-resolution are usually required to improve image quality. This
preprocessing is a critical stage as the data it generates serve as an information foundation
can be relied on for any later earth observation, analysis, identification, and accurate judg-
ment. For this reason, image super-resolution reconstruction technology has important
research value and broad application prospects in the field of satellite remote sensing [1].
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Deep learning is a branch of machine learning, which has a remarkable effect on speech
and image recognition; it enables the machine to imitate human audiovisual perception
and thinking, thereby solving many complex pattern recognition problems [2,3]. In par-
ticular, the image super-resolution reconstruction technology based on deep learning has
made remarkable achievements in recent years. A super-resolution convolutional neural
network (SRCNN) was proposed by Dong et al. [4] in 2014. This method extracts image
features through convolution operation, and then optimizes model mapping parameters
by continuously comparing low-resolution images with high-resolution images. As a
result, a precedent was created for deep learning in the image super-resolution field. Later,
an accelerated super-resolution model of a neural network (fast SRCNN, FSRCNN) was
proposed by Dong et al. [5], which innovatively improved sample images by utilizing
a deconvolution operation in the last layer in the model, to quickly construct the super-
resolution of images with different scales. In 2016, Kim et al. [6] proposed a very deep
super-resolution convolutional network (VDSR), which introduced residual learning to en-
sure that a combination of 20 convolution layers could be utilized to extract image features
over a long distance, and the reconstruction results were significantly impressive. Lim
et al. [7] proposed an enhanced deep convolutional network (EDSR) to learn the differences
in detail between high-resolution images and low-resolution images. The trained model
was significant in size and optimized with fewer modules in place. Similarly, to improve
the overall performance of the network, Lai et al. [8] designed a deep Laplacian pyramid
network for fast and accurate super-resolution (LapSRN). The Laplacian pyramid structure
was adopted to obtain the reconstructed super-resolution image by layer up-sampling and
fusion of residual image features. Ledig et al. [9] also proposed a super-resolution algorithm
based on a generative adversarial network (SRGAN). The image reconstructed by SRGAN
and the corresponding high-resolution image were input into a discrimination network to
determine a true or false result. Through this confrontation training, the super-resolution
reconstruction capability of the model was iteratively improved.

However, the existing super-resolution network algorithms have been built with
relatively insufficient research on satellite remote sensing imaging, where room for further
improvement still exists, particularly in terms of developing a strengthened recovery
effect and a lowered complexity. How to improve the quality of satellite remote sensing
imaging and provide accurate data for satellite navigation [10], surface observation [11],
mapping [12], and military reconnaissance [13] has become a recent research hotspot.
In this paper, we propose a dual-path generative adversarial network model algorithm
which can be applied directly to the super-resolution reconstruction of satellite remote
sensing images for improved quality and performance. Specifically, our system includes a
dual-path convolution operation in the generator structure, a feature mapping attention
mechanism to extract important feature information from a low-resolution image, an
enhanced deep convolutional network to extract the deep feature information of the image,
and a construction layer to fuse the deep feature information and the important feature
information together for the final output. The improved algorithm structure consisting of
a loss function and discriminator also achieves a relatively optimal balance between the
output image and the output of the discriminator, thus bringing the final result closer to
human perception.

2. The Related Work

In this section, we describe the details of the SRGAN network architecture, a model
that utilizes adversarial training thinking during the image super-resolution task to provide
more abundant image details and improved image authenticity in the output. The model
is divided into two sub-models, namely, G (generator) and D (discriminator). The overall
framework of the SRGAN algorithm is shown in Figure 1, where the G network takes
low-resolution images as input, and then generates targeted output that is close to ground-
truth images. This basically describes the entire process of the image super-resolution
reconstruction task. Next, the D network is used to assess the main task output for achieving
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refined results by making judgement on a true or false basis. The reconstructed image of
the G network is compared with the corresponding ground-truth image. Through this
confrontation training, the reconstruction effect of the model is constantly improved.
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Figure 1. The frame diagram of SRGAN.

The SRGAN model is different from that of the traditional GAN. The GAN is random
noise, whereas the SRGAN is a low-resolution image. The generator network structure is
shown in Figure 2; the core structure of the network is a residual module composed of two
3 × 3 convolution layers, a standard regularization (BN) layer [14], and a ReLU activation
function. At the end of the network, a sub-pixel convolution layer is used to up-sample the
image to obtain a reconstructed image of identical size to the original image. The residual
module structure is shown in Figure 3.
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Figure 3. Residual module structure.

