
Citation: Guo, Z.; Xie, Q.; Liu, S.; Xie,

X. Bi-Resolution Hash Encoding in

Neural Radiance Fields: A Method for

Accelerated Pose Optimization and

Enhanced Reconstruction Efficiency.

Appl. Sci. 2023, 13, 13333. https://

doi.org/10.3390/app132413333

Academic Editor: Oleg Lobachev

Received: 27 October 2023

Revised: 14 December 2023

Accepted: 16 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Bi-Resolution Hash Encoding in Neural Radiance Fields:
A Method for Accelerated Pose Optimization and Enhanced
Reconstruction Efficiency
Zixuan Guo 1,2 , Qing Xie 1,2, Song Liu1 and Xiaoyao Xie 1,*

1 Guizhou Key Laboratory of Information and Computing Science, Guizhou Normal University,
Guiyang 550001, China; 20030060024@gznu.edu.cn or math@gznu.edu.cn (Z.G.);
19030060023@gznu.edu.cn (Q.X.); songliu@gznu.edu.cn (S.L.)

2 School of Mathematical Science, Guizhou Normal University, Guiyang 550001, China
* Correspondence: xyx@gznu.edu.cn

Featured Application: This research addresses an essential component in the practical application
of NeRF by working toward enhancing the reconstruction efficiency, especially in scenarios
without precise pose estimation. The improvements presented in this research underscore its
growing potential for real-world deployment. Potential application areas include scenes wherein
feature extraction is challenging, such as ceramics from archaeological excavations that are smooth
and low-textured, artifacts with repetitive textures, certain repetitive terrains and landforms in
Geographic Information Systems (GIS) and remote sensing, among others.

Abstract: NeRF has garnered extensive attention from researchers due to its impressive performance
in three-dimensional scene reconstruction and realistic rendering. It is perceived as a potential
pivotal technology for scene reconstruction in fields such as virtual reality and augmented reality.
However, most NeRF-related research and applications heavily rely on precise pose data. The
challenge of effectively reconstructing scenes in situations with inaccurate or missing pose data
remains pressing. To address this issue, we examine the relationship between different resolution
encodings and pose estimation and introduce BiResNeRF, a scene reconstruction method based
on both low and high-resolution hash encoding modules, accompanied by a two-stage training
strategy. The training strategy includes setting different learning rates and sampling strategies for
different stages, designing stage transition signals, and implementing a smooth warm-up learning
rate scheduling strategy after the phase transition. The experimental results indicate that our method
not only ensures high synthesis quality but also reduces training time. Compared to other algorithms
that jointly optimize pose, our training process is sped up by at least 1.3x. In conclusion, our approach
efficiently reconstructs scenes under inaccurate poses and offers fresh perspectives and methodologies
for pose optimization research in NeRF.

Keywords: NeRF; multi-resolution hash encoding; pose optimization; reconstruction efficiency

1. Introduction

In computer vision, the advent of NeRF (neural radiance fields) technology has en-
abled photo-realistic rendering, greatly advancing the development of more lifelike virtual
environments. This technology shows great potential in various fields, including urban
digitization [1,2], autonomous driving [3,4] and the creation of virtual characters [5–7].
Particularly in virtual reality (VR), the application of NeRF technology has enhanced the re-
alism of scenes, providing users with a deeper immersive experience. Research combining
NeRF and VR technologies continues to progress. For instance, FoV-NeRF [8] significantly
reduces latency by incorporating eye-tracking technology, improving perceptual quality in
environments with high fields of view and resolution. The Re-ReND [9] method optimizes
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the rendering of neural radiance fields in VR devices, achieving high efficiency and minimal
quality loss. Additionally, VR technology has extended into fields such as medicine, educa-
tion and psychology. For example, the application of VR and AR in ophthalmic diagnosis
and screening has shown their potential in disease diagnostics [10]. These technologies
also play a crucial role in professional skills training, for example, in the training of nursing
students [11], otolaryngology surgeons [12] and adults with autism spectrum disorders [13],
where VR significantly enhances participants’ confidence levels. In conclusion, with the
ongoing development and application of NeRF technology, work related to more immersive
scenes is steadily improving, revealing its vast potential and value in engineering science.
In the NeRF-based method, the photo-realistic rendering heavily relies on precise 3D scene
reconstruction. However, the information usually recorded in the photographing process
is the scene’s photo-metric information, not the camera’s pose, which means that it does
not include the specific location and orientation of the camera when each photo is taken.
Therefore, further estimation of the camera pose is required. Currently, there are two main
methods for estimating camera pose in NeRF: the traditional method based on feature
point matching and the joint pose optimization method based on photo-metric information
between images. Nevertheless, these two methods have the following problems:

1. The traditional method of camera pose estimation relies on detecting and matching
feature points. However, this method encounters significant difficulties in scenes
lacking obvious features [14], such as low textures or reflections. The lack of sufficient
feature points in these scenes makes it difficult for traditional algorithms to accu-
rately calculate the camera pose, thereby affecting the quality of the entire 3D scene
reconstruction.

2. Although the joint pose optimization method can have better effects on areas with low
texture, this method is currently mainly based on the Multilayer Perceptron (MLP)
model, which is slow to converge and requires more processing time and resources.
This poses a significant limitation for the research and application of such algorithms.

To address the aforementioned issues, this paper introduces multi-resolution hash encoding
within the framework of the joint pose optimization method. This improved approach not
only has more significant advantages in scenarios with low textures and reflections but also
allows for more efficient pose adjustment and reduced reconstruction time. Specifically, this
paper proposes a scene reconstruction method named BiResNeRF, which employs a neural
network architecture with a fusion module of hash encoding at two different resolutions.
Furthermore, a two-stage training strategy is adopted based on this architecture. In the
strategy, low-resolution and high-resolution hash encoding modules are, respectively,
responsible for pose estimation and high-precision scene reconstruction during the training.
This method not only ensures the quality of the scene reconstruction but also achieves a
more efficient reconstruction process.

The main contributions of this research work are as follows:

1. We propose a method for scene reconstruction called BiResNeRF, which is based on
low and high-resolution hash encoding modules. The proposed approach ensures
rapid and accurate scene reconstruction even in the presence of inaccurate poses.

2. We delve deeply into the relationship between hash encoding of varying resolutions
and pose estimation. Through experimental analysis, the characteristics of pose
estimation related to both low and high-resolution hash encodings were explored,
providing theoretical and empirical foundations for the research presented in this
paper as well as for subsequent works.

