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Abstract: High-speed motions performed by industrial machines can induce severe vibrations that
degrade the positioning accuracy and efficiency. To address this issue, this paper proposes a novel
motion profile design method utilizing a sinusoidal jerk model to generate fast and smooth motions
with low vibrations. The expressions for the acceleration, velocity, and displacement were obtained
through successive integrations of the continuous jerk profile. A minimum-time solution with actuator
limits was formulated based on an analysis of the critical constraint conditions. Differing from
previous studies, the current study introduces an analytical optimization procedure for the profile
parameters to minimize both the motion duration and excitation frequency contents corresponding
to the system pole. By examining the correlation between the input motion profiles and system
responses, the conditions for vibration elimination were identified, highlighting the significance of
specific time intervals in controlling the vibration amplitude. Numerical and experimental studies
were conducted to validate the effectiveness of the proposed method. The comparative results
illustrate that this method outperforms existing baseline techniques in terms of smoothness and
vibration attenuation. The residual-vibration level and settling time are significantly reduced with
the optimized sinusoidal jerk profile, even in the presence of modeling errors, contributing to
higher productivity.

Keywords: motion profile; vibration reduction; trajectory optimization; residual vibration; sinusoidal
jerk; motion control

1. Introduction

Faster and more accurate movements are generally required to improve the produc-
tivity and quality of manufacturing, which presents a challenge for the control systems
of automated machines in various industrial applications, including assembly, painting,
welding, machining, quality inspection, and material handling [1–3]. In fact, in many au-
tomation tasks, the transfer time often constitutes a significant portion of the overall cycle
time. However, high-speed motions tend to induce unwanted vibrations that can degrade
the positioning time and accuracy. Consequently, motion profile design for achieving rapid
movements with low vibrations has emerged as a motivating and valuable research topic
in the field of control engineering [4,5]. Motion profiles define the temporal evolution of
the reference position, velocity, and acceleration that a machine should follow to accom-
plish a specific task. A well-designed motion profile can effectively provide benefits in
terms of cycle time reduction, vibration lessening, and precision enhancement, ultimately
contributing to improved product quality, increased overall process efficiency, and a pro-
longed machine life. Moreover, it enables the avoidance of energy dissipation caused by
mechanical vibrations; thus, the conversion rate of electric energy into actuation energy
can be improved, saving energy consumption [6,7].
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Aiming to achieve faster movements, machines may be expected to work within
their physical limitations, causing undesired adverse impacts that compromise their per-
formances. It is widely known that, for given limits on the velocity and force/torque,
the trapezoidal velocity profile, which consists of constant acceleration and deceleration
in the initial and final phases, respectively, while maintaining maximum velocity in the
intermediate phase, minimizes the motion completion time [8,9]. To date, this profile
remains a fundamental choice that is broadly employed in production equipment, such
as manipulators or machine tools, due to its simplicity. Heo et al. [10] proposed a profile
generator based on a cascaded P-PI position controller and dynamic-range limiters to
remove the steady-state error. A closed-form parameter-tuning approach for the energy-
saving velocity profiles of servomotor systems was investigated in [11] by formulating a
quasi-convex optimization problem. The main limitation is that discontinuities in accel-
eration tend to stimulate resonant modes, leading to mechanical structure damage and
additional time consumption for motion-induced vibration dissipation at the desired po-
sition [12]. The adoption of more lightweight and flexible structures with low stiffness
in modern industry exacerbates this issue [13]. Though some works have attempted to
optimize the acceleration time to minimize the residual vibrations [14–16], the presence of
high-frequency components in the trapezoidal profile necessitates a wide servo bandwidth
to ensure tracking accuracy.

This dilemma has driven researchers to devise more sophisticated and precise motion
profiles that satisfy the desired task specifications while respecting the system’s limitations
and optimization constraints [17]. As a consequence, the S-curve profile has been developed
to yield smoother motions that are easy to implement [18,19]. By replacing the step
acceleration pulses with ramps, this profile exhibits a finite distribution of jerk (the time
derivative of acceleration) over a period of time. Numerous studies have shown that
S-curve profiles offer advantages in minimizing undesirable effects, such as vibrations,
overshoot, actuator stress, and component wear, when compared to trapezoidal velocity
profiles [20–22]. An algorithm to generate a seven-segment velocity profile is developed
in [23] for motion control in a hybrid electronic platform. Meckl et al. [24] optimized
the ramp-up time of S-curve profiles based on the frequency content of the force input to
minimize the response time and residual vibrations. Liu et al. [25] proposed an optimization
model to achieve the time-optimal asymmetrical S-curve velocity scheduling of a specified
end-effector path with kinematic constraints. However, the limited jerk employed in these
profiles is accompanied by sudden transitions at the switching instances of segments, which
are associated with high-frequency content.

To further dampen vibrations, considerable research efforts have been devoted to at-
taining smooth changes in jerk. A representative idea of defining such a motion law is based
on higher-order polynomials and trigonometric functions [26–29]. Lambrecht et al. [30] sug-
gested a fourth-order trajectory-planning algorithm with feedforward control under given
physical bounds for electromechanical motion systems. Da Rocha et al. [31] developed
a smooth, real-time, snap-bounded profile generation technique based on an embedded-
system platform. The experimental results showed that the snap-constrained method
effectively reduces the tracking error when compared to the seven-segment and trapezoidal
velocity methods. Bilal et al. [32] employed the concatenation of quintic polynomials to
provide a bounded and continuous jerk point-to-point trajectory for the vibration control
of a flexible-joint manipulator with parametric uncertainties. However, the complexity
becomes significant as the number of profile segments increases, presenting a challenge
for real-time applications. In some cases, the utilization of a numerical method is neces-
sary, which may fail to obtain a feasible solution or become stuck in local convergence
due to the selection of an inappropriate initial solution. To avoid the excessive compu-
tational burden for the controller brought on by high-degree polynomials, Li et al. [33]
present a low-vibration motion profile generation scheme using a level-shifted sinusoidal
waveform to design the acceleration profile for high-speed positioning. Simulation and
experimental studies have demonstrated that their method achieves remarkably lower



