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Abstract: In this paper, a novel global time-varying path planning (GTVP) method is proposed. In
the method, real-time paths can be generated based on tunable Bezier curves, which can realize
obstacle avoidance of manipulators. First, finite feature points are extracted to represent the obstacle
information according to the shape information and position information of the obstacle. Then, the
feature points of the obstacle are converted into the feature points of the curve, according to the
scale coefficient and the center point of amplification. Furthermore, a Bezier curve representing the
motion path at this moment is generated to realize real-time adjustment of the path. In addition, the
5-degree Bezier curve planning method consider the start direction and the end direction is used in
the path planning to avoid the situation of abrupt change with oscillation of the trajectory. Finally,
the GTVP method is applied to multi-obstacle environment to realize global time-varying dynamic
path planning. Through theoretical derivation and simulation, it can be proved that the path planned
by the GTVP method can meet the performance requirements of global regulation, real-time change
and multi-obstacle avoidance simultaneously.

Keywords: Bezier curve; path planning; obstacle avoidance; global time-varying; dynamic obstacle;
real-time

1. Introduction

Path planning is a mapping from perceptual space to behavioral space and the planning
method is one of the research hotspots at present. There are a variety of path planning methods
commonly used, such as the potential energy method [1], heuristic search algorithm [2],
Dijkstra algorithm [3], LPA* algorithm (Life Planning A*) [4], Floyd algorithm [5], PRM
algorithm [6], RRT algorithm [7], unit division method [8] and intelligent algorithm [9–11].
However, these path planning algorithms cannot satisfy global adjustment, real-time change
and multi-obstacle avoidance at the same time.

The planned motion path can be divided into two categories: segmented paths and
continuous paths. Segmental paths include the linear path, circular path, segmental func-
tion path, etc. Continuous paths includes the B-spline curve, spline function, polynomial
function, Dubins curve [12], clothoid curve [13], etc. The above methods have the charac-
teristics of optimizing velocity and acceleration curves, but the planned trajectory cannot
change with dynamic obstacles.

Bezier curve is a parametric polynomial curve family with adjustability, continuity
and smoothness, which has been widely used in path planning. Wang [14] combines
gliding motion with the three-dimensional path planning method of robot dolphins to
propose segmented Bezier curves, which can be implemented to hybrid underwater robots.
Zhang [15] proposed a path planning method based on the combination of a jump point
search and Bezier curve, which adopts improved heuristic functions based on distance and
direction to reduce costs and generate optimal trajectories based on Bezier curves. Zafer [16]
proposed a novel method based on Bezier curves to address excessive nodes and spikes
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in path planning in a given environment by using network mapping. In order to reduce
the computational cost of motion planning, Arslan [17] adopts the parameter matching
reduction method to make multiple low-order Bezier segments approximate the high-order
Bezier curve adaptively. This method can be implemented in the trajectory optimization of
non-holonomic constrained mobile robots. Song [18] proposed an improved particle swarm
optimization algorithm to plan the smooth path of mobile robots in order to meet the
requirements of continuous curvature derivative continuity, combined with the continuous
high-order Bezier curve, so as to solve the local optimal solution and premature convergence
problems. Blazi [19] proposed a new parameterization method of motion primitive based
on Bezier curves, which is suitable for path planning applications of wheeled mobile robots.
In this paper, the analytical solution of the motion primitive of a 3-order Bezier curve
is given under the given boundary conditions that guarantee the continuous curvature
of the combined spline path. Bulut [20] proposed the use of quintic triangular Bezier
curves with two shape parameters and C3 continuity for path planning. When there is
an obstacle, the predetermined path can be adjusted only by the shape parameter in this
method. Xu [21] proposed a new smooth path planning method for mobile robots based on
quadratic Bezier transition curve and improved particle swarm optimization algorithm.
Simulation results demonstrate the effectiveness and superiority of this method combined
with quadratic Bezier transition curve and improved PSO-AWDV algorithm.

Researchers have proposed a number of path planning methods for multi-obstacle en-
vironments. Deng [22] proposed a multi-obstacle path planning and optimization method
for multi-obstacle avoidance. This method uses the convex hull to optimize obstacles, so as
to obtain the base point set and generate the corresponding extension point set. The multi-
objective D* Lite algorithm is utilized to design the distance and smoothness of the path
planner to obtain a reasonably optimized path in a complex environment. Finally, the third
Bezier curve is used to smooth the path.

To solve the dynamic obstacle avoidance problem, many methods have been proposed.
However, the traditional method [23] can realize the local dynamic obstacle avoidance
of a mobile car, but it cannot be applied to the global dynamic obstacle avoidance of a
manipulator. Scoccia [24] used the optimal fitting interpolation of a Bezier curve to smooth
the trajectory and improved the obstacle avoidance ability of the robot in the dynamic
environment by considering the speed of obstacles. In order to optimize the distance
between the start point and the target point, the improved genetic algorithm is used to
explore the Bezier curve control points, and the optimal smooth path is selected to minimize
the total distance between the start point and the end point [25]. Kang [26] proposed a
new collision cost prediction network (CCPN) that adopts a real-time updated sensor data
occupation grid to estimate collision costs and avoid robot collisions with static and dy-
namic obstacles. Minnetoglu [27] proposed an effective real-time path planning algorithm
based on the geometry applied to three-dimensional environments, which adopts a three-
dimensional potential field to generate the intermediate point that characterizes the path of
the robot with less degrees of freedom and significantly improves the maneuverability of
the manipulator to avoid obstacles.

