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Abstract: Artificial intelligence (AI) systems are becoming wiser, even surpassing human performances
in some fields, such as image classification, chess, and Go. However, most high-performance AI
systems, such as deep learning models, are black boxes (i.e., only system inputs and outputs are
visible, but the internal mechanisms are unknown) and, thus, are notably challenging to understand.
Thereby a system with better explainability is needed to help humans understand AI. This paper
proposes a dual-track AI approach that uses reinforcement learning to supplement fine-grained
deep learning-based sentiment classification. Through lifelong machine learning, the dual-track
approach can gradually become wiser and realize high performance (while keeping outstanding
explainability). The extensive experimental results show that the proposed dual-track approach can
provide reasonable fine-grained sentiment analyses to product reviews and remarkably achieve a
133% promotion of the Macro-F1 score on the Twitter sentiment classification task and a 27.12%
promotion of the Macro-F1 score on an Amazon iPhone 11 sentiment classification task, respectively.

Keywords: lifelong machine learning; fine-grained sentiment classification; reinforcement learning;
expert system; knowledge graph

1. Introduction

Artificial intelligence (AI) is more intelligent than humans in a few fields, such as image
recognition competitions, chess, Go, and intellectual television questions and answers [1–6].
Furthermore, lifelong machine learning (LML) [7–12] aims to make AI more effective [13–15].
Under lifelong machine learning, AI is expected to become stronger and reach superhuman
levels. While the algorithms become more effective, humans also want them to be more
explainable. When AI was weak, scientists only used it to replace people for straightforward
labor-intensive work. At that time, humans took the roles of teachers and only wondered
whether the results were correct. In the future, when AI can develop its algorithms and
gain higher performances in specific tasks, people will wonder how AI solves these tasks.
At that moment, the interpretability of AI is essential because humans need to learn from AI.
Hence, a high performance is not the single critical point one needs to focus on in lifelong
learning. We also need to improve the interpretability of lifelong learning algorithms.

However, research into explainable AI [16] is insufficient for current intelligence
algorithms. After entering the era of deep learning [17], model interpretability is essential to
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developing deep neural network models. Although deep learning models are overwhelming,
humans cannot directly learn from them to enhance human society. Thus, the authors
suggest scientists improve the interpretability of deep learning. We should also develop
other more explainable algorithms at the same time. For example, current deep learning
algorithms can precisely classify the sentiment of a product review [18,19]. To optimize the
performance, deep neural networks were introduced to increase sentiment classification
accuracy [9,20,21], and an ensemble application (involving symbolic and subsymbolic AI
for sentiment analyses) was proposed in [22]. These machine learning methods produce
reasonable sentiment classification results. Consequently, some downstream applications
have been developed based on sentiment analysis, e.g., review-aware recommendations [23]
and peer review-based citation count prediction [24]. Nevertheless, the above-mentioned
sentiment classification methods cannot explain why a customer likes or dislikes a product.
Compared with a simple sentiment classification score, the reasons behind the score are
more critical [25,26].

Deep learning and other black-box approaches have weak interpretability because
they involve knowledge that humans cannot understand. If we want to make them fully
explainable, the algorithms should only use the knowledge of humans and change them
to be white-box approaches. This way can give algorithms high interpretability, but it
also limits the development of AI. When people cannot solve tasks, we still wish to solve
them via a black-box approach. Although interpretability is essential, giving up those
high-performance black-box algorithms is not a reasonable solution. Therefore, the authors
suggest using black-box approaches for tasks that human intelligence is insufficient to solve.
In the meantime, we also need to collect knowledge and solve those tasks by white-box
approaches to develop explainable AI. To be noticed, black-box approaches are also tools
of knowledge mining since their learning outcomes are also sources of explainable AI in
lifelong learning.

Besides deep learning, reinforcement learning (RL) is another popular area of machine
learning concerned with how an intelligent agent should take action in an environment
to maximize the cumulative reward. Reinforcement learning aims to learn the best action
for each state in an environment. Different from supervised learning, RL does not need
labeled input/output pairs to be presented. Given a group of possible states (state space)
S, reinforcement learning will choose an action from available actions (action space) A.
The choices A = π(S) form a strategy that simulates human decisions for different
situations. When all of the states and actions are defined by humans or those that are
comprehensible for humans, reinforcement learning is a white-box approach (where system
inputs, outputs, and internal processing are transparent). The state space and action space
are known in a close environment, such as chess. The environment is typically shown as a
Markov decision process (MDP). However, in an open environment, the state and action
space always change over time. Therefore, it is impossible for scientists to define all of the
states and actions well. In this situation, we can only define states and actions based on
current knowledge and leave all unknown situations to a black-box algorithm. This is why
we propose a dual-track approach.

Hence, this work proposes a dual-track principle to develop lifelong learning and
make it more powerful and explainable at the same time. This work uses fine-grained
sentiment analysis [25–27] as a scenario to demonstrate the integration of both white-box
and black-box approaches in lifelong learning on dual tracks. In this approach, the authors
use reinforcement learning to collect and evaluate knowledge in a white-box way and deep
learning to supplement when white-box approaches lack the necessary knowledge.

Throughout the rest of this paper, Section 2 will further introduce the works of
explainable AI. Then Section 3 will briefly explain how the dual-track system works
for fine-grained sentiment analysis. A reinforcement learning-based approach will be
first introduced in Section 4. In addition to learning the sentiment of a product review,
reinforcement learning has another function involving knowledge validation by entropy.
Section 5 will introduce the knowledge management system in the dual-track system.
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Section 6.1 will introduce the datasets collected for this work. The experimental results are
available in Section 6. Deep learning, expert systems, and reinforcement learning provide
sentiment analyses from different aspects. The experiment results show that the dual-track
can handle the sentiment analysis task well and achieve better sentiment classification
performance than a deep learning algorithm. Finally, Section 7 will summarize and suggest
a knowledge-sharing standard for lifelong learning.

In this work, we provide the following main contributions to the AI community:

1. We propose applying reinforcement learning to learn the sentiment of a product
review and introduce the concept of the “environment” into sentiment analysis to
enable reinforcement learning. To the best of our knowledge, this is the first time
reinforcement learning is involved in product review systems.

2. We propose generating knowledge and evaluating model correctness via reinforcement
learning and entropy; we achieved remarkable enhancements on the sentiment
classification performances of product reviews.

3. We propose using explicit knowledge to assist and monitor deep learning to implement
a generic purpose sentiment analysis architecture; we utilized explicit knowledge
in lifelong sentiment analysis and in improving the interpretability of the product
review system.

4. We created two datasets for lifelong sentiment analysis, including 12,740 product
reviews from Amazon and over 15,000 product reviews from Twitter.

2. Explainable Artificial Intelligence

Humans usually act as teachers to AI, but AI can also teach humans. AlphaGo [6] is an
example. After AplphaGo defeated Lee Sedol, many players worried that AI would rule
Go and force human players to give up. On the contrary, human players were inspired and
learned much from it. AlphaGo deeply leverages reinforcement learning to learn match
strategies, which provide precise observations of the learning process. Reinforcement
learning learned and demonstrated many new strategies in Go, which gave human players
a new understanding of matches. Humans created AlphaGo, but it also taught humans a
lot. AI is not only a competitor, it is also a collaborator.

Human players can observe AlphaGo’s behaviors to understand its strategies, which
work but are inefficient. When humans only use AlphaGo to play games, understanding
each action is unimportant. Nevertheless, in finance or even medical treatment, any mistake
can threaten the properties and lives of humans. Thus, it is necessary to understand each
AI activity. In other words, AI should be explainable.