Appl. Sci. 2023, 13, 13320 3 of 30

residual vibrations relative to the conventional trapezoidal profile and S-curve profile. The
main limitation of this scheme is its incompleteness in addressing special cases, rendering it
inapplicable under certain physical constraints. Perumaal et al. [34] studied a jerk-bounded
trigonometric S-curve trajectory planner based on a three-phase sine jerk motion profile
for the pick-and-place operations of a six-DOF robotic manipulator. However, the study
does not guarantee the fulfillment of specified kinematic constraints and time optimality.
More recently, Valente et al. [35], using the same profile, adopted a multivariable time
optimization method to expand the range of feasible solutions for achieving the short-
est running time. Wu et al. [36] utilized a locally asymmetrical jerk profile to establish
smooth and time-optimal point-to-point trajectories for industrial robots. In [37], a trigono-
metric feed-rate-scheduling algorithm is introduced to enable the continuous velocity,
acceleration, and jerk control of the parametric interpolation, which reduces undesirable
vibrations in high-speed and high-accuracy machining. However, most of these studies
mainly dealt with the generation of trajectories with time optimality under physical limits,
while comprehensive quantitative analyses of the influence of the profile parameters on the
vibration responses were neglected. To ensure that machines produce rapid and precise
movements, the optimization of the profile parameters adapted to the vibration behavior is
of significance.

Motivated by these early works, the main purpose of this paper is to propose a novel
motion profile design method characterized by a continuous sinusoidal jerk model for the
vibration mitigation of high-speed industrial machines. As a consequence, a smooth motion
is ensured to reduce the positioning time and error, leading to improved productivity and
quality. The contributions of this work are as follows: (1) First, a closed-form solution
for the minimum-time sinusoidal jerk profile was derived, enabling the full exploitation
of the actuator limits based on profile type evaluation. The critical kinematic values
were identified to classify the proposed model into four specific types according to the
input displacement and actuator limits. (2) Furthermore, a quantitative investigation of the
relationship between the profile parameters and the response characteristics was performed
to identify the vibration suppression conditions. The analysis revealed that the vibration
level is primarily influenced by the proportion between specific time intervals and the
natural period, rather than lower jerk values. (3) Finally, an optimization procedure was
suggested to obtain the time–frequency-optimal sinusoidal jerk profile that minimizes
the motion duration while considering the desired vibration cancellation and robustness
constraints without violating the physical limits. Numerical and experimental tests were
carried out to demonstrate the effectiveness of the proposed method.

The rest of this paper is organized as follows: Section 2 begins with a brief review of the
S-curve profile, followed by the definition and analytical expressions of the sinusoidal jerk
profile. The minimum-time solution subject to the actuator limits is described in Section 3.
After that, the characteristics of motion-induced residual vibrations are analyzed, and the
optimization strategy of the profile parameters for vibration suppression is also developed.
Then, Section 4 presents the kinematic and dynamic simulation results, assessing the
vibrations induced by different motion profiles. Section 5 reports the experimental results
to evaluate the performance of the optimized profile in comparison with other baseline
methods on a motion stage. Finally, the conclusions and future work are drawn up in
Section 6.

2. General Formulation of Motion Profiles
2.1. Review of Seven-Segment S-Curve Profile

To avoid acceleration discontinuities, the S-curve velocity profile, also known as the
third-order motion profile, has been extensively studied and applied in recent years. Due
to the characteristic of finite jerk spread over time, this profile enables the generation of
smooth motions with small residual vibrations. For the rest-to-rest motion, a complete
profile consists of seven symmetrically distributed segments, in which the jerk remains
constant at zero or its peak value, as shown in Figure 1, where ti, i = 0, 1, . . . , 7 are the
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time boundaries of each segment; T1, T2, and T3 represent the time periods for the constant
jerk segment, constant acceleration segment, and constant velocity segment, respectively.
The first three segments constitute the acceleration phase, while the last three segments
constitute the deceleration phase.
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Figure 1. Seven-segment S-curve motion profile.

Let Jpeak denote the peak value of the jerk; then, the jerk profile can be expressed
as follows:

j(t) =



Jpeak, t0 ≤ t < t1

0, t1 ≤ t < t2

−Jpeak, t2 ≤ t < t3

0, t3 ≤ t < t4

−Jpeak, t4 ≤ t < t5

0, t5 ≤ t < t6

Jpeak, t6 ≤ t < t7

. (1)

As a result, the acceleration changes linearly, reaching its maximum magnitude in the
second and sixth segments. It takes a trapezoidal form during the acceleration phase [t0, t3]
and an inverse trapezoidal form during the deceleration phase [t4, t7]. In the intermediate
phase, the velocity maintains its maximum value, while the acceleration turns to zero.
Accordingly, the displacement curve is depicted by connected polynomial segments up to
the third order. However, step jumps in the jerk degrade the performance to some extent.
More details about this motion profile can be referred to in [38–40].

2.2. Mathematical Expressions of Sinusoidal Jerk Profile

To mitigate the rate of change in acceleration, the rectangular jerk pulses in segments
1, 3, 5, and 7 of the S-curve profile are replaced by sinusoidal waveforms to ensure jerk
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continuity. Similarly, the sinusoidal jerk profile consists of the acceleration phase, cruise
phase, and deceleration phase, which can be further divided into seven segments, as shown
in Figure 2. T1, T2, and T3 represent the time periods for the sinusoidal jerk segment,
constant acceleration segment, and constant velocity segment, respectively. Under the
assumption that the profile has a symmetrical shape with the same acceleration and deceler-
ation time, the time periods are defined as follows: T1 = t1 − t0 = t3 − t2 = t5 − t4 = t7 − t6,
T2 = t2 − t1 = t6 − t5, and T3 = t4 − t0. Consequently, the motion profile is fully defined by
these three time parameters and the peak jerk parameter. The total duration of the motion
profile is calculated as Tf = 4T1 + 2T2 + T3.
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Figure 2. General sinusoidal jerk motion profile (Type 1).