3. To ensure the effective training of BiResNeRF, a two-stage training strategy is pro-
posed, with the transition between stages being timely and completed by the real-time
detection of error stability signals. At the same time, a coarse-to-fine sampling strategy
and a smooth warm-start learning rate scheduling strategy are adopted to make the
training process proceed smoothly and efficiently.

4. The effectiveness of our algorithm has been experimentally verified when applied
to scenes with characteristics such as the absence of pose, low texture and reflection.
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This demonstrates the application value of the algorithm and its potential importance
in future research.

In this paper, Section 2 provides a brief overview of related work. In Section 3, we first
present the mathematical formulation, followed by an introduction to the neural network
framework and the corresponding training strategies we used. Section 4 comprehensively
validates our methods, including theoretical aspects, comparative experiments related to
our method and a reconstruction experiment in a low-texture scenario. Section 5 discusses
the findings and implications of our study, highlighting some limitations of our method
and potential directions for future work. Finally, we summarized the main findings and
conclusions of this paper in Section 6.

2. Related Work

In this paper, we primarily focus on two aspects of the neural radiance field: pose
estimation and reconstruction efficiency. Subsequent sections organize and compare the
relevant work related to these two aspects.

2.1. Pose Optimization Related

Based on whether they rely on feature point extraction and matching to calculate pose
data, pose estimation methods can be divided into feature-based methods and joint pose
optimization methods.

2.1.1. Feature-Based Methods

Feature-based methods typically utilize epipolar geometry to determine the pose of a
camera, frequently employed in SFM (Structure from Motion) and SLAM (Simultaneous
Localization And Mapping) systems. For instance, in SLAM systems, ORB-SLAM [15]
utilizes ORB feature points for pose estimation, boasting rapid and robust characteristics,
extensively adopted in the robotics domain. For tasks demanding high surface preci-
sion, SIFT [16] is typically employed for feature extraction due to its superior matching
accuracy. In implicit scene reconstruction, the dataset used in the NeRF [17] paper can
apply the aforementioned methods in SFM and SLAM to compute feature points, subse-
quently determining the pose data. Additionally, COLMAP [18] proposed a robust 3D
reconstruction system and offered an open-source tool. This tool facilitates feature point
extraction and camera pose calculation in scenes, providing convenient conditions for
NeRF researchers. Subsequent works based on NeRF [19–21] all employ feature-based
methods. Furthermore, the SaNeRF [22] algorithm incorporates epipolar constraints to
achieve 3D scene reconstruction without pose data, but this method still relies on SIFT
feature point matching.

2.1.2. Joint Pose Optimization Methods

Joint pose optimization refers to the methodology that does not rely on feature points
and optimizes the camera pose during the neural network training process. NeRF− [23]
introduced a framework that jointly optimizes camera parameters and neural radiance
field parameters, enabling scene reconstruction in situations with camera disturbances or
unknown camera parameters. Around the same time, BARF [24] adopted a framework
similar to NeRF– and theoretically linked it to 2D image registration, adding the theoretical
understanding for joint pose optimization. The authors also found that high-frequency
pose data impede pose training. Hence, a coarse-to-fine training strategy was adopted.
GARF [25] presented a Gaussian activation neural radiance field, enabling 3D scene re-
construction without utilizing positional encoding. We also demonstrated the superiority
of direct methods when handling low-texture areas. GNeRF [26] introduced a method
combined with GAN to estimate camera pose under conditions wherein the camera pose is
entirely unknown and scene conditions may be complex. However, this approach relies
on a camera sampling distribution not far from the true distribution to prevent training
failures. The research on the mentioned methods has contributed to the methods of joint
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pose optimization. However, challenges persist, such as the high demands for initial pose
estimation and the relatively low efficiency of reconstruction, which significantly hinder the
advancement of research, impede development efforts and limit the practical application
of related algorithms.

2.2. Reconstruction Time-Related

NeRF can generate high-resolution images with a small spatial footprint. However,
the original NeRF used an MLP-based neural network representation, resulting in slow
reconstruction and inference speeds, which is one of the limiting factors in its practical
application. Several methods have emerged in recent years aimed at improving NeRF’s
reconstruction efficiency.

EfficientNeRF [27] employs effective sampling and a new data structure to accelerate
NeRF’s training and inference processes, reducing training time by more than 88%. How-
ever, it still requires several hours of training. Plenoxels [28] adopts an approach based on
sparse voxel grids and spherical harmonics, eliminating the need for neural networks. This
method achieves faster training speeds than the baseline NeRF model with comparable
quality. However, it necessitates manual parameter adjustments depending on the specific
scene. Both DVGO [29] and TensorRF [30] optimize directly on voxel grids. DVGO, which
optimizes voxel grids directly, achieves a training speed 45 times faster than the baseline
NeRF but struggles with scenes without boundaries or forward-facing scenes. TensorRF
employs various tensor decomposition techniques to reduce memory usage and achieve
efficient rendering, though it only supports bounded scenes. Moreover, Instant-ngp [31]
utilizes multi-resolution hash encoding techniques, significantly reducing the computa-
tional cost of representing high-resolution image features and cutting training times down
to just a few seconds from minutes. These methods have played a vital role in advancing
implicit representation reconstruction. However, they all rely on precise pose information.

Furthermore, some research focuses on improving reconstruction efficiency based on
joint pose optimization methods. NeRFAcc [32] builds on BARF, introducing an occupancy
grid that accelerates BARF by skipping empty areas. In research concurrent with our
method, BAA-NGP [33] attempts to integrate multi-resolution hash encoding into the joint
optimization framework to speed up scene convergence. However, BAA-NGP needs to
clearly elucidate the intrinsic relationship between multi-resolution hash encoding and
pose estimation, necessitating further discussion.

In summary, studies on joint pose optimization still suffer from the problem of low
reconstruction efficiency. To address this, we have incorporated multi-resolution hash en-
coding into the joint pose optimization method and explored the relationship between pose
estimation and hash encoding at different resolutions. A series of subsequent experiments
have provided theoretical and experimental evidence for the improved approach presented
in this paper.

3. Methods

In Section 3.1, we first formulate a detailed description of the problems and objectives
involved in this study. Subsequently, in Section 3.2, we elaborate on the neural network
architecture of the proposed BiResNeRF method. Following this, in Section 3.3, we discuss
the corresponding training strategy.