Explainable AI [16,28,29] involves AI where every calculation and output is explainable.
“Explainable” means that scientists can fully understand how each calculation of an
algorithm leads to the final results and they can assess whether the calculations and
outputs are correct. The decision process of explainable AI is intelligible, so it is possible to
evaluate whether such an AI system is reliable and makes people more confident when
determining whether to use it. Meanwhile, after adopting this explainable system, people
can learn how to solve problems and gain new knowledge from it. Explainable AI was
raised with expert systems (ES) [30]. In the early era of AI development, people only had
a minimal understanding of AI and did not believe AI could provide a correct solution.
Thus, it is natural for managers to doubt AI and want a reasonable explanation. Scientists
then used expert systems, especially the decision tree, to explain their algorithms to solve
this problem. Factual explanations attempt to dive into the black box. Previous research
studies [31,32] still relied on decision trees. Although there are works [33,34] about deep
learning, the outcomes are still in the early stages. Argument mining [35] is also a hot topic
in explainable AI and NLP. Researchers [36–38] have attempted to automatically extract
and identify the argumentative structures from text with the aid of computer programs. It
is helpful for scenarios where facts support the decisions.
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2.1. Expert Systems

The AI community in the mid-1960s developed expert systems (ES) [30]. The basic
idea of ES is to leverage expertise from humans to solve problems. Thus, they are also
called consultation systems. ES has many forms, such as rule-based, knowledge-based,
case-based, etc.

Expert systems were popular in the last century. However, people quickly found
that ES could only solve a few problems and their enthusiasm faded. Although people
do care about the explainability of AI, it should have the ability to solve problems first.
Thus, scientists developed other machine learning models, such as SVM [39], Bayesian
networks [40], and deep neural networks [17].

2.2. Deep Learning

After the deep neural network (also called deep learning) [17] became popular in
various areas, such as machine translation [2,41], chatbot [42], unmanned aerial vehicle [43],
person re-identification [44,45], multiple object tracking [46], image recognition [47,48]
and signal processing [49], explainable AI received attention again. This time, people saw
the power of deep learning and never doubted its ability. However, this does not mean
AI will not make mistakes. Thus, people still want to know how AI decides to avoid
mistakes. For instance, when doctors use AI to generate a diagnosis or a treatment plan,
they wonder why AI gives such results. If the treatment fails, doctors are responsible for
the consequences rather than AI.

However, it is too difficult to explain what is behind the deep neural network by
current technologies. Thus, scientists mainly attempt to visualize the network parameters.
For example, BERT (bidirectional encoder representations from transformers) is based on
the “attention” mechanism, so scientists visualize its attention connection to help with
understanding. However, it is still far from expectations.

In sentiment classification, transformer-based approaches achieve state-of-the-art
performances, so scientists wonder why they are successful and visualize it. Figure 1 shows
how attention works in product sentiment classification. In this example, a consumer
wrote two sentences: “The screen of this phone is great. It is (Its) battery life is terrible”.
In the visualization, if the transformer thinks two words have a connection, there will be
a line between them. This situation means the transformer pays “attention” to another
word. For example, the transformer thinks “battery life” when it reads “phone” and thinks
“screen” and “phone” when it reads “battery”. Thus, we know that the transform thinks
that there is a connection between the phone, battery, and screen. Visualization can help
people better understand attention, but attention only plays a minor role in the transformer.
Humans still do not understand how the transformer analyzes the sentiment of a review.
Deep learning in image processing also faces the same problem. An example is shown
in Figure A2 in Appendix A.3.

(a) (b)

Figure 1. Visualization of BERT Attention. (a) Sentence A to B. (b) Sentence B to A.

2.3. Reinforcement Learning

Reinforcement learning (RL) is also a powerful tool in AI systems. The interpretability
of RL depends on its internal design. RL can use the Markov chain inside or adopt deep
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learning. Hence, it is necessary to choose an intelligible internal algorithm when designing
an explainable AI.

Currently, expert systems are good at explainability but are weak at performance, contrary
to deep neural networks with good performances and lousy explainability. They are not
perfect, so we still need a solution that has high performance and good interpretability.
Reinforcement learning also has good performance and interpretability with appropriate
designs. The effective white-box algorithm is what we desire, but such a system requires
creating an extensive knowledge base. Although this work proposes using reinforcement
learning as its core component, it is necessary to mention that this process is estimated
to take a very long time to converge. Before it gains enough knowledge, we also use
deep learning as a supplement. In summary, this method suggests gradually improving
the white-box approach but keeping the black-box approach as a tool, which is a dual-
track system.

3. Fine-Grained Sentiment Analysis and Dual-Track System

As mentioned in Section 2, scientists have not opened the black box of deep learning,
and white-box approaches cannot replace deep learning. Thus, a trade-off is to use a dual-
track system, which means we should use the white-box approach as much as possible,
but still keep deep learning as a supplement. The following part of this paper will explain
this principle in detail.

This work uses fine-grained product sentiment classification as an example to demonstrate
such a dual-track system. Although deep learning performed well in sentiment classification,
it can only give customers a simple score for each review. However, customers want
details from the reviews, which requires a fine-grained level. This level is challenging for
deep learning, so other approaches, such as reinforcement learning and expert systems,
are needed.

3.1. Fine-Grained Product Sentiment Classification

Before starting the design of lifelong architecture and algorithms, it is necessary to
clarify the demand for fine-grained sentiment analysis. From the customer side, they want
to know whether the product satisfies their demands. Different customers have different
demands for a product, so a rating score from one customer may be meaningless to another.
Thus, they want to obtain evaluations from different aspects. The seller also wants to know
which problems the product has and how to improve them. Sentiment classification can
only provide a sentiment score for the whole product, which is insufficient for customers to
purchase. So fine-grained sentiment analysis is still necessary.

When customers are shopping online, they need to read many reviews to evaluate
the product quality, even if they already know the rating of the product (Figure A3 in
Appendix B.1 is a product review example of renewed iPhone XR). This case shows that the
rating score cannot provide enough information for purchase. If the website can summarize
the product from different aspects, this will be helpful.

If we can show customers the rating of each feature, it would be more helpful. Table 1
demonstrates what a fine-grained sentiment classification looks like, such as for a product
review in Figure A3 in Appendix B.1. Amazon only provides a total mark for a product,
but fine-grained classification can show consumers in detail. With fine-grained analysis,
customers can decide whether to purchase the product based on their demands.

The process of fine-grained sentiment has the following three steps. First, it requires
an algorithm to recognize all product features and their values in a review, where values
are either discrete or continuous. Second, the algorithm needs to determine the sentiment
of each feature. Finally, knowing how each feature contributes to the overall sentiment
score, the algorithm can calculate a total score based on the sentiment of each feature.

Three steps of fine-grained sentiment classification:

1 Recognize each feature in the review; the named-entity recognition task needs a list
of features.
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2 Determine the sentiment of each feature and the sentiment classification task.
3 Calculate the overall sentiment based on each feature.

Table 1. Fine-grained sentiment classification example.

Sentence Feature Score

I was really scared about obtaining a damaged product, Not related to product NoneI read the reviews every day until it came . . .
shipping was fast and the package came 1 day early. . . Shipping 5

battery was at 84% I was hoping 90 or higher but that is alright. . . Battery life 4
for me. Not related to product None

I did have some scuffs at the top of the phone tho and Appearance damage 3near the charging port.
the what bands on the Side also look a little dingy. Appearance damage 4

My seller was CHUBBIESTECH. . . Seller None
and they gave me a free screen protector and case. Seller 5

Total 4

The first step from the above-mentioned steps is a named-entity recognition [50] (NER)
task. This step requires a list of features and all of their values. The second step is a
sentiment classification task. This step needs to learn the corresponding sentiment score
of each value of features (to which deep learning is applicable). The final step needs a
product structure and each feature’s significance. This knowledge can be provided by a
knowledge graph. It is easy to find the list in the first step, and the second step can use deep
learning and implicit knowledge, followed by the third step, where explicit knowledge
(in knowledge graphs) can be understood by humans. Thus, this work uses both implicit
and explicit knowledge. Furthermore, this work will try to use reinforcement learning
to mine explicit knowledge from implicit knowledge in the second step. Deep learning
is still in charge of sentiment classification before reinforcement learning obtains enough
explicit knowledge to conduct the second step independently. This work aims to only use
explicit knowledge to solve the sentiment analysis task, but it needs time to collect explicit
knowledge. Prior to that, implicit knowledge has a role in lifelong learning architecture.
Thus, this work uses a dual-track approach, and both implicit and explicit knowledge
are used.

3.2. Named-Entity Recognition for Lifelong Learning

Section 3.1 mentioned that the first step of fine-grained sentiment analysis is feature
recognition. This detection needs NER, which is a common task in NLP and has many
existing approaches.