The expression of the jerk profile is described as follows:

j(t) =



Jpeak sin
(

π
T1
(t− t0)

)
, t0 ≤ t < t1

0, t1 ≤ t < t2

−Jpeak sin
(

π
T1
(t− t2)

)
, t2 ≤ t < t3

0, t3 ≤ t < t4

−Jpeak sin
(

π
T1
(t− t4)

)
, t4 ≤ t < t5

0, t5 ≤ t < t6

Jpeak sin
(

π
T1
(t− t6)

)
, t6 ≤ t < t7

, (2)
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where Jpeak stands for the peak jerk value during the sinusoidal jerk segment. The corre-
sponding mathematical expressions for the acceleration, velocity, and position profiles can
then be derived by sequentially integrating Equation (2):

a(t) = a(ti) +
∫ t

ti
j(t)dt

v(t) = v(ti) +
∫ t

ti
a(t)dt

d(t) = d(ti) +
∫ t

ti
v(t)dt

. (3)

Note that the peak acceleration is attained at the end of the sinusoidal jerk segment
and is maintained during the segment [t1, t2]:

Apeak = a(t1) =
∫ t1

t0

Jpeak sin
(

π

T1
(t− t0)

)
dt =

2JpeakT1

π
. (4)

Consequently, the expression of the acceleration profile can be written as follows:

a(t) =



Apeak
2

(
1− cos π

T1
(t− t0)

)
, t0 ≤ t < t1

Apeak, t1 ≤ t < t2
Apeak

2

(
1 + cos π

T1
(t− t2)

)
, t2 ≤ t < t3

0, t3 ≤ t < t4

− Apeak
2

(
1− cos π

T1
(t− t4)

)
, t4 ≤ t < t5

−Apeak, t5 ≤ t < t6

− Apeak
2

(
1 + cos π

T1
(t− t6)

)
, t6 ≤ t < t7

. (5)

Likewise, the peak velocity is reached at the end of the acceleration phase and remains
constant during the segment [t3, t4], which can be readily determined using geometric
principles due to symmetry:

Vpeak = v(t3) = Apeak(T1 + T2) =
2JpeakT1

π
(T1 + T2). (6)

The expression of the velocity profile is given as follows:

v(t) =



Apeak
2

(
(t− t0)− T1

π sin π
T1
(t− t0)

)
, t0 ≤ t < t1

ApeakT1
2 + Apeak(t− t1), t1 ≤ t < t2

Apeak

(
T1
2 + T2

)
+

Apeak
2 (t− t2) +

ApeakT1
2π sin π

T1
(t− t2), t2 ≤ t < t3

Vpeak, t3 ≤ t < t4

Vpeak −
Apeak

2 (t− t4) +
ApeakT1

2π sin π
T1
(t− t4), t4 ≤ t < t5

Vpeak −
ApeakT1

2 − Apeak(t− t5), t5 ≤ t < t6
ApeakT1

2 − Apeak
2 (t− t6)−

ApeakT1
2π sin π

T1
(t− t6), t6 ≤ t < t7

. (7)

The expression of the displacement profile is then found as follows:
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d(t) =

Apeak
4 (t− t0)

2 +
Apeak T1

2

2π2 cos π
T1
(t− t0)−

Apeak T1
2

2π2 , t0 ≤ t < t1(
1
4 −

1
π2

)
ApeakT1

2 +
Apeak T1

2 (t− t1) +
Apeak

2 (t− t1)
2, t1 ≤ t < t2(

1
4 −

1
2π2

)
ApeakT1

2 +
Apeak T1T2

2 +
Apeak T2

2

2 + Apeak

(
T1
2 + T2

)
(t− t2) +

Apeak
4 (t− t2)

2 − Apeak T1
2

2π2 cos π
T1
(t− t2), t2 ≤ t < t3

Vpeak

(
T1 +

T2
2

)
+ Vpeak(t− t3), t3 ≤ t < t4

Vpeak

(
T1 +

T2
2 + T3

)
+ Vpeak(t− t4)−

Apeak
4 (t− t4)

2 − Apeak T1
2

2π2 cos π
T1
(t− t4) +

Apeak T1
2

2π2 , t4 ≤ t < t5

Vpeak

(
2T1 +

T2
2 + T3

)
−
(

1
4 −

1
π2

)
ApeakT1

2 + Vpeak(t− t5)−
Apeak T1

2 (t− t5)−
Apeak

2 (t− t5)
2, t5 ≤ t < t6

Vpeak(2T1 + T2 + T3)−
(

1
4 −

1
2π2

)
ApeakT1

2 +
Apeak T1

2 (t− t6)−
Apeak

4 (t− t6)
2 +

Apeak T1
2

2π2 cos π
T1
(t− t6), t6 ≤ t < t7

. (8)

The terminal displacement at the end time of motion is represented as follows:

dend = d(t7) = Vpeak(2T1 + T2 + T3) = Apeak(T1 + T2)(2T1 + T2 + T3)

=
2JpeakT1

π (T1 + T2)(2T1 + T2 + T3)
. (9)

To achieve fast, smooth, and precise movements, the profile parameters should be
properly designed to minimize the motion duration while considering various constraint
conditions, including the desired displacement, actuator specifications, residual-vibration
suppression, and robustness against system uncertainties. Once these parameters are
determined, the setpoints of the motion profile can be computed using the aforementioned
expressions.