3.1. Formulation

In NeRF, it is assumed that the scene is composed of luminous particles with a density
that can change. The magnitude of the density determines whether there is an object at a
given position for the ray. The density field is denoted by σ(x), where x ∈ R3 indicates
the distribution of density in space. We re-parameterize x using the center of the camera
and the pixels on the imaging plane to determine the origin o and direction d of the ray.
Any point x along the ray can be represented as r(t) = o + td. The color and density of the
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scene can be represented by the continuous function Fθ , where θ denotes the parameters of
the neural network.

Fθ : (r(t), d)→ (c, σ) (1)

where c is the color vector and σ is the scalar for density. The choice of mapping method
for the neural network directly affects its efficiency and output quality. In NeRF, there are
mainly two ways to map Fθ . One is the neural network mapping based on MLP, which has
the advantage of occupying less storage space but has a slower convergence speed. The
process for this mapping can be detailed in the following formula.

(σ, c) = MLPout(MLPpos(PositionEncoding(x)), DirectionEncoding(d))) (2)

MLPpos is a multi-layer perceptron network that encodes positional information, while
MLPout is another MLP tasked with outputting color and density.

Another is the neural network mapping based on multi-resolution hash encoding. It
has the advantage of converging while maintaining high accuracy. The process for this
mapping can also be represented by the subsequent formula.

(σ, c) = MLPout(HashGrid(x), DirectionEncoding(d)) (3)

The final color is determined by the volume rendering formula:

C(r) =
∫ f ar

near
T(t) · σ(t) · c(t)dt (4)

C(r) is the color observed along the ray r. T(t) is the transmittance accumulation function,
and the range of integration is from near to f ar, representing the interval along the ray
from the nearest point to the farthest point.

Given a sequence of images denoted by {Ii}m
i=1, m is the total number of images and i

is the index of the image. The origin o and direction d are determined by the camera pose p
and pixel position u. Specifically, the origin o is primarily determined by the camera pose
and can be represented as {o(pi)}m

i=1. The direction d is determined by both p and u, and
can be represented as {d(pi, uj)}m,n

i=1,j=2,where n is the number of pixels in an image and j
is the index of the pixel.

Finally, gradient descent and backpropagation are used to minimize the loss function
and optimize the camera and neural radiance field parameters. The formula is presented
below. This expression denotes the estimated pixel value, while l can assume values of 1 or
2, corresponding to the L1 and L2 norms, respectively. Î represents the estimated value of
the pixel with index uj in the i-th image.

min
p1 ,...,pm ,θ

m

∑
i=1

n

∑
j=1
|| Î(uj; pi, θ)− Ii(uj)||l (5)

3.2. Neural Network Architecture of BiResNeRF

The network used in this paper adopts a framework similar to the joint pose opti-
mization and neural radiance field in BARF [24] and NeRF− [23]. The overall network
architecture is shown in Figure 1. BiResNeRF is an improvement on the neural radiance
field model part of NeRF based on this framework. The improved network architecture is
shown in Figure 2.
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Figure 1. The framework of joint pose optimization.

As shown in Figure 1, the yellow parts represent the training parameters, including
{p, Fθ}. o and d are the origin and direction in the world coordinate system of the ray,
calculated based on Raycam and the extrinsic parameter p. Sampling is performed on
this ray, and the position of the sample point can be parameterized as o + tid, where ti
represents the depth of the ith sample point. The position of the sample point and its
direction d are input into the neural radiance field model, which returns the density and
color of this point. Finally, by integrating the sampled points along the ray, the final color
of the ray is obtained.
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Figure 2. NeRF model network architecture.

As shown in Figure 1, this architecture consists of two modules: (1) the feature fusion
module and (2) the rendering module. The feature fusion module is composed of two sub-
modules, namely the low-resolution pose estimation module (a) and the high-resolution
reconstruction module (b). These two modules have L1 and L2 different resolution layers,
respectively. Each resolution layer obtains a feature vector of length F, and after concatena-
tion, the length of the feature vector is (L1 + L2) × F. Finally, this module uses a multi-layer
perceptron (MLP) with one hidden layer to perform feature fusion and obtain the final
feature vector. The primary function of the rendering module is to extract the density and
color of the given position. The first component of the feature vector obtains the density
σ through the ELU activation function. The other components of the feature vector are
concatenated with the ray direction as new input features. Lastly, they pass through an
MLP with two hidden layers, each having 64 neurons, and the Sigmoid activation function
to obtain the RGB value of that position.

When multi-resolution hash encoding is directly introduced in scenes with inaccurate
poses, the features of a given position are generated under the combined effect of hash
encodings of different resolutions. This hinders the pose estimation task due to the high-
resolution hash encoding, making it difficult to adjust effectively, thereby affecting the
accurate reconstruction of the scene.
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We propose the Low-Resolution and High-Resolution Hash Encoding feature fusion
module, abbreviated as the feature fusion module, to address the issue of ineffective pose
adjustment. As shown in Figure 2, this module consists of two sub-modules: the Low-
Resolution pose estimation module (a) and the High-Resolution reconstruction module
(b). The pose estimation module has fewer layers of low-resolution hash encoding. The
larger grid provides more space for pose adjustment, enabling better completion of pose
estimation tasks. Module (b) includes more layers of high-resolution hash encoding. The
smaller grid has lesser pose adjustment capabilities but excels at capturing details, resulting
in better high-resolution reconstruction.

3.3. Two-Stage Training Strategy

Section 3.3 elaborates on the proposed two-stage training strategy based on the archi-
tecture. The strategy is divided into four key components: an overview of the two-stage
training strategy, real-time error stability detection method, coarse-to-fine ray sampling
strategy, and smooth warm-up learning rate scheduling strategy.

3.3.1. Overview

Due to the limitations brought about by the high-resolution hash encoding module on
the performance of pose estimation tasks, we adopt a two-stage training strategy to achieve
stable and efficient scene reconstruction. The process of training is shown below.