The researchers propose a variety of local real-time path planning methods for single
obstacles, moving vehicles, or remotely piloted aircraft. However, the global real-time path
planning method of the snake manipulator is lacking. Therefore, a global time-varying
path planning method based on a Bezier curve (GTVP) is proposed. The GTVP method
generates the real-time motion trajectory of the manipulator according to the real-time
data of dynamic obstacles and then obtains the trajectory of the center point of each joint
of the manipulator according to the repeated path method, which skillfully combines the
trajectory planning of joint space with the trajectory planning of Cartesian space.

The layout of this paper is as follows. Section 2 introduces the improvement of
the proposed method. Sections 3 and 4 describe the trajectory planning process of this
method in single-obstacle and multi-obstacle environments. Section 5 carries out theoretical
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verification of the method. Section 6 carries out simulation verification and Section 7
summarizes this article.

2. Characteristics of GTVP

The high-order Bezier curve has the disadvantages of large computation, oscillations
and complex trajectory, so it cannot be applied to dynamic environment. Although the low-
order Bezier curve can guarantee the continuity of the path, it cannot provide continuous
curvature and arbitrary setting of the second derivative of the characteristic points of the
Bezier curve. The more feature points the Bezier curve has, the more flexible the smooth
path is, but the more computational the complexity is and vice versa. In conclusion, in the
process of path planning, it is necessary to balance the amount of calculation with the
flexibility of the trajectory.

The planned path should meet the following conditions:

(1) The manipulator can realize dynamic obstacle avoidance along the path;
(2) Realize G3 continuity and continuous curvature derivative;
(3) Minimize the maximum curvature of smooth paths;
(4) The length of the smooth path is as short as possible under the premise of meeting

the basic conditions.

It is difficult to satisfy the requirements of real-time obstacle avoidance by using a
traditional intelligent algorithm to optimize the solution. In order to address the problems
of real-time path planning and Bezier curves, the GTVP method is improved on the premise
of satisfying the elementary criteria. The novelty and contributions of this paper are
summarized and listed as following.

(1) Considering obstacles of different positions and shapes, the GTVP method extracts a
finite number of feature points to characterize the key information of dynamic obsta-
cles, which reduces the complexity of the obstacle model. In this way, the dynamic
obstacle information can be analyzed in real time during path planning.

(2) Before real-time path planning, the GTVP method has formulated the conversion
relationship between feature points and paths through equation deduction (Step 5,
Step 6, Step 7). In real-time path planning, the corresponding spline curve can be
generated by bringing in the real-time data of feature points and the spline curve is
the motion path of the snake manipulator, which greatly reduces the calculation time.

(3) There are many inflection points in the path planned by traditional methods and the
variation curve of the joint declination angle is unsmooth when the snake manipulator
moves along the path. By virtue of the characteristics of Bezier curves, the smooth
path can be directly planned by the GTVP method and then the smooth path can be
adjusted in real time according to the nodes on the path and the feature points of
dynamic obstacles.

(4) The traditional method can be applied to the dynamic obstacle avoidance of a trolley
or car, but it cannot be applied to the snake manipulator to avoid obstacles on the
global path. Built on the global characteristics of Bezier curves, the GTVP method can
adjust the global path in real time by adjusting the obstacle feature points and curve
feature points.

(5) The GTVP method extracts real-time information of dynamic obstacles and utilizes
feature points to generate the corresponding smooth trajectory curve, which can
realize real-time obstacle avoidance of the manipulator. This method avoids numer-
ous unnecessary calculations, improves search efficiency and efficiently solves path
planning problems in multi-target conditions or multi-obstacle environments.

(6) The GTVP method can not only adjust the direction of the start point of the path,
but also adjust the direction of the end point of the path.

(7) There are several adjustable parameters in the GTVP method: center point of obstacle,
number and position of obstacle feature points, location of scaling center point, scaling
ratio coefficient, etc. Individual parameters can be selected or adjusted according to the
specific application environment, so this method has good environmental adaptability.
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3. Transient Path under the Single-Obstacle Environment
3.1. Overall Process

For moving obstacles with different shapes, it is necessary to plan the corresponding
time-varying trajectory according to the real-time information of the obstacle, so that the
manipulator can ensure that it does not collide with the obstacle and can also move from
the starting point to the end point. In order to meet the above requirements, the global
time-varying path planning (GTVP) method for dynamic obstacles is proposed in this
paper. The pseudo-code for the main function in the method is shown in Algorithm 1.

Algorithm 1 The main function of the time-varying trajectory planning algorithm

1: Input: xstart, xend, dstart, dend;
2: Obs_Information← Get_obstacle(t);
3: Central_Point←Mid(Obs_Information, xstart, xend);
4: Feature_Points← Extract(Obs_Information, xstart, xend);
5: Bezier_Points← Amplify(Feature_Points, Central_Point, xstart, xend, dstart, dend);
6: Bezier_Curve← Bezier_Function(Bezier_Points);
7: Output: Bezier_Curve;

The whole process of the algorithm combined with the pseudo-code is explained as
follows. First, input the initial data and the moving object model, including the position xstart
and direction dstart of the start point, the position xend and the direction dend of the end point
and the model of the snake manipulator (Step 1). Then, obtain the real-time shape and position
information of the obstacle (Step 2) and find the center point O0, which is the preparation
for the curve generation (Step 3). Extract feature points of the surface that represents the
obstacle information and judge which side of the obstacle the moving object walks from
(Step 4). Enlarge the surface of the obstacle according to the formulated scale coefficient and
magnification center point and generate the feature points of the Bezier curve according to the
specified law (Step 5). Next, generate the Bezier curve according to the characteristic point of
the curve (Step 6). Finally, output the real-time Bezier curve (Step 7).