3. Parameter Design for Sinusoidal Jerk Profile
3.1. Minimum-Time Solution with Actuator Limits

Before addressing the optimization of the residual vibrations, we first consider the
minimum-time solution with only the actuator limits. The motion profile design should
ensure that the terminal displacement at the end of the movement is equal to the target
moving distance. Moreover, the kinematic values during motion should stay within the
physical limits. Given the desired displacement (D) and the maximum allowable values of
the velocity (Vmax), acceleration (Amax), and jerk (Jmax) imposed by the physical limitations
of the actuators, the design constraint conditions are as follows: dend = D,

∣∣∣Jpeak

∣∣∣ ≤ Jmax,∣∣∣Apeak

∣∣∣ ≤ Amax,
∣∣∣Vpeak

∣∣∣ ≤ Vmax.
To minimize the motion duration, it is necessary for machines to take full advantage of

the kinematic limits and maintain the saturated state for as long as possible. However, there
are mutual restrictions among the constraint conditions so that it is not always possible
for the motion profile to reach all the limit values. Specifically, the acceleration limit may
not be achieved due to the tight limit on the velocity or a short moving distance, while
the velocity limit may be unreachable due to the short distance traveled. Consequently,
the corresponding constant acceleration and velocity segments may disappear, resulting
in a motion profile with fewer than seven segments under different constraint conditions.
According to the included segments, the profile model can be classified into four specific
types, as illustrated in Figures 2 and 3.

By substituting the expressions of the peak kinematic values, the design constraints
can be written as follows:

∣∣∣Jpeak

∣∣∣ ≤ Jmax∣∣∣ 2JpeakT1
π

∣∣∣ ≤ Amax∣∣∣ 2JpeakT1
π (T1 + T2)

∣∣∣ ≤ Vmax

2JpeakT1
π (T1 + T2)(2T1 + T2 + T3) = D

. (10)
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Note that the sinusoidal jerk segments must exist in the profile, enabling the jerk to
consistently reach its limit value, namely, Jpeak = sgn(D)Jmax and T1 > 0, T2 ≥ 0, T3 ≥ 0.
Hence, the optimal value of T1 that does not violate any constraints is as follows:

T1 = min

{
πAmax

2Jmax
,

√
πVmax

2Jmax
, 3

√
π|D|
2Jmax

}
. (11)

If T1 = πAmax
2Jmax

, then T1 is determined via the acceleration limit. The acceleration limit
(Amax) can be reached, namely, Apeak = sgn(D)Amax; thus, we can continue to calculate T2.
The design constraints for T2 are as follows:{

|Amax(T1 + T2)| ≤ Vmax
Amax(T1 + T2)(2T1 + T2 + T3) = |D|

. (12)

Therefore, the optimal value of T2 that does not violate any constraints is as follows:

T2 = min

 Vmax

Amax
− T1, −3T1

2
+

√
T1

2

4
+
|D|

Amax

. (13)

Two cases are distinguished here: If T2 = Vmax
Amax

− T1, then the moving distance is
long enough for the motion profile to attain the velocity limit (Vmax). The motion profile
belongs to Type 1 in Figure 2, with all seven segments present. Then, the time period for
the constant velocity is calculated as follows:

T3 =
|D|

Vmax
− 2T1 − T2; (14)

otherwise, if T2 = − 3T1
2 +

√
T1

2

4 + |D|
Amax

, then the moving distance falls short of reaching
the velocity limit (Vmax) within the motion profile. In this case, the motion profile belongs
to Type 2, as shown in Figure 3a, where the constant velocity segment disappears (i.e.,
T3 = 0). The peak velocity is determined using Equation (6) as Vpeak = Apeak(T1 + T2).

In addition, if T1 =
√

πVmax
2Jmax

, this implies that T1 is determined by the velocity limit.
The motion profile is classified as Type 3, as shown in Figure 3b. The constant acceleration
segments vanish due to the tight limit on the velocity (i.e., T2 = 0), and T3 can then be
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computed using Equation (14). The peak acceleration (Apeak) is lower than its maximum

allowable value (Amax) and is obtained using Apeak =
Vpeak

T1
.

Finally, if T1 = 3
√

π|D|
2Jmax

, then T1 is determined by the required displacement. The
motion profile belongs to Type 4, as shown in Figure 3c, where only the sinusoidal jerk
segments exist. Both the constant acceleration and velocity segments vanish due to the
short moving distance (i.e., T2 = 0, T3 = 0). The peak acceleration and velocity are calculated

using Equations (4) and (6) as Apeak =
2JpeakT1

π , Vpeak =
2JpeakT1

2

π .
The solutions for the four profile types, along with the corresponding evaluation

conditions, are summarized in Table 1.

Table 1. Complete minimum-time solutions for parameters of sinusoidal jerk profile.

Type 1 Type 2 Type 3 Type 4

Critical
Condition

Vmax > πAmax
2

2Jmax
, |D| > π2 Amax

3

4Jmax
2 Vmax < πAmax

2

2Jmax
,

|D| >
√

πVmax
3

2Jmax

|D| < π2 Amax
3

4Jmax
2 ,

|D| <
√

πVmax
3

2Jmax|D| > Vmax
2

Amax
+ πVmax Amax

2Jmax
|D| ≤ Vmax

2

Amax
+ πVmax Amax

2Jmax

T1
πAmax
2Jmax

πAmax
2Jmax

√
πVmax
2Jmax

3
√

π|D|
2Jmax

T2
Vmax
Amax
− T1 − 3T1

2 +
√

T1
2

4 + |D|
Amax

0 0

T3

∣∣∣ D
Vmax

∣∣∣− 2T1 − T2 0
∣∣∣ D

Vmax

∣∣∣− 2T1 0

3.2. Analysis of Vibration Characteristics

The algorithm in the last subsection yields the solution that minimizes the execution
time with the actuator limits. However, the quantitative consideration of the vibration
response relating to the system modes is not incorporated into the motion profile design.
The performance improvement in practice therefore appears to be almost exclusively due to
smoothing. To investigate the relationship between the profile parameters and the vibration
response, consider the simplified model in Figure 4, which includes a base, a mass (m), a
spring with stiffness (k), and a damper (c). The dynamics of the system are described by
the following expression:

−ky− c
.
y = m

( ..
x +

..
y
)
, (15)

where x is the absolute position of the base and y is the relative position of the mass with
respect to the base.
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Figure 4. Modeling of flexible-motion system.