As shown in Figure 3, the main task of the first stage is pose estimation. At the
beginning of training, a higher learning rate must be set for the pose estimation module in
the feature fusion module to achieve faster adjustment on pose parameters. At the same
time, the high-resolution reconstruction module is set and maintained at a low learning
rate to restrict its convergence. During the training process of this stage, it is also necessary
to determine whether the pose error is stable. If it is unstable, the training continues; if
it is stable, the second stage is entered. In the second stage, the pose estimation module
maintains the original learning rate, while the high-resolution reconstruction module uses
a smooth warm-up learning rate scheduling strategy to ensure a smoother and faster scene
reconstruction process. Next, the model continues to train until the convergence condition
is met or the predetermined maximum number of iterations is reached.

Feature Fusion Module

Training Stage1 Training Stage 2

Optimize Pose 
and NeRF Model

Is Pose 
Stable?

High-Res Module:
Increase Learning 

Rate
No

Optimize Pose and 
NeRF Model

Training Finished

Pose Estimation 
Module

High-Res 
Reconstruction 

Module

High Learning 
Rate

Low Learning 
Rate

Real-time Pose Error Stability Detection

Yes

Figure 3. Two-stage training flowchart.

In the following, we provide a detailed explanation of the key components of the
training strategy.

3.3.2. Real-Time Error Stability Detection Method

Determining how to transition in a timely manner from the first stage of training to
the second stage, in order to enhance the overall training efficiency, is a key issue addressed
during the training process. For this purpose, we introduces a real-time error stability
detection method.

Figure 4a,b illustrate two common trends in error variation: decrease and increase. The
red points, center1 and center2, represent the average values of errors in the first and second
halves, respectively, while △E represents the absolute difference between the average
values of the first and second halves. Figure 4c presents a schematic diagram of parameters
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related to the degree of fluctuation. The red points still represent the averages in the first
and second halves, while the red points represent the maximum and minimum errors in
the first or second half. △E1 and△E2, respectively, indicate the differences between the
maximum and minimum values in the first and second halves.

max

min

center1

center2
∆E

(a)

max

min

center1

center2

∆E

(b)

max

min

center1

center2

max1

min1

max2

min2

ΔE1 ΔE2

(c)
Figure 4. Schematic representation of the trend and degree of error variation. (a) Trend of error
increase. (b) Trend of error decrease. (c) Degree of error fluctuation.

This method mainly relies on two key indicators: the trend of error variation and the
degree of error fluctuation. When the downward trend of the error begins to slow (that
is, the slope approaches zero) or even reverses into an upward trend, and the fluctuation
ranges of the two subsequences are similar, it is determined that the error has reached a
relatively stable state. At this point, the system emits a stage transition signal. In this paper,
"error" refers to the value of the loss function. The specific algorithmic process is shown
in Algorithm 1. In this algorithm, E represents the error time series. mprev is the slope
calculated from the previous measurement. τf is the fluctuation threshold we set, with a
default value of 0.8, and τm is the threshold for the slope, with a default value of −0.1.

Algorithm 1 Error Stability Signal Detection.

1: function STABILITYDETECTION(E, mprev, τf , τm)
2: n← length(E)
3: ∆E← max(E)−min(E)
4: E1 ← E[1 . . . n

2 ]
5: E2 ← E[ n

2 + 1 . . . n]

6: Center1 ← 2
n ∑

n
2
i=1 E1[i]

7: Center2 ← 2
n ∑n

i= n
2 +1 E2[i]

8: m← Center2−Center1
∆E

9: ∆E1 ← max(E1)−min(E1)
10: ∆E2 ← max(E2)−min(E2)

11: F ← min(∆E1,∆E2)
max(∆E1,∆E2)

12: if m > τm and F > τf then
13: S← True
14: else
15: S← False
16: end if
17: return m, S
18: end function

When setting τm, it should be noted that the closer the value is to 0, the smaller the
change in the loss function, indicating a potential convergence. At this point, a stage
transition may be considered. The value is the main factor affecting trend determination,
and its range should not be too large. The range between −0.3 and −0.1 can be considered.

When setting τf , consider that the training process is a continuous optimization, with
the loss function consistently undergoing increases and decreases, resulting in instability.
A too-high threshold makes the conditions overly strict, hindering stage transitions. On
the other hand, a too-low threshold may misjudge phases of rapid change. The closer
this value is to 1, the more similar the fluctuation levels of the two subsequences, and the
smaller the value, the greater the fluctuation of the loss function, indicating an unstable
training process. A range between 0.4 and 0.8 can be considered.
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3.3.3. Coarse-to-Fine Ray Sampling Strategy

To achieve faster pose convergence and higher rendering quality, we need to set
different sampling intervals along the rays for different stages.

In the training of BiResNeRF, both the batch size of rays and the sampling strategy
on the rays are factors that affect the convergence speed of the model. Due to constraints
on computational resources, when the total number of sampled points is fixed, we can
handle larger batches of rays by reducing the number of sampled points on each ray. As a
result, when more rays are involved in the training, this means that more scene information
can be obtained, leading to a more effective learning of the pose estimation and scene
representation. However, due to the decrease in the number of sampled points, fewer
points on each ray will participate in the volume rendering process, inevitably leading to a
lower rendering quality.

The two-stage coarse-to-fine sampling strategy effectively speeds up the convergence
rate of pose estimation in the initial stage, while enhancing the quality of the scene in the
later stage.

3.3.4. Smooth Warm-Up Learning Rate Scheduling Strategy

When transitioning to the next stage, to ensure a smooth training process, we need to
use a smooth warm-up learning rate scheduling strategy.

In the first stage of training, the poses after full adjustment usually approach their
true states, and significant changes in subsequent adjustments are not desirable. A sudden
increase in the learning rate can disrupt the optimization process, potentially leading to
significant deviations in some poses impacting the subsequent reconstruction work. The
learning strategy we propose allows for smooth adjustments of the learning rate, both
when increasing and decreasing, as illustrated in the following formula:

lr(i) =


lr0 + (lrmax − lr0) · G(i) if 0 ≤ i < Iinc

max(lrmax · D(i), lrmin) if Iinc ≤ i < Itotal

lrmin if i ≥ Itotal

(6)

where lr0 is the initial learning rate, lrmax is the maximum value of the learning rate after
warm-up, lrmin is the minimum value for learning rate decay, i is the current iteration
round, Itotal is the total number of iterations and Iinc is the number of rounds for learning
rate increase. G(i) is the growth factor:

G(i) =
1
2
·
(

sin
(
−π

2
+ π · i

Iinc

)
+ 1

)
(7)

D(i) is the decay factor:

D(i) =
1
2
·
(

1 + cos
(

π · i− Iinc

Itotal − Iinc

))
(8)

In summary, an accurate pose is the basis for NeRF to achieve high-quality reconstruc-
tion of real scenes. In the case of joint optimization, the pose and neural radiation fields are
optimized synchronously. During this process, the fluctuation of the pose directly affects
the precision of the reconstruction. A solid foundation can be laid for the reconstruction de-
tails by rapidly adjusting the pose in advance, allowing for smooth progress and achieving
higher precision.