In this work, a context-based approach is proposed for NER. This design is inspired
by the concept of the “environment” of reinforcement learning. In NLP, the context of a
word is its environment. When a word is mentioned, the NER algorithm should check the
environment before giving a result. The environment can be set by humans or detected by
AI. In most of the tasks, the background is known to determine the environment before NER.
For instance, in the sentiment classification of an iPhone product review, the environment
can be set as an electronic device, so “Apple” in this environment must be a company rather
than a fruit. If the environment is unknown, AI can also read the context and determine
it by itself. When it reads “battery”, “screen”, etc., it can also know the environment is
irrelevant to fruit.

An environment contains plenty of entities, a knowledge graph (Figure A5 in Appendix B.2
provides an example) can provide information on the entities. Then when the machine is
learning, it knows how to observe which entities. The entities in this knowledge graph
also describe a close environment. The word “Apple” hardly refers to the fruit in the
environment. In other words, the environment’s setting can prevent ambiguity.

If the expert systems want to judge a product review, they should first know which
product or feature is being referred to. Secondly, they need to build a relationship between
the description and rating. NER can tell the machine which entities a sentence includes.
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Then reinforcement learning can build the relationship between the entity’s description
and the rating.

Once the features are found from the review, the algorithm needs to determine their
value. In the knowledge graph, there are possible values of the features. Thus, the algorithm
can determine the feature values by rules and patterns.

Table 2 shows some patterns of reviews that describe battery life, where “Adj” stands
for adjective and “Ratio” stands for the percentage of batter capacity. Thus, it is possible to
create rules to match the reviews for battery life. The above patterns are insufficient to find,
but expert systems can easily add more patterns.

Table 2. Pattern examples of batteries.

Pattern Example

battery life|health is + Adj.* The battery life is perfect
Adj.* + battery life|health terrible battery health

battery capacity is|was at + Ratio** battery capacity was at 84%

For a mobile phone, the essential parts are the battery and screen [26]. For a renewed
phone, the most common problems are low battery life and damage to the screen. Thus,
this work creates rules to define the battery life and damage to the screen. Table 2 shows
some patterns of reviews that describe battery life. Thus, it is possible to create rules to
match the reviews for the battery life. The above patterns are insufficient to find all, but this
approach is flexible and easily adds more patterns.

However, all of the rules are defined by humans in a traditional expert system, so
it is impossible to let such an ES teach humans. Thus, this work proposes the use of
reinforcement learning to mine knowledge and create rules.

3.3. Dual-Track Design for Fine-Grained Sentiment Analysis

Figure 2 shows how the dual-track system works. This system needs to find the
comments about the product features, analyze their sentiments, and form an overall
analysis. For sentiment classification, this work aims to use reinforcement learning and
other white-box approaches as much as possible. However, when lacking the necessary
knowledge, this system also uses deep learning as a backup. Thus, it uses white-box and
black-box algorithms at the same time as a dual-track system.

Figure 2. Dual-track fine-grained sentiment analysis.
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4. Reinforcement Learning for Sentiment Analysis

Named-entity recognition can help the machine detect the entity in reviews. The next
step is to build a path from the feature description of a product to the rating. Given a
text description of a product to the machine, it needs to return a sentiment grade. How
to determine the grade is a crucial point. The screen is essential to a phone, so customers
always care about the damage to the screen when they purchase a renewed phone. They
will describe that the screen has a “scratch”, “crack”, “scuff”, or “chip”. Thus, how does
the machine understand the description?

The simplest way is to assign a score to each description manually. This method is
possible but requires an expert to know well about the customer demands. However, e-
commerce companies analyze product reviews because it is crucial for them to understand
consumers. Thus, the machine needs to find answers by itself. Another possible way
is to calculate the average score of the same description. This approach does not need
human experts but it is not accurate. Whenever there is a connection between feature
description and review grade, the average score is available. The average may have a bias
when samples are not enough or when there are noises. More seriously, the machine does
not ensure that the score is accurate. It does not have any confidence in it. Thus, a good
design should let the machine generate a score; it also needs to give it a confidence level.

Reinforcement learning aims to find the best strategy to treat the current status in
the environment. The environment (E) is a set of objects and features shown in product
reviews. A certain environment can help to limit the range of possible entities in the NER.
In the environment, the nth review’s mth features fm and their values vk are the statuses
of the environment (each feature only has one value at a time). Fine-grained sentiment
analysis needs to predict the sentiment of each feature sm and then calculate the product’s
overall score based on the weight of each feature wm.

ŝn =
M

∑
m=1

wm ∗ ˆsm (1)

As each feature only has one value in a review, the sentiment of a feature sm is
determined by the sentiment of its kth value, sk

m. For a feature’s value vm
k , the algorithm

needs a sentiment score sk
m. Assume the feature’s value vm

k is one of the states in the
environment (E), and the sentiment score sk

m is the action that the AI agent takes. The agent
has five possible actions, which are sentiment scores from one to five. To help with the
action choice, the reinforcement learning algorithm assigns a credit score ca

v to each action.
If an action leads to an accurate prediction, its credit will increase. Otherwise, it will be
reduced. Thus, the action with the highest credit is the best choice.

av = arg max
a

C(v, a), a ∈ A (2)

After an action av is taken, the algorithm must update its credit based on the predicted
result. The update is according to the reward of the action. The action obtains an enormous
reward when the predicted sentiment is the same as the actual sentiment.

C(v, a)
′
= ca

v
′
= (1− α)ca

v + αR(v, av) (3)

In Formula (3), C(v, a)
′

is the new credit of action a for value v, and R(v, av) is the
reward given for this action. The learning rate α controls the learning forgetting speed.
A high learning rate lets the machine focus on the current case.

R(v, av) = R0 − |sm − ca
v|, R0 < max(A) (4)
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With labeled data of a feature’s sentiment sm, the approximation solution involves
using the review’s sentiment sn to replace.

R(v, av) ≈ R0 − |sn − ca
v|, R0 < max(A) (5)

The reward is calculated based on the predicted error sm − ca
v. Assume R0 is a constant.

The reward is maximum when the predicted error is 0. If the error is larger than R0,
the reward is a negative value.

Based on the credits of a feature’s value, we can calculate the suggested sentiment of a
feature’s value.

ˆsm =
A

∑
a=1

a
ca

v

∑A
a=1 C(v, a)

, a ∈ A (6)

After learning, the predicted sentiment will be stable, and the entropy of the action
credit will decrease. If we use the ratio of an action credit ca

v to the total credit ∑A
a=1 C(v, a)

to represent the probability of action as the best action, then we can evaluate the entropy of
a feature’s value. Before learning, each action has the same probability, and the entropy is
the largest. After learning, the entropy will decrease. Entropy shows how the machine is
sure about its prediction.

P(v, a) =
ca

v

∑A
a=1 C(v, a)

, a ∈ A (7)

H(v, A) = −
A

∑
a=1

P(v, a) log P(v, a), a ∈ A (8)

The entropy of a feature’s value H(v, A) indicates the uncertainty level of the system
responding to a specific situation. High entropy means the system tends to take different
actions for the same state, which is unconverged and unreliable. A system with low
entropy prefers specific responses to the same state. Hence, we can set a threshold θh to
judge whether the machine can give a confident prediction. When a feature’s entropy is
higher than the threshold, further training is needed.

In addition, the change of the suggested prediction ˆsm can indicate whether the
prediction is reliable. If a feature’s value has a specific sentiment score, the suggested
prediction ˆsm should be stable around it. Assuming that the average suggested prediction
ˆsm in a period T is ¯̂sm, the difference to the average score should become lower during

learning.

¯̂sm =
∑T

t=1 ˆsm

T
(9)

d ˆsm = ˆst
m − ¯̂sm (10)

Feature Weight and the Overall Sentiment Score

The named-entity recognition and reinforcement learning have solved two steps of
sentiment analysis—providing the sentiment of each feature and calculating the overall
sentiment score. The steps need to know the weight of each feature. Humans can directly
assign weights. The machine can also learn the weights by itself. As the predicted sentiment
score can be calculated by Formula (1), the weights

arg min
wm

N

∑
1

sn − ŝn =
N

∑
1

sn −
M

∑
1

wm ∗ ˆsm (11)



Appl. Sci. 2023, 13, 1241 10 of 28

To enable using gradient decent, the error in Formula (11) can be replaced by the mean
squared error:

arg min
wm

N

∑
1

sn − ŝn =
N

∑
1

1
2
[sn −

M

∑
1
(wm ∗ ˆsm)]

2 (12)

It is a simple neural network. If replacing the ˆsm with Formulas (6) and (7), the whole
learning process could be learned by a neural network.
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If the data are sufficient, we can use a particular neural network to learn the feature
weights and feature sentiment values. However, it requires the feature number to be fixed.
If there is a new feature, the weights of the features need adjustments.