In this model, the base stands for the actuation system controlled by an input force,
while the mass represents the mechanically linked structure that undergoes vibration. Thus,
x and y serve as the reference input motion profile and dynamic response, respectively.
Equation (15) can be written in Laplace form:

Y(s)
X(s)

=
−ms2

ms2 + cs + k
=

−s2

s2 + 2ζωns + ωn2 , (16)
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where ωn =
√

k/m and ζ = c/
√

4km denote the undamped natural frequency and the
damping ratio of the system, respectively. For a given reference input ( f (t)), the dynamic re-
sponse of the system can be calculated via the convolutional integral
y(t) =

∫ ∞
0 f (τ)h(t− τ)dτ, where h(t) is the impulse response of the system, obtained from

the inverse Laplace transform of Equation (16). Therefore, the dynamic motion-induced
vibration response with the motion profile x1(t) is derived as follows:

y(t) = −
∫ t

0
..
x(τ) 1

ωn
√

1−ζ2
e−ζωn(t−τ) sin

(
ωn
√

1− ζ2(t− τ)
)

dτ

= − 1
ωd

∫ t
0

..
x(τ)e−ζωn(t−τ) sin(ωd(t− τ))dτ

, (17)

where ωd = ωn
√

1− ζ2 represents the damped natural frequency. For low-damped
systems with ζ ≈ 0, the above expression is simplified as follows:

y(t) = − 1
ωd

∫ t

0

..
x(τ) sin(ωd(t− τ))dτ. (18)

By substituting Equation (5) into Equation (18), one can obtain the residual-vibration
response after the completion of motion:

yres(t) = y(t|t ≥ t7 )

= − 1
ωd


∫ t1

t0

Apeak
2

(
1− cos π

T1
(τ − t0)

)
sin(ωd(t− τ))dτ +

∫ t2
t1

Apeak sin(ωd(t− τ))dτ

+
∫ t3

t2

Apeak
2

(
1 + cos π

T1
(τ − t2)

)
sin(ωd(t− τ))dτ −

∫ t5
t4

Apeak
2

(
1− cos π

T1
(τ − t4)

)
sin(ωd(t− τ))dτ

−
∫ t6

t5
Apeak sin(ωd(t− τ))dτ −

∫ t7
t6

Apeak
2

(
1 + cos π

T1
(τ − t6)

)
sin(ωd(t− τ))dτ

 . (19)

After a series of mathematical operations involving integration by parts and the
sum-to-product trigonometric identity, the above expression becomes the following:

yres(t) =
−4π2 Apeak

ωd
2
(

π2 − (ωdT1)
2
) cos

(
ωdT1

2

)
sin
(

ωdT1

2
+

ωdT2

2

)
sin
(

ωd

(
T1 +

T2

2
+

T3

2

))
cos
(

ωd

(
(t− t0)−

(
2T1 + T2 +

T3

2

)))
. (20)

In order to eliminate the residual vibrations, the amplitude of the residual-vibration
response must equal zero. Hence, settling yres(t) = 0 yields the vibration suppression
conditions: {

π2 − (ωdT1)
2 6= 0

cos
(

ωdT1
2

)
sin
(

ωdT1
2 + ωdT2

2

)
sin
(

ωd

(
T1 +

T2
2 + T3

2

))
= 0

. (21)

Without a loss of generality, the initial time (t0) is assumed to be zero. Let N+ represent
the set of positive integers. Then, the solution of (21) can be found as follows:

C1 : T1 = t1 =

(
k1 +

1
2

)
Td, k1 ∈ N+, (22)

or C2 : T1 + T2 = t2 = k2Td, k2 ∈ N+, (23)

or C3 : 2T1 + T2 + T3 = t4 = k3Td, k3 ∈ N+, (24)

where Td = 2π/ωd is the vibration period of the system. According to the above analysis,
if any one of the three conditions ((22), (23), or (24)) is satisfied, complete residual-vibration
elimination can be achieved for an undamped system. Hereinafter, these conditions are
denoted as C1, C2, and C3, respectively. Interestingly, although all of them result in a
vibrationless stop, they display certain fundamentally distinct properties that impact the
transient vibration during motion, as illustrated in Figure 5. These properties will be
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clarified in the following paragraphs. In a similar way, the dynamic response during the
constant acceleration segments [t1, t2] and [t5, t6] can be derived as follows:

y(t|t1 ≤ t < t2 ) = − 1
ωd

[∫ t1
t0

Apeak
2

(
1− cos π

T1
(τ − t0)

)
sin(ωd(t− τ))dτ +

∫ t
t1

Apeak sin(ωd(t− τ))dτ
]

= − Apeak
ωd

2

[
1− π2

π2−(ωdT1)
2 cos

(
ωdT1

2

)
cos
(

ωd

(
(t− t0)− T1

2

))] , (25)

y(t|t5 ≤ t < t6 ) = − 1
ωd


∫ t1

t0

Apeak
2

(
1− cos π

T1
(τ − t0)

)
sin(ωd(t− τ))dτ +

∫ t2
t1

Apeak sin(ωd(t− τ))dτ

+
∫ t3

t2

Apeak
2

(
1 + cos π

T1
(τ − t2)

)
sin(ωd(t− τ))dτ

−
∫ t5

t4

Apeak
2

(
1− cos π

T1
(τ − t4)

)
sin(ωd(t− τ))dτ −

∫ t
t5

Apeak sin(ωd(t− τ))dτ


=

Apeak
ωd

2

[
1− π2

π2−(ωdT1)
2 cos

(
ωdT1

2

)[
cos
(

ωd

(
(t− t4)− T1

2

))
+ 2 sin

(
ωd(T1+T2)