The core module of the discriminant network in the SRGAN model is different from
the core of the generator network. The core module is composed of a convolution layer, a
Leaky ReLU activation function, and a standard regularization BN layer. A diagram of the
discriminator is shown in Figure 4; after the discriminator receives image information as its
input, it passes it through its Sigmoid function, which a makes judgement and classifies the
results into true or false categories.
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In order to improve the final image generation effect in the SRGAN network, the
composition of the loss function is changed, and the concept of perceptual loss [15] is
introduced. In the original SRGAN, loss is defined as the sum of different weights of
content loss and adversarial loss, as shown in Equation (1), where LSR

x is the content loss,
LSR

Gen is the adversarial loss, and LSR is the final fusion loss.

LSR = LSR
x + 10−3LSR

Gen. (1)

The definition of the pixel-by-pixel MSE loss function is shown in Equation (2).

LSR
MSE =

1
r2HW

rH

∑
x=1

rW

∑
y=1

(IHR
x,y − GθG (ILR)x,y)

2
, (2)

where H and W represent the size of the matrix, r represents the up-sample scale, and IHR

and ILR are the high-resolution and low-resolution images, respectively. The MSE loss func-
tion is often used as the convergence target in the field of super-resolution reconstruction;
in particular, in the SRGAN model, a concept of loss close to human perception is proposed.
More specifically, this concept is defined by the direct Euclidean distance between the
GθG (ILR) and IHR features of the super-resolution image extracted by VGG [16], and the
loss function of VGG is defined as follows:

LSR
VGG/i,j =

1
Hi,jWi,j

Hi,j

∑
x=1

Wi,j

∑
y=1

(φi,j(IHR)x,y − φi,j(GθG (ILR))x,y)
2
. (3)

Hi,j and Wi,j represent the dimension values of the feature map in the feature extraction
network. In the VGG feature extraction network, φi,j represents the characteristic diagram
before the ith largest pooling layer and after the activation of the jth convolution layer.

The generation loss of the generator subnetwork is added to the perception loss item
in the network, and its purpose is to cheat network D as much as possible. The D network
constantly refines the ability to distinguish the output of the G network against the high-
definition original image in training. The definition of adversarial loss LSR

Gen is shown in
Equation (4).

LSR
Gen =

N

∑
n=1
− log DθD (GθG (ILR)). (4)

3. The Proposed Network Model

Remote sensing images are quite different from natural images in that they require
more sufficient reconstruction of edge details, since they contain extensive ground object
information, such as forests, trees, buildings, mountains, and rivers. The current challenge
for GAN in the field of remote sensing image super-resolution is that some models based
on pixel level loss will cause the reconstructed image to become too smooth and not close
to the quality perceived by human eyes; however, with the support of the GAN network,
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one can properly solve this problem by obtaining more abundant boundary information
from its reconstructed image. In particular, our solution to combat this issue is a dual-path
adversarial generation network model algorithm, the overall framework of which is shown
in Figure 5. In this paper, we redesign the structure of the generator module, the parameter
setting and activation function. We also revise and adjust the training parameters to obtain
improved results from the loss function and the discriminator. The preliminary results
show that the output image and discriminator are relatively optimized and balanced, and
the super-resolution reconstruction of the remote sensing image is capable of achieving
results as we expect.
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3.1. Generator Structure

The generator structure designed in this paper is shown in Figure 6. Here, we adopt
a dual convolution operation; a feature mapping attention mechanism is introduced to
extract the important feature information of the low-resolution image and transfer it
between channels on one path, whereas an EDSR deep residual convolution is introduced
directly to extract the comprehensive feature information of the image on the other path.
The image information extracted from the comprehensive feature is then fused together
with the important feature information in the reconstruction layer to restore the image
closer to the perceived quality of human eyes. The extracted important feature information,
which serves as a refining element, makes up for the deficiency of deep residual network
feature extraction.
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The channel attention mechanism not only plays a significant role in improving the
reconstruction accuracy of the network, but also has high module portability, which can
be easily loaded into the existing network structure. It distinguishes the significance of
image channels by giving different weights to image channels through learning. This
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allows the network to pay more attention to the rich information channels and increases
the feature extraction ability of the network that is also instructive for image reconstruction
tasks. Therefore, this article utilizes the channel attention mechanism for image super-
resolution reconstruction (SRCAN) [17,18] As shown in Figure 7, the network is set as
five submodules, where each 3 × 3 convolution operation is followed by an attention
mechanism submodule. In addition, the number of modules can be constantly adjusted
according to the reconstruction effect.
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Figure 7. The architecture of the SRCAN module.