The Bezier curve corresponding to each moment can be obtained through the above
process. Next, the process and principle of the GTVP method are described in four examples
shown in Figures 1–4. The direction of the x-axis is from the start point xstart to the end
point xend and the y-axis is perpendicular to the x-axis. The GTVP method is suitable
for snake manipulators, redundant manipulators, continuous manipulators, mobile cars,
mobile robots, remote control aircraft and other moving objects. In this paper, the process
and principle of the GTVP method are described by taking the snake manipulator as an
example. The details of each step are described in Sections 3.2–3.6.
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Figure 1. Bezier curve generated for rectangular obstacles.
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Figure 2. Bezier curve generated for circular obstacles.
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Figure 3. Bezier curve generated for non-parallelogram obstacles.
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Figure 4. Bezier curve generated for irregularly shaped obstacles.

3.2. Obtaining Initial Information

In Step 1, the kinematic model of the snake manipulator is constructed, including
establishment of the D-H coordinate system and analysis of the conversion relationship
between the parameters. According to the task requirements, the start point xstart, the
end point xend, the start point direction dstart and the end point direction dend are set
corresponding to the motion trajectory of the manipulator. The relationship between the
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parameters is presented in Equation (1). The dstart and dend in Figures 1, 2 and 4 are both 0°,
so they are not marked. The dstart and dend in Figure 3 are −30°.{

dstart = x′start

dend = x′end
(1)

In Step 2, the detailed information of obstacles can be obtained through image pro-
cessing, construction of sparse maps and so on. The feature information of obstacles
(represented by the Obs_Information symbol) can be extracted and only one set of data
is needed to store the shape data of obstacles: Obs_Information (1). The data of x, y,
z, θx, θy and θz are used for storage of the position data of three-dimensional obstacles:
Obs_Information (2:7). Where x, y and z are the distance between the current position
and the origin point, θx, θy and θz are the angles of rotation of the initial pose around the
axes x, y and z. The position data of two-dimensional obstacles are stored through the
data of x, y and z. The data of z, θx and θy are always zero. Size data of the obstacle are
stored through obstacle features: Obs_Information (8:), the size data of obstacles of different
shapes occupy different numbers of data. For example, the size data of spherical obstacles
are stored through r, the size data of cuboid obstacles are stored through a, b and c. The size
data of irregular polyhedral obstacles are stored through the initial position information of
each vertex.

The problems of image recognition and segmentation can be solved by existing meth-
ods proposed by other researchers. For obstacle recognition, Chen [28] proposed an
adaptive object recognition system, which can effectively identify specific targets under
complex backgrounds. For the extraction of edge information, Gu [29] used the improved
wavelet mode maximum algorithm to extract image edges, which can obtain edge image
information with better clarity and connectivity. Yu [30] extracted the boundary of an
obstacle from the semantic segmentation result by applying pixel filtering. For irregular
obstacles, Bai [31] conducted grid preprocessing and convex preprocessing for concave
obstacles, which enhanced the safety of UAV path obstacle avoidance. In order to determine
turning points, Dai [32] proposed to use motion coherence to distinguish dynamic and
static visual feature points and remove the edges between irrelevant points in the point
correlation optimization process.

The shape and size of obstacles do not change with time, but the position of dynamic
obstacles changes over time, such as translation, rotation and other movements. There-
fore, it is necessary to extract the information of dynamic obstacles in real time to obtain
preliminary data for obstacle avoidance.

3.3. Center Point of Obstacle

Extract unchanged initial data in Step 1 and the initial data that need to be updated in
real time are extracted in Step 2. In Step 3, the center point O0 is obtained through the two
endpoints of the trajectory and the obstacle, which lays the groundwork for the subsequent
amplification. The start point xstart and the end point xend are connected to generate a
straight line. If the line does not intersect the obstacle, there is no need to consider obstacle
avoidance and the moving object can move along the line from xstart to xend. If part of the
line segment is inside the obstacle, the two ends of the line segment are represented by xleft
and xright, respectively and the midpoint of the line segment is the center point, which is
marked O0. The pseudo-code corresponding to the Mid function that determines the center
point O0 is shown in Algorithm 2.
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Algorithm 2 Central_Point←Mid(Obs_Information, xstart, xend)

1: Input: Obs_Information, xstart, xend;
2: for xleft from xstart to xend do
3: if xleft in obstacle then
4: break for
5: end if
6: end for
7: for xright from xend to xstart do
8: if xright in obstacle then
9: break for

10: end if
11: end for
12: if xleft is xend then
13: Central_Point← Null;
14: else
15: Central_Point← (xleft+xright)/2;
16: end if
17: Output: Bezier_Curve;

After inputting the characteristic information of the obstacle “Obs_Information”, xstart
and xend, let xleft move step by step from xstart to xend, according to the specified step δ.
The calculation equation is as follows.

xleft = xstart + n · δ (2)

where n = 1,2,3, . . . . . .
Each step determines whether the xleft in the step is in the obstacle space. If it is not in

the obstacle space, it analyzes whether xleft reaches or exceeds the xend point. If so, there is
no need to consider obstacle avoidance. If xleft does not reach or does not exceed xend, let
xleft continue moving from xstart to xend and cycle again.

If xleft is in the obstacle space, let xright move step by step from xend to xstart, according
to the specified step δ and the calculation equation is as follows.

xright = xend − n · δ (3)

where n = 1, 2, 3, . . . . . .
Each step determines whether the xright in the obstacle space. If not xright continues to

move from xend to xstart and cycle again. If xright is in the obstacle space, the center point
O0, is calculated as follows.