2

)
sin
(

ωd

(
(t− t0)− T1 − T2

2

))]] , (26)

and the dynamic response during the constant velocity segment [t3, t4] can be derived
as follows:

y(t|t3 ≤ t < t4 ) = − 1
ωd

 ∫ t1
t0

Apeak
2

(
1− cos π

T1
(τ − t0)

)
sin(ωd(t− τ))dτ +

∫ t2
t1

Apeak sin(ωd(t− τ))dτ

+
∫ t3

t2

Apeak
2

(
1 + cos π

T1
(τ − t2)

)
sin(ωd(t− τ))dτ


= − 2Apeak

ωd
2

π2

π2−(ωdT1)
2 cos

(
ωdT1

2

)
sin
(

ωd(T1+T2)
2

)
sin
(

ωd

(
(t− t0)− T1 − T2

2

)) . (27)
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Substituting (22) into (25)–(27) yields the following:

y(t|t1 ≤ t < t2 ) = −
Apeak

ωd
2 , y(t|t5 ≤ t < t6 ) =

Apeak

ωd
2 , y(t|t3 ≤ t < t4 ) = 0. (28)
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Equation (28) implies that satisfying C1 leads to zero vibrations during the constant
acceleration segments and constant velocity segment (see Figure 5a). The physical meaning
of this condition is that the vibrations induced in the sinusoidal jerk segments are offset at
the end of these segments (t = t1, t3, t5, t7). Likewise, it can be observed that if C2 is satisfied,
then the vibrations induced in the positive sinusoidal jerk segment [t0, t1] and the negative
sinusoidal jerk segment [t2, t3] cancel each other out at the end of the acceleration phase
(t = t3), ensuring no vibrations during the constant velocity segment (see Figure 5b). In
contrast, these properties are not present for C3. The vibration induced in the acceleration
phase counteracts that in the deceleration phase, and only the residual vibration after the
motion stops is suppressed (see Figure 5c). Therefore, when a smooth transfer is required in
the movement, condition C1 should be preferentially selected for parameter tuning. Unless
otherwise specified, the scheme will choose the one that produces a shorter moving time.

Note that these conditions depend on the system parameter ωd and are thus influenced
by the accuracy of the parameter estimation. In cases in which parameter estimation errors
occur or vibration modes vary during motion, it is expected that the motion profile will
remain robust against parameter variations. One solution is to prolong the motion time
length, as it reduces both the frequency range and amplitudes of the acceleration profile.
However, this would lead to much slower movement, which is undesirable in production.
Alternatively, the robustness against system parameter uncertainties can be improved when
the profile parameters satisfy multiple conditions from C1 to C3, which can be evaluated by
taking partial derivatives of the vibration amplitude with respect to the estimated natural
frequency. Particularly, if two of the vibration suppression conditions are satisfied for a
given value of ωd, the following holds:

yres(ωd) =
∂yres(ωd)

∂ωd
= 0. (29)

Thus, for a small estimation error (∆ωd), we have the following:

yres(ωd + ∆ωd) ∼= yres(ωd) +
∂yres(ωd)

∂ωd
· ∆ωd

∼= 0. (30)

Equation (30) reveals that the residual-vibration amplitude is not only zero at ωd but
is also approximately zero near ωd, which implies that the vibration is robustly mitigated
even with a parameter estimation error to some extent. Similarly, if all three vibration
suppression conditions are satisfied, then the insensitivity performance is further enhanced,
as the following holds:

∂2yres(ωd)

∂2ωd
= 0. (31)

In fact, the first and second derivatives with respect to the nominal natural frequency
represent, respectively, the gradient and curvature of the vibration amplitude evolution
curve versus the estimated frequency. If both of these derivatives are equal to zero, then
the vibrations remain limited within a broader frequency band, enabling the motion profile
to effectively handle the system uncertainties typically encountered in practice. In what
follows, the motion profiles that satisfy one, two, and three conditions are referred to as
onefold, twofold, and threefold vibration mitigation, respectively. The robustness degrees
for the three cases are defined as r = 1, 2, and 3, respectively. This degree can be specified
by the user according to actual demands in applications.

From a spectral point of view, tuning the profile parameters essentially removes the
frequency content of the input motion profile that is related to the resonances. When
the vibration suppression conditions are met, the frequency spectrum of the reference
acceleration profile exhibits zero magnitude at the resonant frequency, aligning with the
system’s pole. As a matter of fact, a mechanical system functions as a filter that amplifies
or diminishes the magnitudes of different harmonics based on its frequency response. The
frequency contents near the resonances in the input are significantly amplified. To more
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clearly illustrate this point, we consider the expression of the acceleration profile a(t) in (5)
in the Laplace domain:

A(s) =
Apeak

2

(
π

t1

)2 (1 + e−st1
)(

1− e−st2
)(

1− e−st4
)[

s2 +
(

π
t1

)2
]

s
. (32)

Thus, the frequency spectrum of the acceleration profile can be deduced as follows:

|A(jω)| =

∣∣∣∣∣∣∣∣
Apeak

2

(
π

t1

)2 (1 + e−jωt1
)(

1− e−jωt2
)(

1− e−jωt4
)[

−ω2 +
(

π
t1

)2
]

jω

∣∣∣∣∣∣∣∣ =
∣∣∣4D cos

(
ωt1

2

)
sin
(

ωt2
2

)
sin
(

ωt4
2

)∣∣∣∣∣∣∣(1−
(

ωt1
π

)2
)

ωt2t4

∣∣∣∣ . (33)