The enhanced deep convolutional network module includes five submodules. Each
submodule contains three convolution operations and introduces local residuals. Before
the information flow enters each submodule, we utilize a 1 × 1 convolutional operation
to the output of the previous level to perform fusion compression. As shown in Figure 8,
local residual learning and global residual learning are conducted within the network. In
terms of the scope, local refers to residual learning within the submodule, and global refers
to residual learning between the input and output of the entire network.
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In addition, the traditional activation function has a drawback that needs to be modi-
fied for achieving better results. Although the ReLU activation function has high calculation
efficiency and can make the network converge quickly, the traditional ReLU function leads
to the death of neurons. When the input is close to 0 or in a negative interval, the gradient
disappears, and the network is unable to carry out the backpropagation of the gradient,
resulting in the network being unable to carry out normal learning. This can be expressed
as follows:

f (y) =
{

y y ≥ 0
0 y < 0

. (5)

In the situation where y is less than 0, the ReLU activation function leads to the
problem of neuron death. Through our research to prevent this from happening, we found
that the Leaky ReLU activation function has a nonzero positive slope in the negative axis
interval, which is capable of carrying out backpropagation by implementing the property
of the ReLU function while preventing the above issue. This can be expressed as follows:

f (y) =
{

y y ≥ 0
δy y < 0

, (6)

where δ is defined as a real number within an interval (0, 1), and the output of the function
is ensured to preserve its sample information within this negative input region.
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3.2. Discriminator Structure

The structure of the discriminator is shown in Figure 9. The discriminator is the same
as that in the SRGAN. The discriminator contains eight convolutional blocks together as
a structure, as shown in the figure. The infrastructure in each module is also shown. To
avoid the problem of neuron death, Leaky ReLU is selected as the activation function of
the network. The convolution core of each convolution layer in the network is set to 3 × 3,
followed by a number of channels increasing from 64 to 512 and a doubled rate compared
to the original. At the end of the network, two full connection layers and one sigmoid
activation function are introduced to obtain the probability of sample data classification.
Mathematically, a discriminator network is considered to composed of the following form
of a residual network:

f (x, θ) = F(x, {Wi}) + x, (7)

where x is the input value, θ = {W1, W2, . . . , Wi} is the parameter set, and F(x, {Wi}) is the
residual network to be trained. For example, if F represents Wih(Wi−1x) and h represents
the activation function, then the final input of the discriminator ignoring bias can be
represented as D(x, θ) = H( f (x, θ)), where H refers to the distance metric difference.
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The loss function exists in the form of fusion loss. In addition to the pixel-by-pixel loss
defined by L1 loss, it includes perceptual loss and adversarial loss. The final fusion loss is
obtained by balancing and accumulating the weight coefficients of different losses. The
pixel loss function is shown in Equation (8).

L1 =
1

WHC

W

∑
i

H

∑
j

C

∑
k
‖Ih

i,j,k − Ig
i,j,k‖, (8)

where H and W represent the size of the matrix, and C represents the number of channels.
In addition to pixel loss, the loss in this paper refers to the perception loss concept proposed
in the SRGAN. As previously mentioned, SRGAN uses the pretrained VGG network to
extract both the G network super-resolution reconstruction results and the high-definition
image features. This can be defined as the Euclidean distance between the extracted
features, as shown in Equation (9).

LSR
VGG/i,j =

1
Hi,jWi,j

Hi,j

∑
x=1

Wi,j

∑
y=1

(φi,j(IHR)x,y − φi,j(GθG (ILR))x,y)
2
, (9)

where GθG (ILR) represents the super-resolution reconstruction image of the generator
subnetwork. As mentioned above, Hi,j and Wi,j represent the dimension values of the
feature map in the feature extraction network, inside the VGG feature extraction network,
while φi,j represents the characteristic diagram before the ith largest pooling layer and after
the activation of the jth convolution layer.
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The GAN adversarial loss LSR
Gen is defined by Equation (10).