O0 =
(

xright + xleft

)/
2 (4)

3.4. Feature Points of Obstacles

In Step 4, the feature points of the obstacle are extracted. The turning point of each
object is regarded as the feature point on the surface of each object. Several feature points
and locations of feature points need to be extracted, which can be set according to the task,
mainly related to the following factors.

(1) Obs_Information. The type of obstacle and the number of inflection points in the
characteristic information of the obstacle;

(2) The position of the start point xstart and the end point xend;
(3) Which_Side. Whether the planned trajectory is above or below the obstacle needs

to be determined; in other words, which side of the obstacle the planned trajectory
bypasses needs to be determined.

The pseudo-code corresponding to the Extract function is shown below.
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Line 2–3 in Algorithm 3. The Ei in Figure 1 represents the feature points of the
rectangular obstacle, which are the points that characterize the shape and size of the
obstacle. The fuzzy center of gravity C is determined according to the above feature points
of the obstacle (also known as the inflection point of the obstacle), which can reduce the
amount of calculation. Some specially shaped obstacles have no inflection point and several
feature points of the obstacle can be set according to the specified rules, as shown in
Figure 2. Where four straight lines with adjacent angles of 60° are made through the point
O0 and the intersection point Ei of the straight line, and the intersection point with the
circular obstacle is regarded as the feature point of the obstacle. By setting feature points
for circular obstacles with the help of the method, the real-time generated Bezier curve
never intersects with obstacles. The relevant proof process is shown in Section 5. Three or
six feature points Ei can be extracted from triangular obstacles, four feature points Ei can
be extracted from quadrangular obstacles, the number of feature points Ei extracted from
N-sided obstacles is N and the number of feature points Ei extracted from circular obstacles
is n, where n can be set as an integer, such as 3–6, etc. After obtaining these feature points
of the obstacle, the blurred center of gravity C of the obstacle can be obtained by taking the
average of the above points. The calculation equation is as follows.

C =
w

∑
i=1

Ei/w (5)

where w is the number of feature points of the obstacle.

Algorithm 3 Feature_Points← Extract(Obs_Information, xstart, xend)

1: Input: Obs_Information, xstart, xend;
2: Ei ← Obs_Feature(Obs_Information);
3: C← Equation (5)(Ei);
4: Which_Side← Judge_Side(C, xstart, xend);
5: Feature_Points← (Ei, Which_Side);
6: Output: Feature_Points;

Line 4 in Algorithm 3. By determining which side of the connecting line between
the start point xstart and the end point xend, the fuzzy center of gravity C is the side of the
obstacle the moving object goes through can be determined. The fuzzy center of gravity C,
in Figures 1–4 is above the line, so the trajectory only needs to be planned in the upper part
of the obstacle.

3.5. Feature Points of Curves

The feature points of the obstacle are extracted in Step 4 and the feature points of
the curve are extracted in Step 5. In this step, the obstacle is magnified with the O0 point
as the center point. The enlarged boundary is used to obtain the points P0

i by which the
Bezier curve is drawn and the line between these points is a Bezier polygon. In this paper,
the magnification scale k is set to 2 and the points on the obstacle surface are regarded as
set E and the points on the magnified boundary are regarded as set K and then the two sets
satisfy the following relationship.

K = k · E−O0 (6)
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It can be specifically shown in the image that the line segments in Figure 1 satisfy the
relationship shown in Equation (7):

P0
2 O0 = k · xleftO0

P0
3 O0 = k · E1O0

P0
4 O0 = k · E2O0

P0
5 O0 = k · xrightO0

(7)

The line segments in Figure 2 satisfy the relationship shown in Equation (8):
P0

2 O0 = k · xleftO0 = k · E1O0

P0
3 O0 = k · E2O0

P0
4 O0 = k · E3O0

P0
5 O0 = k · xrightO0 = k · E4O0

(8)

The line segments in Figure 3 satisfy the relationship shown in Equation (9):
P0

3 O0 = k · E1O0

P0
4 O0 = k · E2O0

∠P0
2 P0

1 = dstart
∠P0

6 P0
5 = dend

(9)

The points in Figure 4 satisfy the relationship shown in Equation (10):
P0

2 = (min(K, x), 0)
P0

3 = (min(K, x), max(K, y))
P0

4 = (max(K, x), max(K, y))
P0

5 = (max(K, x), 0)

(10)

where min(K, x) is the minimum value of the set K in the x-axis direction.
In summary, in addition to finding set K of the enlarged boundary points according to

set E and the magnification scale k, the following steps are included in Step 5:

(1) Set the start point xstart as the first point in feature points of the curve and the end
point xend as the last points in feature points of the curve;

(2) Make a straight line through the xstart point in the direction dstart (start direction)
and find the solution in set K (set K is the set of points on the boundary after the
enlarged surface of the obstacle), which is the second point in the characteristic point
of the curve;

(3) Make a straight line through the xend point in the direction dend (end direction)
and find the solution in set K, which is the penultimate point in the feature point of
the curve;

(4) Amplify the Ei of the part in which the trajectory planning needs to be developed
and the enlarged point is regarded as a feature point of the curve (such as Figures 1–3),
or the maximum value point of the coordinate is regarded as a feature point of the
curve (such as Figure 4).