Note that if any one of the conditions C1, C2, or C3 is satisfied, |A(jω)| is equal to zero
at ω = ωd. Figure 6 gives an example of the acceleration spectra before and after parameter
optimization. It can be observed that the contributions of the proposed sinusoidal jerk
profile to vibration reduction are twofold: On the one hand, the smoothness of the profile
induces a low-pass filtering effect, causing high-frequency components to attenuate rapidly.
On the other hand, the optimization of the profile parameters further eliminates frequency
contents in the resonant mode that can excite vibrations. As a result, the resonant mode can
be effectively mitigated, successfully preventing the excitation of undesirable vibrations.
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3.3. Optimization Process for Vibration Suppression

From condition C1 to C3, the solutions for vibration cancellation are clearly infinite
in number, as the values of k1, k2, and k3 can take any positive integer. Furthermore, the
actuator limits represented by the Vmax, Amax, and Jmax should be strictly adhered to for
practical feasibility. To generate fast and smooth movements with low vibrations, it is
crucial to find the optimal values of T1, T2, and T3 that minimize the motion duration
under the actuator limits while satisfying the design constraints of vibration suppression
and robustness.

Algorithm 1 provides the parameter optimization procedure for the time–frequency-
optimal motion profile. First, the parameters for a minimum-time motion profile with
actuator limits are obtained using the formulas described in Section 3.1. Subsequently,
these parameters are adjusted to accommodate the vibration characteristics. The number of
vibration suppression conditions to be satisfied depends on the desired degree of robustness
(r). It is worth noting that the selection of the vibration suppression conditions also impacts
the motion duration. In essence, the parameters tuned in these conditions are t1, t2, and
t4, and the total motion duration can be expressed as Tf = t1 + t2 + t4. Given that the
original profile is time-optimal under physical limits, the parameters after modulation, in
accordance with the selected conditions, should not be smaller than their original values
in order to maintain respect for the physical limits. Tuning different parameters would
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result in varying time prolongations. Therefore, when selecting the vibration suppression
conditions, the objective should be to minimize this prolongation. In addition, for the
realization of the motion profile, t1 > 0, t2 ≥ t1 and t4 ≥ t1 + t2 must be fulfilled based on
the pre-conditions T1 > 0, T2 ≥ 0, T3 ≥ 0. Clearly, if r is set to 1 or 2, then there are three
possible choice options: if r = 1, then we can choose C1, C2, or C3; if r = 2, then we can
choose (C1, C2), (C1, C3), or (C2, C3); if r = 3, then only one choice (C1, C2, C3) is available.
We use a vector (C) to represent the selection made, where the conditions that are selected
are marked as 1 and the conditions that are not selected are marked as 0. For instance, if
only C1 is selected to be satisfied, then C = [1 0 0]. The set of possible options is denoted
as S.

Algorithm 1: Optimization of profile parameters

Input: moving distance D, actuator limits Vmax, Amax, Jmax, vibration period Td, robustness
degree r
Output: optimal profile parameters T̂1, T̂2, T̂3, Ĵpeak
1: Start
2: Compute the minimum time solution according to Table 1
3: if r = 1
4: S = {[1 0 0], [0 1 0], [0 0 1]}; l = 3
5: else if r = 2
6: S = {[1 1 0], [1, 0, 1], [0, 1, 1]}; l = 3
7: else
8: S = {[1 1 1]}; l = 1
9: end if
10: for i = 1 to l do
11: C = S{i}
12: Modulate t̂1, t̂2 and t̂4 using Equations (34)–(36)
13: Compute the total execution time Tf = t̂1 + t̂2 + t̂4
14: end for
15: find C = S{i} ∈ S that minimizes Tf
16: Compute the optimal parameters T̂1, T̂2, T̂3, Ĵpeak
17: end

In order to draw a distinction from the initial minimum-time solution, the caret symbol
(ˆ) is added to indicate the variables associated with the final time–frequency-optimal
motion profile. Thus, for a specific C, the parameters are modulated as follows:

t̂1 =

{
t1, C(1) = 0(

max
{

ceil
(

t1−Td/2
Td

)
, 1
}
+ 1

2

)
Td, C(1) = 1

, (34)

t̂2 =

max
{

t̂1, t2
}

, C(2) = 0

ceil
(

max{t̂1,t2}
Td

)
Td, C(2) = 1

, (35)

t̂4 =

max
{

t̂1 + t̂2, t4
}

, C(3) = 0

ceil
(

max{t̂1+t̂2,t4}
Td

)
Td, C(3) = 1

, (36)

where ceil(·) rounds a number up to the nearest integer greater than or equal to the given
argument, and max(·) returns the largest element among a collection of input values. This
modulation ensures both the suppression of the residual vibration and the minimization of
the introduced time delay without violating any constraints. The conformity to the actuator
limits is always ensured, as the values of the parameters t̂1, t̂2, and t̂4 after modulation
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are not smaller than their initial values computed in Table 1. This is evident from the
relationship between these parameters and the peak kinematic values:

V̂peak =
D
t̂4

, Âpeak =
D

t̂2 t̂4
, Ĵpeak =

πD
2t̂1 t̂2 t̂4

. (37)

All possible options in S should be computed to find the optimal selection C that
minimizes the total motion duration. Finally, once the optimal values of t̂1, t̂2, and t̂4 are
obtained, the time parameters T̂1, T̂2, and T̂3 are computed via T̂1 = t̂1, T̂2 = t̂2 − t̂1, and
T̂3 = t̂4 − t̂2 − t̂1, respectively.

So far, a closed-form solution for the optimal sinusoidal jerk profile has been derived.
The optimized motion profile minimizes the execution time to achieve fast movement while
considering the actuator capacities, vibration cancelation, and robustness constraints.

The final implementation procedure for practical applications of the developed method-
ology is as follows: (1) user: definition of the desired displacement and physical limits
according to the machine specifications and task requirements; (2) host computer: compu-
tation of the optimal profile parameters through computing tools such as Matlab or Python
and the generation of the motion profile; (3) machine controller: reception of the motion
profile data from the host computer and their transfer to driving commands; (4) driver:
execution of the motion profile according to the driving commands sent by the controller.