LSR
Gen =

N

∑
n=1
− log DθD (GθG (ILR)). (10)

Therefore, the final total loss function is defined by Equation (11).

LSR = ηLSR
VGG/i,j + λLSR

Gen + L1, (11)

where η and λ are the weight coefficients used for balancing before different loss functions,
which were set to 3 and 0.25, respectively, in our experiment.

3.3. Network Training

The training process of the model is mainly a composition of processes including the
initialization of the program parameters, the accessing of the training datasets, generator
reconstruction and optimization, discriminator identification and optimization, and the
storing of the training records and model parameters. The whole training process can be
described by the following steps:

(1) Initialize program parameters, and access the training datasets.
(2) Input the low-resolution images in the generator network, and reconstruct the high-

resolution images through the dual-path module.
(3) Calculate and save the PSNR, the SSIM, and the running time.
(4) Compare the output results with the corresponding ground-truth HR to calculate the

loss function in the discriminator network.
(5) If the discriminator result is FALSE, then update the weight parameter by backpropa-

gation, and return to step (2).
(6) If the discriminator result is FALSE, then judge whether the loss function is convergent.

If it is not convergent, optimize the discriminator. If it is, return to step (2).
(7) Obtain the optimized generator and discriminator network model.

In this article, we selected 600 images from the UCAS-AOD remote sensing image
database as the dataset. The UCAS-AOD dataset was released by the University of Science
and Technology of China in 2014, and it contains background samples of cars, aircraft,
buildings, mountains, and rivers, including 400 pictures that we chose as our training
dataset. Firstly, we down-sampled each picture three times, and then expanded the training
dataset through vertical flip, horizontal flip, and rotate operations. Next, we cut the images
into 256 × 256 size fragments paired together with the ground-truth images, and we stored
all the fragments in an overall training dataset after sorting them in order [19–21]. Next, we
set the momentum parameter to 0.9 and the weight attenuation to 10−4 [22,23]. We also set
the initial learning rate to 0.1, and then reduced it 10-fold for every 25 cycles [24–26]. Each
group of 64 training data was packed as a batch and sent into the network, where its output
was passed through the designed generator and then fused at the reconstruction layer.
At this point, we chose the slope of the activation function as 0.2 [27–29]. The network
then performed a comparison using the output results against the original graph in the
discriminator, continuously optimized the parameters in the generator and discriminator,
and saved each generation of training network to be utilized in the next refining iteration.
In our experiment, the number of iterations was set to 100, and the total training cost
was about 165 h. Upon completion, we were able to select the trained model for testing
according to the convergence effect of the loss function. Eventually, we selected the 90th
generation network model for our subsequent testing experiments.

The ultimate goal of the network is to achieve a Nash equilibrium between the G
subnetwork and the D subnetwork. In the training process, it is likely for one side to have a
good training effect, while the other side cannot converge. To visualize the change process
of the loss during the experiment, their curves are shown in Figure 10.
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Our experiment evaluated the training results by observing the convergence curve
of the loss during the training process. It can be seen from the loss curve figures that the
GAN loss was initially in an unstable state; however, with the increase in the number of
iterations, the model continued to fit the input data, while the perceptual loss and pixel
loss gradually converged. As the subnetwork improved its ability to converge, it gradually
reached a dynamic equilibrium state, and the fusion loss of the whole network also tended
to converge in a similar way.
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4. Experiments and Comparisons
4.1. Experimental Hardware Configuration

We set up a 64-bit Linux operating system with a CUDA 8 toolkit, Cudnn 5.0, PyCharm,
Pytorch, and Matlab v2016a as our experiment’s software environment. The hardware
environment of the computer included an NVIDIA GeForce GTX 1060 GPU, 16 GB RAM,
an Intel Core i7-3770 CPU running at 3.4 GHz, and 1 TB of hard disk storage space.