3.6. Generating Curve

In Step 4 and Step 5, the feature points of obstacles and the feature points of curves
are extracted respectively. In Step 6, a Bezier curve is generated from the feature points of
the curve P0

i . The curves representing the path can be circular arcs, sine and cosine curves,
N-polynomial curves, Bezier splines, B-splines, and so on. In this paper, the Bezier curve
is taken as an example to describe how to use the feature points of the curve to plan the
time-varying trajectory.
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Feature points can be obtained according to the obstacle P0
1 -P0

n . According to these
feature points and the scale factor κ, a Bezier curve with n-1 order can be generated.
From P0

1 to P0
n , a polygon composed of polylines formed by various feature points is

referred to as a feature polygon. In Figure 5, the point after the first iteration satisfies the
following relationship. 

P1
1 = (1− κ)P0

1 + κP0
2

P1
2 = (1− κ)P0

2 + κP0
3

P1
3 = (1− κ)P0

3 + κP0
4

(11)

0 1 2 3 4

0

0.5

1

1.5

2 P2
0

P1
0

P3
0

P4
0

P1
1

P2
1

P3
1

P1
2

P2
2

P1
3

Bezier curve

Figure 5. Schematic diagram of the Bezier curve (example of κ = 0.3).

The point after the second iteration satisfies the following relationship.{
P2

1 = (1− κ)P1
1 + κP1

2
P2

2 = (1− κ)P1
2 + κP1

3
(12)

After the third iteration, the point on the Bezier curve is obtained, which satisfies the
following relationship.

p(κ) = P3
1 = (1− κ)P2

1 + κP2
2 (13)

The points and segments in the diagram satisfy the following relationships.

Pj
i = (1− κ)Pj−1

i + κPj−1
i+1 (14)

Pj−1
i Pj

i

/
Pj

i Pj−1
i+1 = κ

/
(κ − 1) (15)

where Pj
i is the ith point after the jth iteration and p(κ) is the function representing the

Bezier curve, κ ∈ [0, 1].
When κ changes from 0 to 1, a cubic Bezier curve defined by n = 4 vertices in the graph

is generated. By analogy, the nth degree Bezier curve p(κ) defined by n+1 vertices can be
obtained that satisfies the following equation.

p(κ) =
n+1

∑
i=1

Ci−1
n (1− κ)n+1−iκi−1P0

i (16)

where Ci−1
n is the number of combinations expressed in probability theory.

The p(κ) corresponding to the Bezier curve can be sorted out as a matrix as follows.

p(κ) = PK1(1− κ)K2(κ)HT (17)

The matrices P, K1, K2 and H in the equation are as follows.

P =
[

P0
1 , P0

2 , · · · , P0
n

]
(18)
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K1(1− κ) =
[
(1− κ)n, (1− κ)n−1, · · · , (1− κ)0

]
· In (19)

K2(κ) =
[
κ0, κ1, · · · , κn

]
· In (20)

HT = [λ1, λ2, · · · , λn] (21)

where P is the geometric matrix of feature points; K1 and K2 are diagonal matrices related
to parameter κ; H is the weight matrix; λi = Ci−1

n is the weight coefficient.
Deriving the variables K1, K2 and p(κ) to κ, the following equations can be obtained.

dK1

dκ
=
[
−n(1− κ)n−1,−(n− 1)(1− κ)n−2, · · · ,−1, 0

]
· In (22)

dK2

dκ
=
[
0, 1, · · · , (n− 1)κn−2, nκn−1

]
· In (23)

dp(κ)
dκ

= P
[

dK1

dκ
K2 + K1

dK2

dκ

]
HT (24)

d2 p(κ)
dκ2 = P

[
d2K1

dκ2 K2 + 2
dK1

dκ

dK2

dκ
+ K1

d2K2

dκ2

]
HT (25)

Just substituting the specific κ value into the above derivation equations, the matrix
related to κ can be solved in advance. The final improvement curve p(κ) and its first and
second derivatives can be obtained by adjusting the weight matrix according to expectations
and the curve is the final Bezier curve at this moment.

The curve p(κ) in two-dimensional space changes along the x-axis and y-axis directions
and the corresponding change functions can be written as px(κ) and py(κ). The radius of
curvature R corresponding to this curve is calculated as follows.

R =

∣∣∣∣∣∣∣∣∣
[
(p′x)

2 +
(

p′y
)2
]3/2

p′x p′′y − p′′x p′y

∣∣∣∣∣∣∣∣∣ (26)

By controlling the parameters in the equation, it is guaranteed that the radius of
curvature R of the Bezier curve is always within the specified range. So that the deflection
angle of the joint is always within the limit when the moving object (such as a snake
manipulator) moves along this path.

4. Dynamic Path under the Multi-Obstacle Environment

Section 3 introduces the process of generating feature points of obstacles, feature
points of curves and Bezier curves with the help of pseudo-code for a single dynamic
obstacle. In this section, how to plan paths for multiple obstacles in real time is described,
as shown in Figure 6.

Step 1: Input the initial data and the model of the moving object: the position xstart
and direction dstart of the start point, the position xend and the direction dend of the end
point and the model of the snake manipulator.

Step 2: Obtain real-time shape position information for each obstacle: Obs_Information_j.
Step 3: Find the center point Oj_0 of each obstacle.
Step 4: Extract the surface feature point Ej_i that characterize the information of each

obstacle and find the fuzzy center Cj of each obstacle through Equation (27).

Cj =
w

∑
i=1

Ej_i/w (27)
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where j is the number of obstacles and w is the number of obstacle feature points.
Step 5: The magnified surface Kj_i of obstacle is obtained by Equation (28) according

to the scale factor k, magnification center point Oj_0 and surface feature point Ej_i.

Kj_i = k · Ej_i −Oj_0 (28)

The jth obstacle can generate a set Kj from which the main feature points are filtered
to obtain the feature points of the Bezier curve.