5. Knowledge Management in a Dual-Track System

Section 3 focuses on knowledge mining because knowledge is the core of a lifelong
learning system. The reason why AlphaGo became so powerful is that it could practice
the game over 30 million times, which human players can never do. Thus, AI can
teach humans because AI can practice many times. Hence, the AI can teach humans
its experience/knowledge obtained from the practice. Similarly, after reading thousands of
product reviews, AI can tell consumers how this product is. It can even compare multiple
similar products and provide professional advice. When a lifelong learning model is first
created, it can be naive, but it should become wiser during learning. Thus, the design of
lifelong learning should focus on setting learning goals and learning paradigms rather than
the short time performance. During knowledge mining, the system will become powerful,
but the knowledge must be correct.

From the fine-grained sentiment classification for a product review, the most immediate
benefit involves generating a product report, which lists the score and comments of each
feature of the product. Consumers can read this report and directly know the product
rather than only see a simple total score. Furthermore, ES can extract consumer complaints
and corresponding features as knowledge. This kind of knowledge is helpful when creating
intelligent customer service. When the robot reads a complaint, it can quickly search the
knowledge base to find the corresponding feature.

5.1. Knowledge Validation

Knowledge can be input by humans or learned by a machine. Whatever the source
of knowledge, AI should be able to evaluate and update the knowledge after input. Thus,
researchers should be aware that a lifelong learning knowledge system is much more
complex than traditional knowledge systems. It not only needs knowledge mining but also
requires knowledge validation and updating.

As illustrated in Figure 3, the knowledge system used for lifelong machine learning
has a knowledge assessor. The traditional knowledge system only has a knowledge base
and does not check whether knowledge is appropriate. The knowledge assessor [8] checks
the incoming knowledge and the archived knowledge. If the knowledge is obsolete, it may
become conflicted with new knowledge. Then a conflict solver is needed to judge what is
correct and to merge conflicts.
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Figure 3. Knowledge system structure for lifelong machine learning.

5.2. Knowledge Updating

Explicit knowledge could be divided into static knowledge and dynamic knowledge.
Static knowledge is always valid, such as “there are seven days in a week”, also called common
sense. Dynamic knowledge may need to adapt during the time, such as “the president of
Oxford University”. Knowledge includes dynamic knowledge, so the knowledge system
must have the ability to adapt to change. This adaptation can be automatic or operated
manually. For instance, when Joseph Robinette Biden became president of the United
States, the knowledge “the president of USA” should be changed from “Donald Trump”
to “Joseph Biden”. Editors of Wikipedia can obtain the news from the internet and modify
the knowledge manually. Machines, can also read the news and find the change. When
it reads “the USA President Biden”, it may be confused based on its knowledge. Thus, it
may begin to doubt its previous knowledge and consider modifying it. After reading more
news, when it finds all of the news that mentions “the USA President Biden” but never
mentions “Donald Trump”, it knows the change and updates the knowledge. This process
is similar to the human learning process. Humans have very high confidence in “common
sense” and low confidence in fresh discoveries. As time passes, if the discovery is always
true, humans become more confident with it and regard it as “common sense”. In machine
learning, this process is similar to the activation of neural networks and the behavior of
reinforcement learning. For fine-grained sentiment analysis, we can use entropy to identify
useful knowledge. If the knowledge has low entropy, it is reliable. When entropy increases
and becomes high, we can know its meaning changes, and new training is needed.

Under lifelong learning, the knowledge graph can grow over a lifetime. A new task can
inherit knowledge generated from previous tasks. This is the main advantage of lifelong
learning. As an iPhone is a phone, it has all components of the phone. Similarly, iPhone 7
and iPhone X are inherited from the iPhone, so the system only needs to define new
components, such as “Touch ID” and “Face ID” (Figure A4 in Appendix B.2 demonstrates
this development).

With the support of the knowledge graph, NER can give a more accurate prediction-
based context. It is also easier for AI to detect and solve ambiguities. Researchers can input
a new entity into a knowledge graph manually or order the machine to discover if there
is a new entity. The knowledge graph gives each entity a precise definition so that the
machine can find new entities based on context. For instance, the most crucial function of a
phone is communication, so the service of its carrier is also essential. Hence, the machine
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must have the ability to detect the new carrier from the product reviews. According to the
knowledge graph, it is easy to know that a carrier can provide SIM cards and cell signals.
Hence, the machine can read reviews and find the nouns always shown with “SIM card”,
“cell signal”, and other carriers.

Figure 4a gives an example of how a customer comments on the carrier. The carrier
“AT&T” shows with “Sim card”. Once “AT&T” is known as a carrier, it is easier to find
carriers, such as “Cricket”. A customer mentioned “AT&T” and “Cricket” at the same time
in Figure 4b, which means “Cricket” may also be a carrier. Although “apple” is also shown
in lowercase, the machine can know it refers to a company rather than fruit due to carriers
also being shown.

(a)

(b)

Figure 4. Visualization of BERT attention. (a) Carrier-named entity recognition example; (b) new
carrier-named entity recognition discovery example.

6. Experiment
6.1. Dataset Generation

The advantage of lifelong learning is that it can continuously learn to be more potent
during a lifetime. Thus, uninterrupted data providing is essential. In this work, we used a
chrome plugin extension (i.e., instant data scraper) to obtain reviews from internet websites.
Specifically, we crawled two lifelong fine-grained product review sentiment classification
(LFSC) datasets from Amazon and Twitter. The two datasets included product reviews of
five models of iPhone, including the main models of recent years. The data include phone
models, customer reviews, and rates. As the customers are required to rate the products
on Amazon, the Amazon dataset is a labeled dataset by default. In contrast, the Twitter
dataset is unlabeled. The authors only annotate a small fraction of them.

This dataset has 12,740 samples, and sentiment grades vary from 1 star to 5 stars;
72.11% are positive samples (4 stars and 5 stars) according to Tables 3 and 4. It is an
imbalanced dataset. A positive class is a major class, while neutral and negative classes are
minor classes. Because of this imbalance, the machine learning model will classify samples
from minor classes to positive classes by mistakes.

Table 3. Lifelong fine-grained product review sentiment classification Amazon (LFSC-A) dataset.

Product Number Sample Pos:Neutral:Neg

Apple iPhone 7, 32 GB, Black 1563 951:91:521Fully Unlocked (Renewed)
Apple iPhone 8, 64 GB, Space Gray 4444 3089:246:1109Fully Unlocked (Renewed)
Apple iPhone X, 64 GB, Space Gray 1822 1253:113:456Fully Unlocked (Renewed)

Apple iPhone XR, 64 GB, Black 4743 3780:192:771Fully Unlocked (Renewed)
Apple iPhone 11, 64 GB, Black 168 114:9:45Fully Unlocked (Renewed)

Total 12,740 9187:651:2902
Ratio - 72%:5%:23%

Table 4. Lifelong Fine-grained product review sentiment classification—Twitter (LFSC-T) dataset.

Labeled Positive:Neutral:Negative Average Unlabeled Total(Labeled) Star
206 17:50:139 3.75 14,842 15,048
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The LFSC-T dataset has 15,048 tweets, but the authors only annotated a few as the test
dataset and retained others for further unsupervised learning research because the annotation
was time-consuming. Although these tweets mentioned the iPhone, some of them were
advertisements rather than product reviews. So if researchers want to analyze public
opinion on social networks, they must detect and remove irrelevant tweets. Lacking labeled
samples, it is difficult to train a new model based on this dataset. Thus, this work only uses
it as a test dataset to investigate how can lifelong learning deal with unsupervised tasks.
In this work, the authors removed the advertisements from datasets and then annotated
the remaining from Twitter based on the overall product quality, such as the behavior of
an Amazon customer. The author only annotated a tweet with a low (negative) rate if
the customer had a negative sentiment toward an important feature. Thus, the author
still annotated a tweet with a positive rating even though the tweet showed very negative
emotion toward an unimportant feature.