4.2. Experimental Comparison

We divided the remain 200 graphs datasets into four test datasets, containing 20, 30,
50, and 100 pairs of images, and we labeled them as Dataset 1, Dataset 2, Dataset 3, and
Dataset 4, respectively. The trained model in this paper was sequentially tested using the
images of each dataset, and our testing results were evaluated using the following objective
reconstruction and subjective visual evaluation indicators: the peak signal-to-noise ratio
(PSNR) [30], the structural similarity (SSIM) [31], and the mean opinion score (MOS) [9].
After finishing running the tests, we obtained a series of results. The average PSNR
indicators of Dataset 1, Dataset 2, Dataset 3, and Dataset 4 were 31.15 dB, 31.72 dB, 32.06
dB, and 32.64 dB, and the average SSIM indicators were 0.8034, 0.8142, 0.8179, and 0.8255,
respectively. In order to prove that our model algorithm was superior compared to other
algorithms, we also conducted simulation experiments using SRCNN [4], FSRCNN [5],
VDSR [6], EDSR [7], LapSRN [8], and SRGAN [9]. As shown in Table 1, the structures of the
related networks are displayed in terms of the training time and the number of parameters
of each model.
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Table 1. Structural analysis of each super-resolution algorithm.

Algorithm Input Reconstruction Depth Filters Parameters Residual Structure Loss Training Time

SRCNN LR + bicubic Direct 3 64 57 K No L2 75 h
FSRCNN LR Direct 8 56 12 K No L2 46 h

VDSR LR + bicubic Direct 20 64 665 K Yes L2 4 h
MDSR LR Direct 162 64 8000 K Yes Charbonnier 160 h

LapSRN LR Progressive 24 64 812 K Yes Charbonnier 72 h

The objective evaluation index result for each network model was recorded as shown
in Table 2. Impressively, the PSNR value generated by our algorithm was superior to that
of other advanced algorithms. On Dataset 2 with three amplifications, the average PSNR
index of our algorithm was 0.46 dB higher than SRGAN’s result and 0.96 dB higher than
EDSR’s result. Similarly, it is also clear on Dataset 4 that the average PSNR index generated
by our algorithm was 0.82 dB higher than VDSR’s value and 2.73 dB higher than SRCNN’s
value. In Table 3, the average SSIM result calculated using our algorithm on Dataset 3 with
three amplifications was 0.005 higher than EDSR’s result and 0.0332 higher than FSRCNN’s
result. The average SSIM result calculated using our algorithm was 0.009 higher than
VDSR’s value and 0.0396 higher than SRCNN’s value on Dataset 4. Figure 11 shows the
values of PSNR and SSIM on Dataset1 and Dataset4 with different methods, which directly
indicates that our model has advantages over others.

Table 2. Average PSNR on Dataset 1, Dataset 2, Dataset 3, and Dataset 4 with different algorithms.

Dataset Scale Bicubic SRCNN FSRCNN VDSR EDSR LapSRN SRGAN Ours

Dataset 1 3× 26.54 28.43 28.56 30.37 30.23 30.34 30.70 31.15
Dataset 2 3× 26.59 28.98 29.10 30.91 30.76 30.87 31.26 31.72
Dataset 3 3× 27.36 29.52 29.66 31.47 31.32 31.43 31.61 32.06
Dataset 4 3× 27.83 29.91 30.04 31.82 31.65 31.77 32.18 32.64

Table 3. Average SSIM on Dataset1, Dataset2, Dataset3 and Dataset4 with different algorithms.

Dataset Scale Bicubic SRCNN FSRCNN VDSR EDSR LapSRN SRGAN Ours

Dataset 1 3× 0.7543 0.7781 0.7792 0.7912 0.7915 0.7913 0.8002 0.8034
Dataset 2 3× 0.7549 0.7795 0.7813 0.7959 0.7957 0.7953 0.8114 0.8142
Dataset 3 3× 0.7615 0.7836 0.7847 0.8134 0.8129 0.8126 0.8137 0.8179
Dataset 4 3× 0.7687 0.7859 0.7866 0.8165 0.8158 0.8157 0.8189 0.8255
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For the subjective intention score MOS, we invited 50 students from the laboratory to
conduct a subjective survey by giving their scores, and then calculated the average values.
The score reference was based on the following grades: excellent (5 points), good (4 points),
general (3 points), poor (2 points), and extremely poor (1 point). As shown in Table 4 and
Figure 12, we can clearly identify that our algorithm not only had a significant recovery
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effect on observable evaluation indicators, but also had advantages in subjective evaluation
according to the subjective intention scores rated by students on each algorithm.