In this method, it is not necessary to analyze the feature points that are far away from
the obstacle and it is not necessary to consider multiple adjacent feature points repeatedly.

Step 6: According to the feature points of the curve and the principle described in
Section 3.6, a smooth transition Bezier curve can be generated.

Step 7: The motion path corresponding to each time is output, so that the moving
object can achieve dynamic obstacle avoidance when moving along the path.

_
1

/
w

j j i
i

C E w


 

0
_j iP

Figure 6. Flowchart of real-time trajectory generation in a multi-obstacle environment.

According to the above steps, the obstacle avoidance curve generated at a certain mo-
ment can be obtained when moving in a multi-obstacle environment, as shown in Figure 7.
The figure includes L-shaped obstacles, rectangular obstacles, triangular obstacles, circular
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obstacles and pentagram obstacles. These five obstacles move along the path represented by
Equations (29)–(33) and these five motion paths are plotted by curves in Figure 7. The dif-
ferent colored asterisks * in the figure correspond to the feature points of each obstacle.
When these five obstacles move, the Bezier curve is generated in real time by this method
to ensure that the moving objects do not collide with the obstacles.{

xcircle
/

50 = 9 sin(πt/200) + 5
ycircle

/
50 = −10 cos(πt/200)− 2

(29)

 xrectangle

/
200 = sin(πt/50) + 5

yrectangle

/
200 = cos(πt/200) + cos(πt/50) + 1

(30)

 xtriangle

/
50 = t/100 + 30

ytriangle

/
50 = −t/10 + 13

(31)

{
xstar/50 = −t/10 + 35
ystar

/
50 = 3t/20− 18

(32)

{
xL/50 = sin(πt/30) + 5
yL
/

50 = −t/10 + 11
(33)

0 250 500 750 1000 1250 1500 1750 2000
-1000

-750

-500

-250 
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500

750

1000

Bezier 
curve

The path of 
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The path of 
pentagram obstacle

The path of 
L-shaped 
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The path of 
rectangular 
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The path of 
triangular 
obstacle

*: The characteristic 
points of bezier curve

Figure 7. Obstacle avoidance curve in a multi-obstacle environment.

When the five obstacles move in real time, feature points of obstacles, feature points of
curves and Bezier curves are generated in real time through the GTVP method.

5. Theoretical Verification

The process of the GTVP method is described in Sections 3 and 4. In these two
sections, the effectiveness and practicability of the GTVP method are proved by theoretical
derivation. The path planned by this method can ensure that the moving object will never
encounter the obstacle and the distance between the moving object and the obstacle can
be adjusted by adjusting the magnification factor. Next, a circular obstacle is taken as an
example to describe the proof process.

If O0 is taken as the origin point, the coordinates of the four points E1, E2, E3 and E4
in Figure 2 are:
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E1 :
(
−
√

r2 − y2
0, 0
)

E2 :
(
−1
4 ξ,

√
3

4 ξ
)

, ξ =
√

4r2 − y2
0 −
√

3y0

E3 :
(

1
4 ξ,
√

3
4 ξ
)

, ξ =
√

4r2 − y2
0 −
√

3y0

E4 :
(√

r2 − y2
0, 0
) (34)

where r is the dimensional information of the circular obstacle: the radius of the circle; y0 is
the distance between point O0 (center point) and point C (fuzzy center of gravity).

Through adopting the method in the paper, six feature points can be obtained. And then,
the expression of the 5-order Bezier curve can be derived:

p(κ) =
N

∑
i=1

Ci−1
N−1(1− κ)N−iκi−1P0

i (35)

where N = 6. Equation (36) can be obtained by expanding the combination number in the
above equation.

p(κ) =
N

∑
i=1

[
N!

(i− 1)!(N − i− 1)!

]
(1− κ)N−iκi−1P0

i (36)

Put N = 6 into Equation (36) and expand to obtain Equation (37).

p(κ) = (1− κ)5P0
1 + 5(1− κ)4κP0

2 + 10(1− κ)3κ2P0
3+

10(1− κ)2κ3P0
4 + 5(1− κ)κ4P0

5 + κ5P0
6

(37)

Bringing in these 6 points P0
1 - P0

6 , it can be analyzed that, when κ = 0.5, the distance
between the Bezier curve and the obstacle is the closest. Let κ = 0.5 , and yields:

p(κ = 0.5) = (0.5)5P0
1 + 5(0.5)5P0

2 + 10(0.5)5P0
3+

10(0.5)5P0
4 + 5(0.5)5P0

5 + (0.5)5P0
6

(38)

Ensure that the curve is outside the obstacle, namely:

p(κ = 0.5) ≥ r− y0 (39)

After organization,

10 · (0.5)3 ·
√

3
4
· ξ ≥ r− y0 (40)

Bringing in ξ, and tidying up, yields:

5
√

3
(√

4r2 − y2
0 −
√

3y0

)
≥ 16(r− y0) (41)

Let y0=k · r, where k ∈ (0, 1). Equation (42) is obtained after simplification.

5
√

3
(√

4− k2 −
√

3k
)
≥ 16(1− k) (42)

After further organization,

5
√

3
(√

4− k2
)
+ k− 16 ≥ 0 (43)
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Let the left of the inequality sign in the above equation be f (k), namely:

f (k) = 5
√

3
(√

4− k2
)
+ k− 16 (44)

When f (k) is derived and the increase or decrease of the function between the interval
(0,1) is analyzed, it can be obtained that the function keeps as the increase function between
the interval (0, 1/

√
19) and the subtraction function between the interval (1/

√
19, 1). The

two minimum points f (k = 0) = 1.32 and f (k = 1) = 0 satisfy the condition of greater than
or equal to 0. Through the theoretical derivation in this section, it can be proved that the
Bezier curve planned by this method never touches obstacles.