6.2. Sentiment Prediction

RoBERTa [51] (robustly optimized BERT pretraining approach) builds on BERT’s
language-masking strategy and modifies key hyperparameters in BERT, including removing
BERT’s next-sentence pretraining objective and training with much larger mini-batches
and learning rates. RoBERTa was also trained on data by an order of magnitude more than
BERT for a longer time. This allowed RoBERTa representations to generalize even better
to downstream tasks compared to BERT. This work used five cross-validations to test the
performance of RoBERTa and our dual-track approach of the LFSC-A and LFSC-T datasets.

Table 5 indicates that the average accuracy is 90.8%, which is not low. In addition,
the average F1 score of the negative class is 96%, which means the model can correctly
classify most of the negative reviews. It is well known that negative reviews are more
severe for both customers and sellers. Customers want to know the product’s drawbacks,
and sellers are afraid of the influence of negative reviews. Most merchants pay more
attention to negative comments. If just looking at the F1 score, the sentiment classification
problem seems similar to a solved task. However, these classification results have not
provided enough information to readers.

Table 6 shows that the model trained from only the iPhone 7 dataset can reach a
predicted accuracy of 90%, whereas iPhone 7 and iPhone X were tested from the rest of the
models. Although the data distribution of the iPhone X was different from iPhone 7, it did
not influence the prediction accuracy. Even using the whole dataset (five cross-validations)
for training, the predicted accuracy increased to 90.8%. When training data are sufficient,
RoBERTa cannot extra information from the training data. If meeting a bottleneck, it is
necessary to use reinforcement learning for further knowledge mining.

As the LSFC-A dataset is labeled, RoBERTa can still provide an accurate sentiment
classification even without NER. However, this result does not mean that RoBERTa fully
understands how to evaluate an iPhone. It predicts based on the sentiment of a sentence
rather than the product quality. In the Amazon dataset, customers tend to comment on
the whole product. Thus, the sentiment of a review is approximately the sentiment of the
product, and RoBERTa’s prediction can reflect the product quality.

Though deep learning has achieved outstanding performance on the LFSC-A dataset,
its mistakes are inevitable. For example, RoBERTa will classify “Does not charge” as a
positive review. If the charger cannot work, it is a negative review. A dual-track approach
can easily find and resolve these kinds of mistakes. Table 7 shows the performance
comparison of RoBERTa and the proposed dual-track approach, where the superior figures
are emboldened. It is observed that the dual-track approach sightly improves the
classification accuracy from 88% to 92%, and significantly improves the F1 scores on
positive classes and neutral classes, exhibiting consistent superiority over RoBERTa.
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Table 5. Five cross-validation performances of RoBERTa on the LFSC-A dataset.

Cross Acc F1 F1 F1 F1 F1
Pos Neg Neutral Macro Micro

1 89% 88% 94% 28% 70% 88.14%
2 90% 86% 96% 14% 65% 89.77%
3 90% 86% 96% 31% 71% 89.76%
4 92% 87% 97% 24% 69% 91.67%
5 93% 83% 97% 18% 66% 95.08%

Ave 90.8% 86% 96% 23% 68.2% 90.92%

Table 6. Performance of LFSC-A via various train domain choices.

Train Domain Accuracy Positive Negative Neutral
Model F1 F1 F1

iPhone 7 90% 84% 95% 3%
iPhone X 90% 85% 96% 12%

All models 90.8% 86% 96% 23%

Table 7. Dual-track sentiment classification for iPhone 11 (LFSC-A).

Method Acc F1 F1 F1 F1 F1
Pos Neg Neutral Macro Micro

RoBERTa 88% 83% 92% 0% 59% 84.77%
Dual-Track 92% 91% 95% 36% 74% 91.67%

Table 8 indicates the RoBERTa trained on the Amazon dataset (LSFC-A) performs
terribly in the labeled part of the Twitter dataset (LSFC-T). If RoBERTa trained of the
Amazon dataset learns how people analyze a product, it should have an outstanding
performance in the Twitter dataset since both consist of product comments of the iPhone.
However, if a tweet has negative sentiment about an unimportant feature, RoBERTa will
classify it as a negative product review. This means RoBERTa has not learned how people
evaluate iPhones. When the customers complain about an APP, RoBERTa thinks the users
dislike the phone and classify reviews as negative. However, consumers can dislike the
APP and still feel optimistic about the phone. RoBERTa, however, does not understand
the difference between the APP and the phone, so it classifies many positive reviews
as negative, and the F1 score of the positive class becomes low. To allow RoBERTa to
perform better on the Twitter dataset, researchers need to annotate more samples and train
a new model.

This experiment shows that the pre-trained models, such as RoBERTa, have not gained
the capability to learn. It can only copy behaviors but it cannot understand their reasons.
To allow AI to have a higher level of intelligence and achieve the goal of lifelong learning,
we need to teach AI how humans think. Table 8 shows that the dual-track approach
has remarkable improvement in the labeled part of the Twitter dataset. The average star
increased to 3.69 from 2.81, much closer to the original star of 3.75. The results show
that the dual-track approach has a significantly better understanding of product quality
analysis. The dual-track approach knows the importance of each feature, so it exhibits
a better understanding of how a feature contributes to the overall sentiment of a phone.
When it reads a review, it knows whether the customer is talking about an important
feature. When the consumer writes some unrelated comments, it will ignore them. It was
noticed that the dual-track approach produces a better F1 score on positive and neural
classes than RoBERTa.

Table 8. Dual-track sentiment classification of LFSC-T (labeled part).

Method Acc F1 F1 F1 F1 F1 StarPos Neg Neu Macro Micro

RoBERTa 47% 24% 71% 3% 33% 55% 2.81
Dual-Track 72% 95% 75% 62% 77% 76% 3.69
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6.3. Fine-Grained Analysis for the Battery

Although iPhone 7 only has 1563 samples (12.27%) and its data distribution differs
from others, the model trained on it still performs well in other domains (models). On the
contrary, adding more training data does not significantly improve performance. Using all
of the model’s data results in only a slight improvement in accuracy. This situation indicates
that deep learning cannot mine more information, even given more data. When algorithms
cannot convert data to useful information, data become trash rather than gold mines.

When deep learning fails to mine from data, reinforcement learning can keep digging,
showing the dual-track system’s advantage. As expert systems use reinforcement learning
to mine knowledge, the demand for data is also enormous. Although numerous samples
are provided, samples of each feature are still insufficient.

Table 9 shows the learning results of the reinforcement of battery-related adjectives.
The words were discovered by patterns, such as “battery (life|health) is+ Adj.” and “Adj.+
battery (life|health)”, as presented in Table 2. Although 2534 reviews mentioned battery,
only 362 of them used adjectives to describe battery directly. Hence, there are more data
needed, and lifelong learning is necessary.

Based on current data, entropy can indicate the machine’s confidence in the learning
result. High entropy means customers use words to describe the products but are given
different scores. On the contrary, low entropy shows that consumers have the same
understanding of a word. Thus, for a word with low entropy, the machine has high
confidence in its correctness. For example, although 56 reviews mentioned “good”, which
is more than “excellent” (14 times), the entropy shows the confidence of “excellent” as being
higher. These cases indicate that the customers have different understandings of the same
adjective. If the entropy is high, the machine knows the knowledge is unreliable and needs
more training. Moreover, when the knowledge frequency of the occurrence is low and
unreliable. For example, “battery is outstanding” is a positive comment, but “outstanding”
only obtains a score of 3.89 due to insufficient training samples.

Figure 5 is an example of how reinforcement learning learns the sentiment of a feature.
It shows the sentiment score of each feature attribute (battery-related adjectives) over time.
Some words, such as “great” and “good”, become steady after a short time increase. This
situation indicates that the algorithm obtains enough data and tends to be convergent.
Meanwhile, the sentiment score of “new” is still increasing, which means that it needs more
data and study. In other words, its current value is unreliable.

Knowing what knowledge is reliable is essential to lifelong learning. Although the
value change in Figure 5 can help us evaluate the knowledge reliability, we still need a
clearer indicator to measure it. In this work, we use entropy as an indicator.