4. Experiments

In this section, we mainly validate the effectiveness of our proposed method through
three experiments. Firstly, we investigate the impact of different resolution hash encodings
on pose estimation and verify the effectiveness of low-resolution grids for pose estimation.
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Secondly, we analyzed the impact of the number of layers in the low-resolution module on
pose estimation to further understand its architecture and performance. Thirdly, based on
the aforementioned experiments, we experimentally verify the performance of BiResNeRF.
Lastly, we conducted an experiment to validate the adaptability and effectiveness of our
method when faced with scenarios characterized by the absence of pose, low texture
and reflection.

Dataset

Experiments in this paper were conducted on the Realistic Synthetic 360° dataset [17].
This dataset, synthesized via Blender, encompasses eight objects with intricate geometric
shapes and authentic non-Lambertian materials, namely Chair, Drums, Ficus, Hotdog,
Lego, Materials, Mic and Ship. Images were generated by sampling and rendering as the
camera orbited around these objects. Each object is represented with 100 training images
and 200 test images, all accompanied by accurate pose data and rendered at a resolution
of [800, 800] pixels. For the purposes of our experiment, the image size is reduced to half,
resulting in a resolution of [400, 400] pixels.

Evaluation Criteria

We primarily evaluate the synthesis quality of new viewpoints and the accuracy of
pose estimation. For the synthesis of new viewpoints, the Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM) and Learned Perceptual Image Patch Similarity
(LPIPS) [34] are employed as assessment metrics. These are commonly used image quality
assessment indicators, capable of comprehensively reflecting the image’s performance
in pixel differences, structural information, and perceptual quality. For pose estimation,
the Procrustes analysis [24] is used to align the estimated pose with the real pose, and
subsequently, the rotation and translation errors are calculated.

4.1. The Impact of Resolution on Pose Estimation
4.1.1. Experimental Setup

The experiment was evaluated under the Lego scene. To simulate situations with
inaccurate poses, we introduced Gaussian noise N(0,0.15I) to the ground truth pose data,
using it as the initial pose. The evaluation metrics adopted in this paper are rotation error,
translation error and the PSNR. The computations were carried out on Ubuntu 20.04 within
the Windows Subsystem for Linux (WSL), leveraging an Intel Core i7-13700K CPU and an
NVIDIA GeForce RTX 3080 Ti GPU.

4.1.2. Implementation Details

This experiment aims to explore the impact of resolution on pose optimization. The
experiment adopts a joint pose optimization framework similar to BARF and uses single-
resolution hash encoding to extract features from positions. The resolution size of the
single-resolution hash encoding is set to 16, 32, 64, 96, 128, 258, 1024, with the number of
layers set to 3, aiming to extract features more fully at this resolution. At the same time,
we use the Adam optimizer, applying different learning rates and learning rate scheduling
strategies for pose parameters and neural radiance field parameters. For the optimization of
pose parameters, an exponential decay strategy is used with a decay coefficient of 0.99988,
and the learning rate decays from 1 × 10−3 to 1 × 10−5. For the optimization of neural
radiance field parameters, the initial learning rate is set to 1 × 10−2, and a cosine annealing
learning rate adjustment strategy is adopted, with the length of the learning rate annealing
cycle set to 40,000. The entire training process was carried out for 40,000 iterations.

4.1.3. Results of Different Resolution Hash Encoding

Figure 5a,b illustrate the trend of pose errors during the training process under differ-
ent resolutions. As can be seen from the figure, at resolutions 16, 32 and 64, the errors are
small and close to the real pose. When the resolution increases, the error becomes larger.
At resolutions 96 and 128, it can be considered that a few cameras have pose deviations. At
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resolutions of 256 and 1024, the error in pose is too large, suggesting that the majority of
cameras have pose deviations and cannot complete the pose adjustment task. Figure 5c
shows the trend of PSNR during the training process. Among them, the accuracy is the
highest at a resolution of 96 and the lowest at resolutions 256 and 1024.
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Figure 5. The impact of different resolutions on pose and rendering quality.

Through experiments, we have verified that the network based on hash encoding
has the capability for pose estimation and rapid scene reconstruction. Additionally, it was
validated that low-resolution hash encoding networks can rapidly and effectively perform
pose estimation, whereas high-resolution hash encoding cannot function properly in this
task. Moreover, we found that the highest rendering accuracy of the image is not the one
with the smallest pose error. As shown in Figure 5, the rendering accuracy is the highest at a
resolution of 96, but its pose estimation is not the most accurate. Accurate pose estimation is
the foundation for high-precision rendering, so we cannot solely rely on rendering accuracy
to judge the quality of the final result.

4.2. The Impact of Resolution Layers on Pose Estimation

The experiment used the same dataset and the same hardware and software configu-
rations as in Section 4.1, but the experimental details differ from those in Section 4.1.

4.2.1. Implementation Details

This experiment aims explore the impact of resolution layers on pose estimation. As
described in Section 4.1, when the resolution is at 64, the result of pose estimation is close
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to the true pose, but when it reaches 96, a small number of cameras have pose deviations.
Therefore, this experiment chose the minimum resolution of 16 and the maximum of 72 and
ensured that, after pose convergence, it could approach the real pose. The layer numbers
chosen are 2, 3, 6, 8 and 16 to observe the effects of different numbers of layers on pose
estimation. The resolution of each layer was calculated based on Instant-NGP [31].

For the pose parameters, the initial learning rate is set to 1× 10−3, with an exponential
decay strategy and a decay coefficient of 0.99988. Regarding the neural radiance field
parameters, the starting learning rate is determined as 1 × 10−2, using a cosine annealing
learning rate decay strategy, where the duration of the learning rate annealing cycle is set
to 40,000 iterations. In the first experiment, the training process takes 20,000 iterations.