6. Simulation
6.1. Feasibility Analysis of Obstacle Avoidance

The experiment was run on a CPU of Inter i5-6500 with 4G of RAM. According
to Section 3, the GTVP method can ensure that the manipulator avoids obstacles in a
single-obstacle environment. It can be seen from Section 4 that, when the manipulator
moves in a multi-obstacle environment, it still keeps a certain distance from the obstacles.
The movement process of the manipulator is shown in Figure 8. It can be seen from Figure 8
that complex obstacles are characterized by the basic obstacle model and the corresponding
obstacle feature points are generated in the process of motion planning. Whereafter,
a continuous path with global dynamic change is generated according to the dynamic
feature points, so that the manipulator can repeat the time-varying following movement
along the time-varying path, so as to achieve obstacle avoidance.

0 250 500 750 1000 1250 1500 1750 2000
-1000

-750

-500

-250

0

250

500

750

1000

0 250 500 750 1000 1250 1500 1750 2000
-1000

-750

-500

-250

0

250

500

750

1000

     (a)                                                                            (b)                                                                            (c)

Figure 8. Diagram of the motion process of the manipulator in the environment of multiple obstacles.
(a) t = 90 s. (b) t = 95 s. (c) t = 100 s.

During the movement of the manipulator from 90 s to 100 s, the closest distance
between the key node of the manipulator and all obstacles can be analyzed to obtain the
change curve shown in Figure 9. The curve is the closest distance between each key node on
the manipulator and the obstacle, where d8 is the closest distance between the end point of
the manipulator and all obstacles and the remaining di corresponds to the closest distance
between the start point of the ith link and all obstacles.

As can be seen from the figure, the maximum distance between the manipulator and
the obstacle is 15 mm, which is not less than the set minimum distance. Because, when
the closest distance between the manipulator and the obstacle is less than the specified
value, the real-time path can be quickly adjusted by adjusting the curve feature point
of the symbolic path in this method, so that the manipulator can retreat to a safe area.
Through the above simulation, it can be proved that the path planned by the proposed
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method meets the following conditions: “global”, “time-varying” and “obstacle avoidance
in multi-obstacle environment”.

90 91 92 93 94 95 96 97 98 99 100
t(s)

0

100

200

300

400

500

600

700

d i(m
m

)

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

Figure 9. The closest distance between several key nodes and obstacles.

6.2. Comparison of Different Methods

For path planning of moving objects, traditional path planning methods used for
obstacle avoidance cannot consider multiple conditions: (1) real-time obstacle avoidance;
(2) global obstacle avoidance; and (3) obstacle avoidance under multiple obstacles. Up to
now, a variety of path planning methods are proposed, and the comparison between these
methods is summarized in Table 1.

Table 1. Features of different algorithms.

Methods Real-Time Global Multi-Obstacle Types of Path Application Objects

Method 1 [7] × � � RRT/ Straight path Manipulator
Method 2 [9] × � � VDSM/ Straight path Manipulator
Method 3 [3] × × � Bezier curves Wheeled mobile robot
Method 4 [20] × × � Bezier curves Autonomous vehicles
Method 5 [21] � � � Bezier curves Mobile robots
Method 6 [22] � × � Bezier curves Robot
Method 7 [23] � × × Bezier curves Mobile robots
Method 8 [24] � × × Bezier curves Robot
Method 9 [33] × � � RRT Robot

GTVP � � � Bezier curve Manipulator

It can be seen from the table that most methods cannot take into account multiple-
obstacle avoidance conditions at the same time. It can be seen from the simulation results
that method [7] and method [9] not only cannot realize real-time path planning, but also the
simulation time in the static path is longer than that in the present method. Although global
real-time path planning can be achieved for multiple obstacles in paper [21], the PSO
algorithm is adopted in the algorithm, which takes a certain amount of time to perform
iterative operations in the process of solving the key points of the path. However, the path
that meets multiple conditions can be solved without the help of an intelligent optimization
solving algorithm in this method and the planned path is smoother.

The distance between the robot arm and the obstacle is relatively close from 90 s
to 100 s. During this period, path planning was performed through RRT, Q-RRT*[33],
MDA+RRT [7] and GTVP to obtain Figures 10–13. In these four pictures, (a)–(f) are the
corresponding simulation results of the six moments 90 s, 92 s, 94 s, 96 s, 98 s and 100 s,
respectively. In the figure, the black solid part is the obstacle, the red line segment is the
planned path and the black dot in Figure 13 is the feature point.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Simulation results obtained by RRT. (a) t = 90 s. (b) t = 92 s. (c) t = 94 s. (d) t = 96 s.
(e) t = 98 s. (f) t = 100 s.

(d) (e) (f)

(a) (b) (c)

Figure 11. Simulation results obtained by Q-RRT* [33]. (a) t = 90 s. (b) t = 92 s. (c) t = 94 s. (d) t = 96 s.
(e) t = 98 s. (f) t = 100 s.
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(d) (e) (f)

(a) (b) (c)

Figure 12. Simulation results obtained by MDA+RRT. (a) t = 90 s. (b) t = 92 s. (c) t = 94 s. (d) t = 96 s.
(e) t = 98 s. (f) t = 100 s.

(a) (b) (c)

(d) (e) (f)

Figure 13. Simulation results obtained by GTVP. (a) t=90s. (b) t = 92 s. (c) t = 94 s. (d) t = 96 s.
(e) t = 98 s. (f) t = 100 s.