Though the scores of “great” and “good” have become steady in Figure 5, their entropy
values are quite different. From Figure 6, we can see, the entropy of “great” is much lower
than the value of “good”. This situation shows that the value of “great” has higher reliability.
Meanwhile, we can see the entropy of “new” gradually decrease to become convergent.
In addition, although words such as “excellent” and “amazing” have not converged, their
entropies are low, so their sentiment scores also have high reliability. Entropy is a good tool
that can help us evaluate the quality of knowledge and judge how to use knowledge.
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Table 9. Sentiment score of battery-related adjective.

Word Score Frequency Entropy Word Score Frequency Entropy

amazing 4.67 22 0.4 great 4.66 60 0.4
excellent 4.39 14 0.53 unhealthy 3.0 0 0.54
perfect 4.41 6 0.54 good 4.37 56 0.62

defective 1.77 4 0.65 dead 2.07 5 0.73
best 4.08 4 0.79 draining 1.93 5 0.79

damaged 2.08 4 0.79 wonderful 3.89 2 0.81
drained 3.44 2 0.81 fine 3.84 7 0.81

incredible 3.89 2 0.81 impeccable 3.89 2 0.81
awful 2.11 2 0.81 faulty 2.11 2 0.81

normal 3.89 2 0.81 outstanding 3.89 2 0.81
fantastic 3.89 2 0.81 failing 3.89 2 0.81

old 3.18 3 0.85 junk 2.64 3 0.85
horrible 2.52 12 0.87 weak 3.15 4 0.89

new 3.73 51 0.89 terrible 2.53 6 0.9
healthy 2.56 2 0.91 crappy 3.22 2 0.91

nice 3.44 2 0.91 choppy 3.29 1 0.92
critical 2.43 1 0.92 seriously 3.57 1 0.92

inflamed 2.43 1 0.92 spanking 3.57 1 0.92
kaput 2.71 1 0.92 questionable 2.43 1 0.92
okay 3.29 1 0.92 spectacular 3.57 1 0.92

wrong 3.57 1 0.92 pitiful 3.0 1 0.92
fake 3.0 1 0.92 awesome 3.29 1 0.92

magnificent 3.57 1 0.92 generic 2.71 1 0.92
dying 2.43 1 0.92 operational 3.57 1 0.92

diminished 2.71 1 0.92 ridiculously 2.71 1 0.92
leaking 2.71 1 0.92 reasonable 0.57 1 0.92
swollen 3.0 3 0.93 bad 2.65 26 0.93

poor 2.6 5 0.94 low 2.66 15 0.95

Figure 5. Sentiment score over time of battery-descriptive words.

When people describe battery life, they can use a numeric method, such as a percentage.
So, it is necessary to learn the relationship between the percentage of the battery life and
sentiment. Although the battery life is from 1% to 100%, reinforcement learning can also
work if data are sufficient. When data are insufficient, merging input range into bins is
reasonable, such as under 80%, 80–90%, over 90%, etc.

Ideally, the percentage of battery life should be positively correlated with the sentiment
score. However, it is not a satisfactory positive relationship according to Table 10. A lower
percentage may result in a higher sentiment score, but a high percentage has a higher
possibility of receiving a good score. When the percentage of battery life is over 90%,
the sentiment score is over 4.50 except “96%”. Once the percentage is lower than 90%,
the score is much harder to reach 4.50. The quality requirement of the renewed phone
battery life is at least 80%, so customers can accept a phone battery life of over 80%.
However, when the battery life is at 81% and 80%, they become nervous. The average
score of the battery is 3.96 according to Table A3 and the scores of 81% and 80% are 3.70
and 3.28, which are lower than average. When the percentage drops to 79%, the score
quickly drops to 2.50, which equals a serious complaint. To be noticed, when the percentage
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drops to 89%, customers are also unsatisfied. This case shows that customers feel unhappy
when the quality drops from high to low. This result can also help people understand the
customers’ emotions.

Figure 6. Entropy value over time of the battery-descriptive words.

Although the relationship between the battery life percentage and sentiment score is
not perfectly positive, it can still help the machine understand the described words. Once
using the descriptive words in Table 9 to replace the score in Table 10, the machine can
understand the relationship between the battery life percentage and descriptive words.
A descriptive word can comment on a close score. For instance, “excellent” means a score
of 4.80, so the machine can comment on all scores higher than 4.80 as “excellent”.

Table 10. Sentiment score and description of the battery life.

Battery Life Score Freq Entropy Battery Life Score Freq Entropy

100 4.88 118 0.26 95–99 4.73 95 0.46
90–94 4.64 167 0.55 85–89 4.26 104 0.87
80–84 4.05 76 0.95 Unqualified 2.59 31 1.48

Table 11 uses a describing word to comment on each battery life percentage. In this
table, we can see that customers are satisfied when the battery life is over 90% and tend
to decrease their rating when it is between 80% and 90%. Consumers will give negative
ratings when the battery life is below 80% and is unqualified.

Table 11. Sentiment score of the battery life.

Battery Life Score Description Battery Life Score Description

100 4.88 Amazing 95–99 4.73 Great
90–94 4.64 Great 85–89 4.26 Good
80–84 4.05 Good Unqualified 2.59 horrible

6.4. Fine-Grained Analysis for Screen

Similar to the battery, customers also care about the screen. The most common problem
with the renewed phone is screen damage. Consumers use words, such as “scratch”,
“crack”, and “chip” to describe the damage. However, it is difficult for the system to
understand these kinds of descriptions. This work also uses reinforcement learning to learn
the sentiment score of the descriptive words. Sentiment scores of screen-related words are
shown in Table 12, where only the stage differences after ten times shown in the review are
listed. In this table, besides “scuff“, all other words are lower than 4. This indicates that
customers cannot normally stand the damage to the screen. The most common problem is
“scratch”, with a score of 3.4. Moreover, the scores of “chip” and “crack” are 3.27 and 2.63.
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From reinforcement learning, the machine can know that “scuff” means slight damage,
and the customer can tolerate it. However, “chip” and “crack” are more severe problems
and are unacceptable. Although human experts can directly provide scores, reinforcement
learning can save the labor force and achieve the same outcomes.

Table 12. Sentiment scores of screen-related words; “En” refers to “Entropy”.

Word Score Freq En Word Score Freq En

perfect 4.71 22 0.32 flawless 4.6 8 0.41
great 4.57 7 0.44 protective 4.38 5 0.56

amazing 4.33 3 0.59 bad 1.71 4 0.62
clear 4.29 3 0.62 scuff 4.29 4 0.62
big 4.24 5 0.63 sensitive 4.23 3 0.65

replacement 2.38 2 0.65 large 4.23 2 0.65
good 4.07 11 0.68 beautiful 4.17 3 0.68

damaged 1.83 3 0.68 smooth 4.17 2 0.68
freezing 4.17 2 0.68 intermittent 4.0 2 0.76

flickering 2.0 2 0.76 small 4.0 2 0.76
chip 3.27 6 0.76 defective 2.14 6 0.79
crack 2.63 53 0.79 scratch 3.4 350 0.82

delayed 3.67 2 0.84 faulty 3.38 2 0.86
replaced 2.62 5 0.86 unresponsive 2.73 3 0.86
popped 3.38 2 0.86 poor 3.0 2 0.86
original 3.75 3 0.86 broken 2.67 11 0.89

6.5. Named-Entity Recognition and Fine-Grained Analysis for the Carrier

Discovering new entities is also essential during knowledge mining. For instance,
the phone is related to carriers, so finding the carriers from reviews is also crucial. Creating
a list of carriers is one possible way, but there are always new carriers. Thus, it is necessary
to discover carriers from reviews. Although new carriers are unknown, they have the same
features as old carriers. When customers mention a carrier, they may complain about the
SIM card or cell signal. One possible way to discover the carriers is to find the organization
in the review about SIM cards and signals.

Stanford CoreNLP [52] is used to annotate the organization. CoreNLP has a named-
entity recognition function and it can annotate the organization. However, it can only
recognize the organization name starting with the up case, such as “AT&T”. If the input
changes to lower case, such as “AT&T”, CoreNLP cannot work.

Table 13 lists the organizations recognized by CoreNLP. Although it has some mistakes,
such as “All”, “Simple”, etc., it narrows the search scope. There are many correct carriers
in the list, including “AT&T”, “Verizon”, “Sprint”, “MetroPCS”, “Tracfone”, “Comcast”,
“T-Mobile”, and “Vodafone”, “BT”. There are many typos or abbreviations for a name.
For example, “AT&T” also called “ATT”, and “T-Mobile” was written as “TMobile”,
and “TMobil”.