4.2.2. Results of Different Levels of Hash Encoding

As shown in Figure 6a,b, as the number of layers increases, the estimation error shows
a decreasing trend. On the surface, this seems to suggest the use of more layers. However, a
deeper analysis reveals a more complex picture. When further analyzing the PSNR values
in Figure 6c, we find that the improvement in rendering accuracy is closely related to the
accuracy of pose estimation. Specifically, the increased layers enhance the model’s ability
to capture hash-encoded features in the scene, resulting in a finer presentation of image
details. As the image details continue to refine, the accuracy of the pose estimation increases,
forming a mutually promoting cycle. However, what we really care about during the pose
estimation phase is the convergence properties of the model, not the absolute accuracy.
As illustrated in Figure 6a,b, starting from the second layer, the pose estimation trends of
different layers are roughly the same, with no significant differences. This means that, with
only two or three layers, we can achieve a stable estimation of the pose. Further increasing
the number of layers will lead to an increase in model parameters, thus increasing the
computational cost of training and inference.
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Figure 6. The impact of resolution layers on pose and rendering quality.
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4.3. Experimental and Performance Analysis of BiResNeRF
4.3.1. Experimental Setup

The experiment evaluated all scenes in the dataset. Evaluation criteria are rotational
error, translational error, PSNR, SSIM, LPIPS and training time. The perturbation of the
pose and the hardware and software environment of the experiment are the same as in
previous experiments.

4.3.2. Implementation Details

The architecture of BiResNeRF is shown in Section 3.2, and the specific parameters
of the network structure are shown in Table 1. We use the Adam optimizer and adopt
different learning rates and learning rate scheduling strategies for pose parameters and
neural radiance field parameters. In the first stage for pose parameters, the learning
rate decays from 1 × 10−2 to 1 × 10−5 using an exponential decay scheduling strategy
with a decay factor of 0.999827. For the neural radiance field parameters in the low-
resolution module, the learning rate is set from 1 × 10−2 to 1 × 10−4, using an exponential
decay learning rate scheduling strategy with a decay coefficient of 0.999884. The neural
radiance field parameters in the high-resolution module maintain a low learning rate of
0.0005(1 × 10−2/20). In the second stage, the low-resolution module remains unchanged,
while the high-resolution module employs a smooth warm-up learning rate scheduling
strategy, raising the learning rate to 0.003(0.3 × 1× 10−2) and then decreasing it to 1 × 10−4.
Moreover, for the Lego and Hotdog scenes, some parameters are adjusted. The initial
learning rate for the pose is set to 3 × 10−3. The initial learning rate for the low-resolution
neural radiance field parameters in the first phase is 5 × 10−3, and the highest learning rate
in the second stage for the high resolution is 9 × 10−4(0.3 × 3 × 10−3). The training was
performed for 40,000 iterations for each scene.

Table 1. Parameters of the network structure.

Parameter Symbol Value

Number of features Dimensions per entry F 2
Common parameters Hash table size T 219

Coarsest resolution Nmin 16
Finest resolution Nmax 72Pose estimation module
Number of levels Lres 3

Coarsest resolution Nmin 128
Finest resolution Nmax 4096High-resolution

reconstruction module Number of levels Lres 16

The algorithm compared to ours is BAA-NGP. This algorithm currently offers the
best scene reconstruction results using multi-resolution hash encoding in situations with
inaccurate poses. Since the original experimental environment is different from ours, which
may lead to variations in the results, we decided to evaluate the BAA-NGP algorithm under
identical hardware and software environments and with the same perturbation parameters.
The experimental details follow the settings in the BAA-NGP [33] paper. Specifically, we
use the Adam optimizer and an exponential decay scheduling strategy. The learning
rate for pose parameters changes from 1 × 10−3 to 1 × 10−5, and the learning rate for
neural radiance field parameters changes from 1 × 10−2 to 1 × 10−4. Additionally, when
processing the Materials and Ship data, we adjust the learning rate for pose parameters
from 1 × 10−2 to 1 × 10−5 during training.

Furthermore, for a more comprehensive benchmark test, comparisons were made
with the pose optimization parts of BARF [24] and NeRFAcc [32] in MLP-based NeRFs.
Parameter settings were referenced from the literature, and the same initial conditions as in
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this paper were set, specifically choosing a random seed of 3. The training was conducted
for 200,000 iterations.

4.3.3. Results of BiResNeRF

The experimental results include both quantitative (Table 2) and qualitative (Figure 7)
comparisons between our method and BAA-NGP. Through observations and statistics
during the experiment, the effectiveness of the stage transition signals and the smooth
warm-up learning rate scheduling strategy has been validated.

According to Table 2, our method performs well regarding pose estimation accuracy,
rendering accuracy and training time. Among them, the average training time decreased
by 34.96%, the average rotation error and translation error decreased by 34.66% and 39.73%,
respectively, and the average rendering accuracy in terms of PSNR, SSIM and LPIPS
increased by 4.90%, 0.96% and 18.14% respectively.

Based on Table 3, it can be seen that there is an improvement in rotation error, transla-
tion error and the quality of the rendered photos. In terms of training time, it is reduced by
94.58% compared to BARF and 79.28% compared to NeRFAcc, which is equivalent to an
acceleration of 18.44× and 4×, respectively.

Table 2. Quantitative comparison between BiResNeRF and the baseline BAA-NGP on Synthetic
dataset. The translation error is the result of magnification by a factor of 100. The bold numbers in
the table represent the superior results in the comparison of the two algorithms.

Scene

Camera Pose Registration Visual Synthesis Quality Training Time(s)Rotation(°)↓ Translation↓ PSNR↑ SSIM↑ LPIPS↓

BAA ours BAA ours BAA ours BAA ours BAA ours BAA ours

Lego 0.038 0.038 0.121 0.107 33.704 34.871 0.977 0.983 0.023 0.017 1143.08 742.07
Chair 0.053 0.054 0.271 0.289 35.445 36.512 0.984 0.988 0.025 0.018 1464.40 804.51
Drums 0.028 0.031 0.098 0.169 25.160 25.502 0.921 0.925 0.090 0.089 1237.37 781.55
Ficus 0.030 0.029 0.136 0.102 31.307 31.789 0.977 0.979 0.034 0.028 1128.41 754.44
Hotdog 2.050 0.698 8.430 2.864 30.406 36.137 0.950 0.976 0.043 0.040 1150.72 766.78
Materials 0.038 0.149 0.134 1.414 28.638 28.944 0.943 0.952 0.082 0.065 1046.50 778.01
Mic 0.040 0.035 0.189 0.133 34.174 36.044 0.982 0.989 0.028 0.013 1312.24 819.45
Ship 0.065 0.496 0.282 0.745 30.052 31.286 0.888 0.904 0.114 0.089 987.59 768.65
mean 0.293 0.191 1.207 0.728 31.111 32.636 0.953 0.962 0.055 0.045 1183.79 776.93

↓34.66% ↓39.73% ↑4.90% ↑0.96% ↓18.14% ↓34.37%

Table 3. Quantitative comparison of BiResNeRF with the baseline models BARF and NeRFAcc on
Synthetic dataset. The translation error is the result of magnification by a factor of 100.