Table 4. Average MOS values with different algorithms on Dataset 1, Dataset 2, Dataset 3, and Dataset 4.

Dataset Scale Bicubic SRCNN FSRCNN VDSR EDSR LapSRN SRGAN Ours

Dataset1 3× 1.88 2.45 2.63 3.12 3.19 3.28 3.34 3.41
Dataset2 3× 1.76 2.31 2.55 3.06 3.15 3.17 3.26 3.35
Dataset3 3× 1.53 2.24 2.48 2.97 3.01 3.06 3.11 3.17
Dataset4 3× 1.63 2.28 2.37 2.99 3.07 3.08 3.19 3.23
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4.3. Experimental Analysis

In this section, we analyze our designed algorithm from the perspective of subjective
vision. As shown in Figures 13–16, we again conducted the sensory comparison with
the six state-of-the-art algorithms mentioned previously in this paper. Our method was
capable of effectively restoring the lines, edges, and details of the image, thus improving
the resolution ratio of the remote sensing images. The experimental values of the 3×
“P0283” airport picture in Dataset 1 is shown in Figure 13. The result achieved using our
algorithm showed a better visual experience on the reconstructed aircraft wings with a
clearly defined background. The edges and lines of the wing were relatively uniform and
smooth. Similarly, the shadows on the ground were also clearly visible. It is not difficult to
see that, when our algorithm was applied to the reconstruction of the image, particularly
when restoring edges on objects and differentiating them from their backgrounds, the lines
between the grass and the road in the middle of the image, as well as the white lines on
the right side of the image, all appeared straight, clear, and hierarchical, while the results
obtained using the other algorithms still had various degrees of blur or distortion.

Figure 14 shows the experimental values calculated from the 3× “N0566” urban
picture using Dataset 2. The image recovered using our method was closer to the ground-
truth image. The outline of the small light rail train was clearly visible, and the oil tanker
beside it was also relatively easy to identify. The lines and corners of tall buildings in the
figure were displayed intuitively. On the other side, the reconstruction effect of SRCNN was
vague, and objects could hardly be recognized. The LapSRN and SRGAN algorithms also
produced results with limited clarity, particularly in the contours and lines of small trains.

Figure 15 shows the values of the experiment on the 3× “N0502” house picture using
Dataset 3. The images restored by VDSR and EDSR showed a little distortion along the line
of the roof. SRCNN, FSRCNN, and other algorithms also had shortcomings when restoring
car windows, edges, and bodies. In contrast, lines between the side windows of the car on
the far right could be clearly identified from the image obtained using our method, and the
outline of the roof was more intuitive.
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Figure 16 shows the values of the experiment calculated from the 3× “P0808” airport
picture using Dataset 4. The image reconstructed using the FSRCNN and EDSR algorithms
led to a distortion of the aircraft with added deformation and artefacts, and these algorithms
could not completely restore the shadow part of the aircraft tail to their normal shapes. The
reconstructed image obtained using our method, on the other hand, could clearly show not
only the white lines on the ground between the two aircrafts, but also the tail shadow of
the aircraft. Therefore, our proposed algorithm in this paper proves its clear advantage in
restoring lines, edges, and details to a degree closer to the real image.

Below, we introduce the limitations of our research. Because we need to spend more
time on training and experiments for each algorithm, we only trained them with a 3×
magnification of remote sensing images on a single scale. The model can be retrained again
if the training datasets are changed, which will inevitably lead to changes in the simulation
values and bring certain uncertainties to subsequent studies. In the future, we will work
on how to make the algorithm adapt to different sizes of images and be better compatible
with different training datasets.
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5. Conclusions