Table 13. Named-entity recognition result by CoreNLP.

Word Frequency Word Frequency Word Frequency

AT&T 123 Verizon 58 Apple 14
SIM 10 ATT 6 Sprint 5

Amazon 4 MetroPCS 3 Tracfone 2
Metropcs 2 Comcast 1 Metro 1

PCS 1 Motorola 1 Mobil 1
Kroger 1 Vodafone 1 S7 1

Lightning 1 TMobil 1 Service 1
All 1 Carriers 1 Local 1

Simple 1 Mobile 1 BT 1

Using existing NER tools, such as CoreNLP, is efficient, but it only works for the
apparent entity. If the entity is written in lowercase, CoreNLP cannot recognize it. Thus,
this work also uses coordinating relationships to find new entities, if two entities belong to
the same class and coordinating conjunction can connect them. Based on this idea, this work
annotates sentences and records which entities are shown together with known carriers.
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There are two carriers found by the coordinating relationship in Table 14. “Cricket”
refers to “Cricket Wireless”, but CoreNLP may regard it as a kind of sport. Although Google
is an internet company, it has also “Google Fi”, and many customers use it as a carrier.
In addition, based on Table 15, “TMobile” and “Version” are “T-Mobile” and a typo of
“Verizon”. “Transferred” is a verb, but CoreNLP recognizes it as a noun, so CoreNLP can
also involve mistakes.

Table 14. Named-entity recognition results from the coordinating relationship.

Word Frequency Word Frequency Word Frequency

Apple 1 Cricket 2 TMobile 3
Version 2 Google 1 Transferred 1

Table 15. Abbreviation and Typo of Carriers.

Carrier Abbreviation and Typo Carrier Abbreviation and
Typo.

AT&T ATT Cricket
T-Mobile TMobile, T Mobile Comcast
Verizon Version Sprint

MetroPCS Metro, PCS Tracfone
Google Fi Google Vodafone
BT Mobile BT Boost Mobile Boost

Once obtaining the list of carriers, it is possible to analyze how to choose carriers
before a purchase. This work also used reinforcement learning to evaluate the carriers.

“Sprint” obtained the worst rating in Table 16. The single score can indicate that Sprint
has some problems, but it is still unclear. There were 66 of 88 reviews rating Sprint lower
than four stars.

Table 16. Sentiment scores of carriers.

Word Score Freq Entropy Word Score Freq Entropy

Metro 4.35 64 0.87 Google Fi 4.1 12 1.26
Tracfone 4.05 7 1.02 Cricket 4.02 30 0.92

BT 3.57 1 1.48 Comcast 3.57 1 1.48
Vodafone 3.57 1 1.48 Verzion 3.47 27 1.41

AT&T 3.13 119 1.17 T-mobile 3.12 79 1.29
Boost 3.1 28 1.47 Sprint 2.24 88 1.29

According to Table 17, the main problem with “Sprint” involves incompatibility,
which means the renewed phone cannot use the SIM card from it. It is incompatible for
two reasons, i.e., the phone model or carrier lock. A few iPhone models do not support
Sprint, so this may lead to incompatibility. Most problems are due to the carrier lock.
If “AT&T” sells a phone, it may have a carrier lock to prevent the users from changing
carriers. In addition, if a phone was bought via a loan or was stolen, the carrier will lock
the phone. In summary, the main problem with “Sprint” is the carrier lock. This problem
also exists in complaints to other carriers. Thus, customers can know that the phone is not
really fully unlocked as the advertising says.

Table 17. Complaints to Sprint.

Reason Frequency Reason Frequency Reason Frequency

Incompatible 36 Carrier 20 Loaned 4Lock Phone
Customer 3 Illicit 2 No SIM 1Service Phone Card

Telling the customers what problems the carriers have is more helpful than providing
them with sentiment scores. Customers will know that the phone is not fully unlocked,
and the sellers will know that their products have problems.
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7. Discussion and Future Work

This work proposes a lifelong dual-track approach for fine-grained sentiment classification.
The authors designed a reinforcement learning-based white-box algorithm for fine-grained
sentiment analysis. Reinforcement learning can mine knowledge from product reviews
and evaluate knowledge reliability. Compared with the deep learning method, the dual-
track approach can handle the fine-grained sentiment analysis and improve classification
performance. It reaches the sentiment classification macro F1 of 74% on the Amazon
dataset (iPhone 11) and 77% on the Twitter dataset. Compared with the transformer-based
approach (RoBERTa), it achieves a 25.42% promotion on the Amazon dataset and 133% on
the Twitter dataset. In summary, the dual-track approach has both better explainability
and classification performance than RoBERTa. The proposed system has the potential to be
applied to other areas, such as auxiliary medical diagnosis systems and auxiliary financial
market decision systems.

Previous lifelong learning mainly focused on performance promotion or knowledge
mining and did not investigate knowledge reliability. This work proposes using
reinforcement learning as a tool to mine and validate knowledge. The entropy of knowledge
can indicate its reliability. Humans and machines can use entropy values to determine
whether to trust knowledge. As this is early research, the data amounts are insufficient.
We did not build a systemic method to judge which knowledge was reliable. For example,
we used entropy to evaluate knowledge, but a threshold was missing. More data and
experiments are needed to figure out the threshold.

As this work aims to implement a lifelong machine learning algorithm, we should
collect and transfer knowledge into different tasks. However, this work only collects
knowledge about the phone. Although we successfully transferred knowledge from the
Amazon dataset to the Twitter dataset, both datasets were about the phone. In other words,
they involved the same tasks, but the sources were different. Next, the authors need to
collect more datasets on various products, such as laptops and PCs. Humans can learn
knowledge from one task and use them in different tasks, so a lifelong learning algorithm
also needs such ability.

For the fine-grained sentiment analysis, this work lacks adequate standards to evaluate
the performance. The authors only provide a series of examples, which are hard to judge.
Thus, the authors will attempt to build a new fine-grained sentiment analysis dataset to
test its performance.

The dual-track system can accumulate knowledge for reusing, and the knowledge
system needs a standard. If two machines are mining and saving knowledge with different
standards, sharing knowledge will result in challenges. For example, there are various
reinforcement learning algorithms. If two machines use different algorithms, how do
they treat each other’s outcomes? Hence, the dual-track system is only the first step to
lifelong learning. An actual lifelong learning system needs the contribution of the whole
AI community. How to create such a standard for knowledge mining and sharing should
be investigated.

8. Conclusions

This paper investigated how to enable human–AI collaborations and how AI can teach
humans after AI becomes more intelligent than humans. One reasonable solution is to
make sure the AI that humans develop is explainable AI. Only if AI has high explainability
can humans understand AI and learn from it. Moreover, considering the difficulty in
creating a high-performance and explainable AI; the authors suggest using a dual-track
approach. Under the dual-track design, expert systems (ES) are responsible for interacting
with humans. Humans can directly teach expert systems, and ES can mine knowledge
by themselves. When ES practice numerous times, they know more than humans and
can even teach humans. In this new design, a key component is a knowledge assessor.
It is responsible for validating and updating knowledge. The authors demonstrate that
the proposed approach can bring 133% promotion of the Macro-F1 score in the Twitter
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sentiment classification task and 27.12% promotion of the Macro-F1 score in the Amazon
iPhone 11 sentiment classification task, respectively, by conducting a series of experiments
and suggesting that the AI community pay more attention to it in the near future.
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Appendix A

Appendix A.1. Different Type Expert System

• Rule-based systems
A rule-based ES performance is based on rules generated by experts, such as the
IF—THEN algorithm. Once the data are inputted, the ES performance is based on
rules and produces an appropriate decision.

• Knowledge-based systems
Knowledge-based systems [30] include the knowledge base, inference engine, and
knowledge engineering manager. Unlike rule-based systems, knowledge-based
systems can make inferences based on knowledge to generate results or produce
knowledge by themselves.

• Case-based systems
Case-based systems judged by previous similar cases. Thus, there should be a case
base to store cases, and a search engine to search for similar cases.