As can be seen from Figure 10, the path planned by the RRT algorithm requires a
small number of nodes, but the total length of each planned path is long and there are
many turning points. When the manipulator moves along this path, the joint angle will
exceed the limit of the deflection angle. As can be seen from Figures 11 and 12, the path
length planned by the Q-RRT* algorithm or MDA+RRT algorithm is short, but the distance
between the path and obstacles is close, and the planned path has uncertainty at any time.

As can be seen from Figures 10–12, the path planned by other path planning methods
has the following characteristics: (1) the distance between the path and the obstacle is
relatively close, which cannot meet the conditions of obstacle avoidance by the manipulator;
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(2) the path is not smooth; and (3) there is a big difference between the paths planned
at each time. All in all, in the movement process of the manipulator, other methods are
difficult to ensure real-time, global and obstacle avoidance at the same time.

As can be seen from Figure 13, feature points change with the change of obstacle
position, representing the key information of the obstacle position. It can be seen from the
figure that the path planned by the GTVP method is not the shortest path, but the path
has smooth characteristics. The GTVP method is used to plan the path in the middle of
the obstacles, so that the path is as far away from all obstacles as possible. For real-time
path planning, the path planning of each moment with the GTVP method is related to
the path planning result of the previous moment, thus reducing the overall simulation
time and realizing real-time path planning. In a word, the GTVP method adjusts the path
corresponding to each moment through the feature points of obstacles, so as to achieve the
requirements of ensuring real-time, global and obstacle avoidance at the same time.

Each method is used to plan the path in the environment of t = 100 s and the boxplots
shown in Figure 14 shows the simulation time statistics for 50 simulations. As shown in the
figure, the average times required for simulation using RRT, Q-RRT*, MDA+RRT and GTVP
are 0.008 s, 0.5992 s, 1.6136 s and 0.0934 s, respectively.
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Figure 14. The computational time of each method. (a) RRT. (b) Q-RRT*. (c) MDA+RRT. (d) GTVP.

As shown in the figure, path planning using the RRT algorithm takes the shortest time,
but the planned path is not smooth , unfeasible and the path changes greatly at adjacent
moments. The path planning time of the GTVP method is much less than the other two
methods and the path obtained is smooth and continuous in real time.

6.3. Comparison of Bezier Curves under Different Orders

The high-order Bezier curve has some disadvantages, such as a large calculation
amount, oscillation, complexity of the trajectory and it cannot be applied to dynamic
environments. Although the low-order Bezier curve can guarantee the continuity of the
path, it cannot provide the continuous curvature and any setting of the second derivative
of the Bezier curve.In short, it is necessary to balance the computational load of trajectory
planning with the flexibility of the trajectory. In this paper, the characteristics of Bezier
curves under different orders are compared and analyzed. Finally, the GTVP method
selects the 5-order Bezier curve with a global real-time obstacle avoidance function and the
calculation amount of the 5-order Bezier curve is moderate.

Taking the time-varying environment with five obstacles mentioned in this paper as
the simulation environment, a set of Bezier curves is obtained every 0.1 s in the process of
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0 s to 100 s. The total simulation time tn required for real-time path planning using Bezier
curves of different orders is summarized in Table 2.

Table 2. Characteristics of methods under different orders.

Methods Simulation Time
tn(s)

Global Obstacle
Avoidance Characteristics

Bezier curves (n = 9) 71.552 � Trajectory mutation
Bezier curves (n = 7) 44.491 � Feasible
Bezier curves (n = 5) 20.313 � Feasible
Bezier curves (n = 3) - × Infeasible

The GTVP method in this paper considers the starting direction , the ending direction
and there are 6 points representing the characteristics of obstacles. Therefore, the degrees
of the Bezier curve is at least 5-order, while the 3-order Bezier curve cannot meet the
requirements. It can be seen from the table that the simulation time increases with the rise
of the order. However, the generated path is more complex when the order of Bezier curve
is 9 and the trajectory mutation with oscillation will occur. Moreover, the simulation time is
as long as 71.552 s, which cannot guarantee real-time planning. In summary, the degrees of
the Bezier curve with the GTVP method can be 5-order or 7-order. This paper preferentially
selects the 5-order Bezier curve planning method to ensure real-time requirements.

7. Conclusions

In this paper, a novel path planning method, GTVP, is proposed. In this method,
the center point is obtained according to the real-time shape and position information of the
obstacle and feature points representing the obstacle information are extracted. Then the
obstacle surface is amplified by the scale coefficient to generate the center point and Bezier
curve feature point. Finally, the curve corresponding to the real-time motion path of the ma-
nipulator is output. The GTVP method is applied to trajectory planning in single obstacle or
multi-obstacle environment and each process of the method is described in detail. The sim-
ulation results demonstrate that the path planned with the GTVP method can meet various
conditions at the same time: (1) real-time obstacle avoidance; (2) global obstacle avoidance;
and (3) obstacle avoidance under multiple obstacles. When the manipulator moves in a
multi-obstacle environment, the closest distance between the manipulator and the obstacle
is 15 mm, which is greater than the set minimum distance. In addition, compared with
other path planning algorithms, the GTVP method can plan real-time smooth paths that
meet multiple conditions without the help of an intelligent optimization algorithm.

In the future, we can continue to improve the GTVP method in the following directions:
(1) analyze how to adjust multiple adjustable parameters better in the GTVP method; (2) the
GTVP method is combined with other intelligent optimization algorithms to plan optimal
trajectory planning based on time, space, speed and other goals; and (3) the GTVP method
can be applied to smooth obstacle avoidance in a three-dimensional environment.
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