In this paper, a new algorithm using a dual-path adversarial generation network
model is proposed for the reconstruction of satellite remote sensing images. In the gener-
ator module, we utilized both the attention mechanism network and the enhanced deep
convolutional network to extract the features from images, and we fused them in the
reconstruction layer to generate high-resolution images. Moreover, the activation function
and loss function were improved, such that the output image and discriminator could
achieve a relatively optimal balance and restore a clear image. Additionally, we tested our
algorithm on the public UCAS-AOD datasets, and then compared it with several relevant
algorithms; our experimental results show that the algorithm in this paper could achieve a
clear reconstruction of lines, edges, and details from satellite remote sensing images, thus
greatly enhancing the quality of satellite remote sensing images. The average PSNR value
was 32.64 dB on Dataset 4, which was 2.73 dB higher than on the SRCNN algorithm. The
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improvement in data accuracy provided by our solution brings enormous performance
potential for many practical applications such as satellite navigation, surface observation,
mapping, and military reconnaissance. For the next step of our plan, deep learning technol-
ogy can be applied to the field of satellite infrared remote sensing monitoring, to provide
strong technical support for night military reconnaissance and intelligent clear imaging of
space stations.

Author Contributions: Z.R., conceptualization, methodology, and writing; J.Z., supervision and
review; C.C., validation; Y.L., training and testing; X.M., testing and review. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by [the Department of Science and Technology of Jilin Province] grant
number [20220402014GH], [the Education Department of Jilin Province] grant number [JJKH20220774KJ],
[the Open Fund Project of the State Key Laboratory of Applied Optics] grant number [SKLAO2022001A07],
[the Education and Science Planning Project of Jilin Province] grant number [GH22197], [the Natural
Science Foundation of Jilin Province] grant number [YDZJ202201ZYTS411].

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The dataset can be downloaded at the website: https://opendatalab.
com/102/download (accessed on 16 July 2022).

Acknowledgments: This research was funded by the 2022 International Cooperation Project in Jilin
Province Science and Technology Department (grant number 20220402014GH), the Science and Technology
Research Project in Jilin Provincial Department of Education (grant number JJKH20220774KJ), the Open
Fund Project of the State Key Laboratory of Applied Optics (grant number SKLAO2022001A07), and the
Jilin Provincial Education Planning Project (grant number GH22197)].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Temenos, A.; Temenos, N.; Doulamis, A.; Doulamis, N. On the Exploration of Automatic Building Extraction from RGB Satellite

Images Using Deep Learning Architectures Based on U-Net. Technologies 2022, 10, 19. [CrossRef]
2. Chen, X. Design of Political Online Teaching Based on Artificial Speech Recognition and Deep Learning. Comput. Intell. Neurosci.

2022, 2022, 3112092. [CrossRef] [PubMed]
3. Lewis, W. AI Image Recognition Technology Based on Face and Expression Recognition. J. Res. Sci. Eng. 2022, 4, 98–103.

[CrossRef]
4. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of

the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014;
pp. 184–199.

5. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European
Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016;
pp. 391–407.

6. Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional net-works. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.

7. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

8. Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian pyramid networks for fast and accurate super-resolution. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632.

9. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Shi, W. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690.

10. Shi, W.; Caballero, J.; Ledig, C.; Zhuang, X.; Bai, W.; Bhatia, K.; Rueckert, D. Cardiac image super-resolution with global
correspondence using multi-atlas patchmatch. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; pp. 9–16.

11. Lian, L.; Lei, T. Film and Television Animation Sensing and Visual Image by Computer Digital Image Technology. J. Math. 2022,
2022, 6331233. [CrossRef]

12. Huang, B.; He, B.; Wu, L.; Guo, Z. Deep Residual Dual-Attention Network for Super-Resolution Reconstruction of Remote
Sensing Images. Remote Sens. 2021, 13, 2784. [CrossRef]

https://opendatalab.com/102/download
https://opendatalab.com/102/download
http://doi.org/10.3390/technologies10010019
http://doi.org/10.1155/2022/3112092
http://www.ncbi.nlm.nih.gov/pubmed/36248946
http://doi.org/10.53469/jrse.2022.04(09).19
http://doi.org/10.1155/2022/6331233
http://doi.org/10.3390/rs13142784


Appl. Sci. 2023, 13, 1245 15 of 15

13. He, X.-G.; Wu, X.-M.; Wang, L.; Liang, Q.-Y.; Gu, L.-J.; Liu, F.; Lu, H.-L.; Zhang, Y.; Zhang, M. Distributed optical fiber acoustic
sensor for in situ monitoring of marine natural gas hydrate production for the first time in the Shenhu area, China. China Geol.
2022, 5, 322–329. [CrossRef]

14. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481.

15. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645.