Appendix A.2. Example of Decision Tree

Appendix A.2 is an example of the decision tree for sentiment analysis of phone
product reviews. Sellers can input customer comments to analyze their sentiments.

https://github.com/DerekGrant/LSFC
https://github.com/DerekGrant/LSFC
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Figure A1. Decision tree for phone sentiment classification.

Appendix A.3. Visualization of Feature Maps

It is too difficult to explain what is behind the deep neural network using current
technology. Thus, scientists mainly attempt to visualize the network parameters.
Convolutional neural networks (CNNs) [53] use convolutional maps to extract features of
pictures. Researchers visualize the feature maps with heatmaps to see how CNNs make
decisions. For instance, Figure A2 shows three feature maps from the “Conv2D:0” layer of
the YOLOv4. Red pixels mean activated units, and blue pixels decrease the activation [54].
From the heatmaps, researchers can understand how the network inferences and evaluates
the correctness of this decision. With visualization, CNN is not entirely a “black box”.
Although researchers can partially understand what CNN focuses on, they still cannot
understand all heatmaps. It is also impossible to directly tell the network to pay more
attention to a specific area.

Figure A2. Visualization of three different feature maps in YOLOv4.

Appendix B. Product Review Examples

Appendix B.1. Amazon Product Review Example

An entity-inherit example of an iPhone is shown in Figure A4 and an entity example
is illustrated in Figure A5.
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Figure A3. Amazon product review example for a renewed iPhone XR.

Appendix B.2. Entity Example for Phone

Figure A4. Entity Inherit Example for iPhone.

Figure A4 shows an example of the phone entity relationship. A phone has multiple
functions. iPhone inherits the phone and has some new attributes.

Figure A5. Entity Example for Phone.

Appendix B.3. Explanation for Battery Maximum Capacity

Table A1 shows how to evaluate the battery life via maximum capacity. It is not easy
to directly tell (or teach) deep learning to understand, but expert systems can simply create
new rules to match.
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Table A1. Explanation of the battery’s maximum capacity.

Capacity Score Explanation

over 90%
5 good battery lifecan support normal peak

performance

80–90%
4 acceptable for renewed phonescan support normal peak

performance

under 80%
1–2 disqualificationcannot support normal peak

performance

Appendix C. Dataset Statistics

Appendix C.1. Annotation Standard of the Twitter Dataset (LFSC-T)

Table A2 presents a brief annotation standard of the Twitter dataset, where the full
mark is 5. The author annotates the tweets according to the overall product quality rather
than the sentence sentiment. This is because consumers tend to rate a product based on
its overall quality rather than a single feature unless the feature is very important. Twitter
users only write negative comments in a tweet, so a tweet’s sentiment cannot be the attitude
of the consumer to the product.

Table A2. Annotation standard of the twitter dataset (LFSC-T).

Major Feature Unimportant Feature Overall Rate

Positive (4–5) Positive (4–5) Positive (4–5)
Positive (4–5) Negative (1–2) Neutral (3), Positive (4)

Negative (1–2) Positive (4–5) Negative (1–2)
Negative (1–2) Negative (1–2) Negative (1–2)

Appendix C.2. Statistic of LFSC-A

Table A3 provides the sentiment analysis example of LFSC-A. The iPhone XR obtained
the highest score of 4.21 and the lowest score of 3.5. This score tells the customers that the
iPhone 7 is not popular but it does not explain why. Looking at the scores of the battery
and screen, the reason becomes clearer. The iPhone 7 only obtained a 3.04 on the battery
and 2.91 on the screen, which are lower than the average scores. This case means that the
customers are unsatisfied with the battery and screen conditions of the iPhone 7. This
external information warns customers that the renewed iPhone 7 is quite old and not in
good condition.

Table A3. Fine-grained sentiment analysis of LFSC-A.

Product Total Battery Mention Rate Screen Mention Rate
(Renewed) Score of Battery of Screen

Apple iPhone 7 3.50 3.04 16.95% 2.91 6.21%
Apple iPhone 8 3.84 3.73 20.99% 3.31 10.96%
Apple iPhone X 3.84 4.11 23.16% 3.07 22.61%

Apple iPhone XR 4.21 4.39 18.62% 3.80 15.86%
Apple iPhone 11 3.79 4.13 18.45% 3.56 13.69%

Average 3.94 3.96 19.89% 3.45 13.9%

Appendix C.3. Statistic of LFSC-A

The mentioned rate of a feature shows the attention each feature receives. From
Table A4, it is clear that customers care about the battery more than the screen. The
iPhone 7’s mention rates of both the battery and screen are significantly lower than other
models, and the average review length is shorter. This situation warns that the data
distribution of the iPhone 7 is different from other models. When data distributions are
different, sampling data from the target domain is always helpful. However, this domain
adaptation does not work for LFSC-A.
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Table A4. Fine-Grained Sentiment Analysis upon LFSC-A.

Product Mention Rate Mention Rate Mention Rate
(Renewed) of Battery of Screen of Review

Apple iPhone 7 16.95% 6.21% 84
Apple iPhone 8 20.99% 10.96% 164
Apple iPhone X 23.16% 22.61% 180

Apple iPhone XR 18.62% 15.86% 163
Apple iPhone 11 18.45% 13.69% 161

Appendix D. Case Analysis

To make the Amazon review more intuitive, the Amazon product page of a renewed
iPhone X is shown in Figure A6.

Figure A6. Amazon product page of a renewed iPhone X.

When customers purchase a phone, they cannot read all reviews. What they can do is
check the overall rating and read a few comments. However, even most customers satisfied
with the product cannot guarantee the product is suitable for everyone.

For example, the renewed iPhone X has 4.3 stars (Figure A6), and only 13% of
customers gave negative reviews (under three stars). However, is it a good product?
Customers cannot make correct decisions because they do not know why 13% of customers
dislike it and whether they have the same problems.

One customer (Figure A7) purchased an iPhone X because he thought the rating was
high. However, he then found it was incompatible with his carrier (Sprint), so he then gave
it a score of 1 star. If he was able to obtain the information from Tables 16 and 17, he would
know that Sprint received many complaints due to incompatibilities. Then he could have
given up this purchase or changed carriers.

From Table 10, customers could know about the distribution of the battery life.
Although the renewed phone only guarantees a battery life of at least 80%, many customers
expect a high battery life, even 100%. If they know the real battery life distribution, they
may consider it again.

Table A5 lists four negative review cases. The first and third reviews mentioned that
the battery life was 80% and 78%, which are lower than the promotion in the advertisement.
In such cases, customers normally give stars of 2 or 3. The first customer wanted a
“refurbished” phone, in which battery life was at 100%. However, the “renewed” phone
only promised a battery life of over 80%. Thus, the customer had a misunderstanding
about the renewed phones. If the truths shown in Figure A8 are shown to everyone,
misunderstandings could be avoided.
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Figure A7. Customer review case of a renewed iPhone X.

Table A5. Customer review cases of a renewed iPhone.

Case Star Review Reason Suggestion

I 1

Had to order a replacement because the battery
life was at 80%. Low battery life, 80% 2 starsThat is a used not a refurbished phone and it

definitely not worth what I paid.

II 1
Battery life 81%, 1 burned pixel, Low Battery Life, 81%

3 starevery side of the phone with scratches. Screen damage
I would not recommend buying this product. Scratches

III 2

The phone I received was in OK condition
appearance-wise,

Low battery life, 78% 2 starbut the phone’s battery health is 78% relative
to new,

which is below the 80% mentioned in
the advertisement.

IV 1
The phone came with the front speaker dirty, Low battery life, 85%

4 starsscratches on the back and the battery health is
only 85%

Scratches,
dirty speaker

Figure A8. Battery Life Distribution of Renewed iPhone.

The second customer gave 1 star due to the battery life being 81%, screen damage,
and scratches. The battery life is over 80%, which is qualified. Burned pixels and scratches
are not crucial flaws, such a product should get around three stars. The fourth case is
similar, i.e., the battery life is 85% and there is no significant damage to the phone. This
kind of phone commonly obtains four stars, but this customer only gave it 1 star, which is
not objective.

Although four customers gave negative reviews, only cases one and three could apply
to customer service, returns, or replacements. With the knowledge learned by reinforcement
learning, the machine can know whether a customer gave a fair rating and take suitable actions.
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