Scene

Camera Pose Registration Visual Synthesis Quality Training Time(s)Rotation(°)↓ Translation↓ PSNR↑ SSIM↑ LPIPS↓

BARF NeRFAcc BARF NeRFAcc BARF NeRFAcc BARF NeRFAcc BARF NeRFAcc BARF NeRFAcc

Lego 0.077 0.059 0.257 0.215 28.377 30.020 0.929 0.948 0.048 0.038 9844 3647
Chair 0.095 0.074 0.396 0.334 31.202 32.361 0.955 0.965 0.044 0.039 9839 3440
Drums 0.051 0.038 0.201 0.191 23.914 24.772 0.900 0.917 0.099 0.079 12568 3532
Ficus 0.085 0.066 0.529 0.332 26.253 27.819 0.934 0.953 0.058 0.041 29349 3392
Hotdog 0.249 1.826 1.278 8.313 34.608 32.010 0.970 0.962 0.032 0.030 23485 3709
Materials 0.911 1.087 4.496 5.452 27.013 28.129 0.930 0.944 0.063 0.038 9839 3511
Mic 0.073 0.037 0.247 0.156 31.220 32.828 0.969 0.974 0.048 0.037 9803 3804
Ship 0.070 0.076 0.293 0.415 27.560 28.647 0.850 0.868 0.128 0.112 9907 4957
mean 0.202 0.408 0.962 1.926 28.768 29.573 0.930 0.941 0.065 0.052 14,329.250 3749.000

↓5.11% ↓53.13% ↓24.37% ↓62.21% ↑13.44% ↑10.35% ↑3.48% ↑2.17% ↓31.06% ↓13.06% ↓94.58% ↓79.28%
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Figure 7. Qualitative results on Synthetic dataset. GT (Ground Truth) represents reference images,
while BAA refers to images rendered by the method in [33].
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4.3.4. Significance Analysis

Significance analysis helps us determine which evaluation indicators have statisti-
cally significant improvements among all evaluation criteria, thereby helping us identify
significant progress in the aspects of our study.

In this experiment, significance analysis was conducted using the P-value as an
indicator. A significance level of 0.05 was adopted. According to Table 4, in all tests, the
P-value for training time was significantly lower than the 0.05 significance level, indicating
that the improvements in training time made by the method presented in this paper
were statistically significant. Furthermore, it was observed that other indicators were not
significant. However, in terms of average values, the best levels were achieved in pose error
and rendering quality. This indicates that the method proposed in this paper significantly
reduced training time while ensuring optimal pose accuracy and rendering quality, thus
meeting the expectations.

Table 4. Significance test results for different methods.

Method
p-Value

Rotation Translation PSNR SSIM LPIPS Training Time

BAA-NGP 0.71 0.666 0.421 0.593 0.562 2.98 × 10−6

BARF 0.942 0.713 0.055 0.095 0.225 1.98 × 10−4

NeRFAcc 0.412 0.322 0.096 0.238 0.663 1.37 × 10−10

4.3.5. Stability Analysis

The statistical data from Table 5 indicate that the average number of iterations in the
first phase is 9.3 k, with an average time consumption of 160.85 s. The training time ranges
from 1 min 21 s to 5 min 12 s, which shows that our method can adaptively adjust the
number of iterations based on the scene’s complexity. In the NeRF that utilizes a joint
optimization pose framework, stability can be assessed through the loss value due to the
absence of accurate pose information. As the training advances, the evident improvement
in image quality and the decrease in loss values attest to the overall stability enhancement,
indicating the gradual refinement of pose and three-dimensional structure. Consequently,
the loss value not only corroborates the rendering improvement but also acts as an effective
measure of pose stability.

Table 5. Signal triggering positions and times for stage transitions in different scenes.

Scene Lego Chair Drums Ficus Hotdog Materials Mic Ship Mean

Position(k) 9 5.6 9.6 7.6 5 13.2 14.6 5.2 9.3
Time 2 m 49 s 1 m 26 s 3 m 2 s 2 m 18 s 1 m 16 s 4 m 12 s 5 m 3 s 1 m 21 s 2 m 41 s

We compare the smooth warm-up learning rate scheduling strategy with the cosine
annealing learning rate scheduling strategy. By observing the magnitude of pose error
changes in Figure 8a,b, it can be seen that the smooth warm-up learning rate scheduling
strategy is noticeably more stable. Figure 8c shows the PSNR values of rendered pixels.
Under the smooth warm-up learning rate scheduling strategy, the image accuracy improves
more rapidly, while there is a cliff-like drop under the non-smooth strategy. This validates
the effectiveness of the smooth warm-up learning rate scheduling strategy.



Appl. Sci. 2023, 13, 13333 17 of 22

0 2000 4000 6000 8000 10,000
Iteration

0.1

1.0

10.0

Ro
ta

tio
n 

Er
ro

r (
lo

g)

Effect of Smooth Warm-up Learning Rate on Rotation Error

Smooth Warm-up Learning Rate
Non-smooth Learning Rate

(a)

0 2000 4000 6000 8000 10,000
Iteration

0.010

0.100

Tr
an

sla
tio

n 
Er

ro
r (

lo
g)

Effect of Smooth Warm-up Learning Rate on Translation Error

Smooth Warm-up Learning Rate
Non-smooth Learning Rate

(b)

0 2000 4000 6000 8000 10,000
Iteration

10

15

20

25

30

35

PS
NR

 (d
B)

Effect of Smooth Warm-up Learning Rate on PSNR

Smooth Warm-up Learning Rate
Non-smooth Learning Rate

(c)
Figure 8. Performance difference between smooth warm-up learning rate scheduling strategy and
non-smooth scheduling strategy in the scene of Lego.