16. Muhammad, U.; Wang, W.; Chattha, S.P.; Ali, S. Pre-trained VGGNet Architecture for Remote-Sensing Image Scene Classification.
In Proceedings of the 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018. [CrossRef]

17. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention net-works.
In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 286–301.

18. Zhang, P.; Lam, E.Y. From Local to Global: Efficient Dual Attention Mechanism for Single Image Super-Resolution. IEEE Access
2021, 9, 114957–114964. [CrossRef]

19. Wang, X.; Yi, J.; Guo, J.; Song, Y.; Lyu, J.; Xu, J.; Yan, W.; Zhao, J.; Cai, Q.; Min, H. A Review of Image Super-Resolution Approaches
Based on Deep Learning and Applications in Remote Sensing. Remote Sens. 2022, 14, 5423. [CrossRef]

20. Moustafa, M.S.; Ebied, H.M.; Helmy, A.K.; Nazamy, T.M.; Tolba, M.F. Acceleration of super-resolution for multispectral images
using self-example learning and sparse representation. Comput. Electr. Eng. 2017, 62, 249–265. [CrossRef]

21. Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods.
Earth-Sci. Rev. 2022, 232, 104110. [CrossRef]

22. Yang, X.; Xie, T.; Liu, L.; Zhou, D. Image super-resolution reconstruction based on improved Dirac residual network. Multidimens.
Syst. Signal Process. 2021, 32, 1065–1082. [CrossRef]

23. Esmaeilzehi, A.; Ahmad, M.O.; Swamy, M.N.S. A Deep Light-Weight Network for Single Image Super Resolution Using Spatial
and Spectral Information. IEEE Trans. Comput. 2021, 7, 409–421. [CrossRef]

24. Wang, Y.; Perazzi, F.; McWilliams, B.; Sorkine-Hornung, A.; Sorkine-Hornung, O.; Schroers, C. A fully pro-gressive approach to
single-image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, UT, USA, 18–23 June 2018; pp. 977–986.

25. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Training very deep networks. Adv. Neural Inf. Process. Syst. 2015, 28, 2377–2385.
26. Chen, Y.; Liu, L.; Phonevilay, V.; Gu, K.; Xia, R.; Xie, J.; Zhang, Q.; Yang, K. Image super-resolution reconstruction based on feature

map attention mechanism. Appl. Intell. 2021, 51, 4367–4380. [CrossRef]
27. Soh, J.W.; Cho, S.; Cho, N.I. Meta-transfer learning for zero-shot super-resolution. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3513–3522.
28. Ren, Z.; Zhao, J.; Wang, C.; Ma, X.; Lou, Y.; Wang, P. Research on Key Technologies of Super-Resolution Reconstruction of Medium

and Long Wave Maritime Infrared Image. Appl. Sci. 2022, 12, 10871. [CrossRef]
29. Ren, Z.; Zhao, J.; Chen, C.; Lou, Y.; Ma, X.; Tao, P. Rendered image super-resolution reconstruction with multi-channel feature

network. Sci. Program. 2022, 2022, 9393589. [CrossRef]
30. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment from error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]
31. Sheikh, H.R.; Bovik, A.C.; de Veciana, G. An information fidelity criterion for image quality assessment using natural scene

statistics. IEEE Trans. Image Process. 2005, 14, 2117–2128. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.31035/cg2022008
http://doi.org/10.1109/icpr.2018.8545591
http://doi.org/10.1109/ACCESS.2021.3105726
http://doi.org/10.3390/rs14215423
http://doi.org/10.1016/j.compeleceng.2017.02.012
http://doi.org/10.1016/j.earscirev.2022.104110
http://doi.org/10.1007/s11045-021-00773-0
http://doi.org/10.1109/TCI.2021.3070522
http://doi.org/10.1007/s10489-020-02116-1
http://doi.org/10.3390/app122110871
http://doi.org/10.1155/1970/9393589
http://doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://doi.org/10.1109/TIP.2005.859389
http://www.ncbi.nlm.nih.gov/pubmed/16370464

	Introduction 
	The Related Work 
	The Proposed Network Model 
	Generator Structure 
	Discriminator Structure 
	Network Training 

	Experiments and Comparisons 
	Experimental Hardware Configuration 
	Experimental Comparison 
	Experimental Analysis 

	Conclusions 
	References