4.4. Application in Low Textured Scenes

Dataset

We created a dataset through Blender. The dataset consists of a piece of ceramic. The
surface of the ceramic is reflective and has low texture characteristics, making it impossible
to obtain correct matching points between images. The object is placed at the coordinate
origin, and the shooting path faces one side of the ceramic. There are a total of 17 images
in this scene, all rendered at a resolution of [800, 800]. The experiments were conducted
on data with the image size reduced to half of its original size [400, 400]. Some rendered
images are shown in Figure 9.

......

Figure 9. Partial data of a scene with low texture, reflective ceramic.

4.4.1. Experimental Setup

Since it is unreliable to use feature-based methods to obtain the pose information of
objects in low-texture situations, perturbing the actual pose to simulate inaccurate pose
conditions does not conform to reality. Therefore, in this experiment, we use scenes without
pose data. In such cases, the reconstructed scenes can obtain estimated poses and render
new viewpoint images. Then, by comparing the estimated poses with the real poses and
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rendering new viewpoint images and depth images for display, we collectively verify the
ability of our method to reconstruct scenes with challenging textures, demonstrating its
great potential in research and application fields. The software and hardware environments
used in the experiments are consistent with those in previous experiments.

4.4.2. Implementation Details

The experiment uses the BiResNeRF architecture, and the experimental details are
basically the same as those in Section 4.3, only requiring modification of the learning rate
parameters. For pose parameters, the learning rate decays from 1 × 10−2 to 1 × 10−5, with
a decay coefficient of 0.999827. In the first stage, the learning rate of the low-resolution
module is set from 5 × 10−3 to 1 × 10−4, with a decay coefficient of 0.999902. The learning
rate of the high-resolution module remains low at 5× 10−5. In the second stage, the learning
rate of the neural radiance field parameters of the high-resolution module increases to
0.005 × 0.3, and then decreases to 0.0001. Since there is no initial pose, all camera initial
poses are aligned with the object, i.e., the coordinate origin, to ensure that the neural
network can be trained normally. The training process was carried out for 40,000 iterations.

4.4.3. Results of Low-Texture Scene Experiments

As can be seen from Table 6, in the absence of a prior spatial distribution of camera
poses, both translational and rotational errors are considerably large compared to the real
poses. After aligning the estimated poses with the real poses, as observed in Figure 10,
although there is a significant error in the poses of all cameras, the relative positions of all
poses are correctly arranged. This one-to-one correspondence becomes more evident when
the aligned results are projected onto the xy-plane in Figure 11. This indicates that the pose
of each camera has been optimized. Furthermore, by observing the level of detail in the
rendered images in Figure 12 and the state of the ceramics in the depth images, we can
also infer that the structure of the object has been initially reconstructed. This validates the
effectiveness of our algorithm in performing 3D reconstruction in scenes without pose, low
textures and reflectiveness.

Table 6. Pose error in the ceramic scene.

Scene Rotation Error (°) Translation Error

Ceramics 25.848 1.416
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Figure 10. Visualization of aligned poses.
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Figure 11. Projection of aligned poses onto the XY plane.

Figure 12. Rendering and depth map synthesized from the new perspective.

5. Discussion

In this section, we critically analyze our research findings, delve into the limitations
and future work regarding the joint optimization method in NeRF, explore the stage
transitions during the training process and discuss the potential impact of a research
finding based on experimental conclusions and observations.

1. Although our method has achieved preliminary results in reconstructing inaccurate
or pose-less, low-textured and reflective scenes, it still faces several challenges that
are worthy of further research and improvement:

• When the pose perturbation is too large, the joint pose optimization method still
faces reconstruction failures.

• In the complete absence of pose data, the spatial relationship between cameras
cannot be too distant; otherwise, reconstruction is unachievable.

• The method proposed in this paper improves both speed and accuracy; how-
ever, there is a slight increase in the occurrence of floaters. Minimizing the
generation of floaters while maintaining efficient training is also a direction for
further optimization.

• Whether it is the BiResNeRF or the baseline method BAA-NGP, during evalua-
tion, the convergence of poses exhibited varying degrees of instability, and an
alternative learning rate was adopted for training in specific scenes. Therefore,
to more conveniently apply joint pose optimization methods, further exploration
is needed on the relationship between different parameters (such as the learning
rate) and scene reconstruction.

• The research has only been conducted on datasets generated from virtual scenes
in Blender. Further research is needed on data acquisition methods, reconstruc-
tion methods and limitations in real-world scenarios.
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2. The speed of error reduction is related to factors such as the learning rate of the neural
radiative field and pose parameters and the number of sampling points on the ray,
making it a highly complex issue. Although the current method can automatically
perform stage transitions and ensure timely transitions after sufficient training in
the first stage, the exact position of these transitions could be more precise. There-
fore, determining the transition position more accurately remains a question worth
further investigation.

3. We also discovered a research finding with potential in the experiments of this paper.
Based on Table 3, during the first stage of training, when only utilizing the low-
resolution pose estimation module, the average reconstruction time for scenes does
not exceed 3 min. This means that, by using a three-layer low-resolution hash coding
network, we can complete a preliminary reconstruction of the scene in about 3 min
or even less and observe the results in real time. In contrast, BARF requires several
hours to display the reconstruction results. This significant improvement in efficiency
has brought tremendous momentum to related research in theory and application.

6. Conclusions

In conclusion, the BiResNeRF successfully achieved rapid and high-precision recon-
struction for scenes with inaccurate poses. Initially, we introduced a feature fusion module,
allowing hash encodings of different resolutions to participate more effectively in the recon-
struction task. Following this, a two-stage training strategy was adopted, complemented by
smooth warm-up learning rate scheduling and a coarse-to-fine sampling strategy, ensuring
a smooth and expedited training process. As a result, through comparison with other algo-
rithms, the reconstruction time was significantly reduced, with an average improvement of
at least 34.37% on the synthetic dataset. Furthermore, in comparison to the MLP-based joint
pose optimization method, this improvement was even more pronounced, ranging from 4
to 18.44 times. Importantly, this enhancement in speed did not compromise the accuracy
of pose estimation or the quality of the rendered images. Finally, we also experimentally
verified the adaptability and effectiveness of the algorithm in specific scenes without pose,
low texture and reflection. BiResNeRF provides a new perspective on pose estimation
based on low resolution, contributing to the ongoing discussions and research on joint pose
optimization methods.
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