4. Numerical Results

In this section, the effectiveness of the proposed profile design scheme is validated via
a series of simulation studies. The sinusoidal jerk motion profile is compared to other classic
motion laws (i.e., the trapezoidal velocity profile and S-curve profiles) from kinematic and
dynamic points of view, which are detailed in Sections 4.1 and 4.2, respectively.

4.1. Kinematic Comparative Study

To verify the feasibility and versatility of the method, the study was conducted with
various constraint conditions, as listed in Table 2. In addition, it was assumed that the
natural frequency of the system is 8 Hz, with a damping ratio of 0.01 (Td = 0.125 s). Both
the minimum-time and time–frequency-optimal sinusoidal jerk profiles adapted to the
vibration characteristics were generated. Note that for the latter, the robustness degree
specified by the user affects the resulting profile. In the first study, this degree was set to
r = 1. The parameters of the minimum-time sinusoidal jerk profiles and the optimized
sinusoidal jerk profiles were solved according to the algorithms in Sections 3.1 and 3.3,
respectively. These optimization algorithms were implemented in the Matlab language,
and the conditions listed in Table 2 were used as the input arguments. Tables 3 and 4
contain the values of the obtained profile parameters, along with the total durations of the
resulting profiles. Then, the corresponding displacement, velocity, acceleration, and jerk
profiles were obtained by applying the formulations in Section 2.2.

The results under different constraints are illustrated in Figures 7–10. It is recognized
that the yielded motion profiles for all the test cases successfully arrive at the desired posi-
tions while strictly complying with the actuator limits, demonstrating the high reliability of
the method. Moreover, within each segment of the minimum-time sinusoidal jerk profiles,
the peak value of a derivative equals the corresponding bound. As a consequence, the
duration of this motion profile cannot be further shortened without violating any of the
imposed constraints. In contrast, the peak kinematic values of the time–frequency-optimal
profiles are slightly smaller than their bound values due to the fine tuning of the time
parameter for vibration mitigation.
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Table 2. Constraint conditions for computation of motion profiles.

Case D (m) Vmax (m/s) Amax (m/s2) Jmax (m/s3)

1 0.75 0.8 4 60
2 0.32 1 1.5 40
3 0.32 0.25 2.4 30
4 0.08 0.5 3 30

Table 3. Parameters of minimum-time sinusoidal motion profiles.

Case T1 (s) T2 (s) T3 (s) Tf (s)

1 0.1047 0.0953 0.6328 1.2422
2 0.0589 0.3745 0 0.9845
3 0.1144 0 1.0512 1.5088
4 0.1279 0 0 0.5118

Table 4. Parameters of optimized sinusoidal motion profiles (r = 1).

Case Selection T1 (s) T2 (s) T3 (s) Tf (s)

1 C2 0.1047 0.1453 0.5828 1.2922
2 C3 0.0589 0.3745 0.0078 0.9923
3 C2 0.1144 0.0106 1.0406 1.5194
4 C3 0.1279 0 0.1191 0.6309
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For Case 1 shown in Figure 7, all the kinematic limit values are reached in the
minimum-time sinusoidal jerk profile, which is a standard seven-segment profile. Because
the r is set to 1, we can choose one condition from C1, C2, and C3. By applying the algorithm
from Section 3.3, the motion durations (Tf) corresponding to different conditions are com-
puted. Specifically, if C1 is selected, then Tf = 1.3250 s; if C2 is selected, then Tf = 1.2922 s;
and if C3 is selected, then Tf = 1.3048 s. Therefore, to minimize the motion duration, con-
dition C2 is finally selected for parameter tuning to achieve the time–frequency-optimal
sinusoidal jerk profile. The optimal solution is T1 = 0.1047 s, T2 = 0.1453 s, T3 = 0.5828 s,
and Jmax = 0.1047 s, such that T1 + T2 is equal to two vibration periods (i.e., t2 = 2Td). The
total duration of the optimal profile (1.2922 s) is only 0.05 s longer than the original one
(1.2422 s). For Case 2 shown in Figure 8, the maximum allowable velocity is not reached in
the minimum-time profile because of the relatively short moving distance, and, accordingly,
the constant velocity segment vanishes. In this case, the optimization procedure modifies
T3 to satisfy condition C3, resulting in an optimal profile with seven segments. Similarly, in
Case 3 depicted in Figure 9, the maximum allowable acceleration is not attained for the
minimum profile due to the velocity limit, and thus the constant acceleration segment is
absent. The application of the proposed optimization procedure on the time parameters
leads to the optimal profile that satisfies condition C2. Finally, the minimum-time profile is
composed of only sinusoidal jerk segments in the last case, as none of the kinematic bounds
are attainable due to the limitation on the moving distance. With condition C3 selected,
the original motion profile becomes a five-segment profile after tuning T3, as illustrated in
Figure 10.

The trapezoidal velocity and S-curve motion profiles generated with the same con-
straints are also shown in Figures 7–10 for comparison. The trapezoidal velocity profile
exhibits infinite jerk due to acceleration discontinuities, while the S-curve profile effectively
limits jerk but still experiences jerk discontinuities at segment switching times. Compared
to the trapezoidal velocity and S-curve profiles, the sinusoidal jerk profile features better
smoothness, ensuring continuous velocity, acceleration, and jerk. An associated trade-off
with this smoothness improvement is a slight increase in the motion duration. However,
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this increase in the motion duration is adequately compensated for by the shortened settling
time, which will be clarified in the next subsection.

4.2. Comparative Dynamic Study

To assess the influence of the motion laws on residual vibrations, the dynamic model
of a flexible-motion system (Figure 4) was taken into account for comparative analysis.
This simplified model can effectively represent a wide range of industrial equipment, such
as transfer robots, inspection machines, and cranes. The motion profiles obtained in the
last subsection were utilized as the reference input to the system in order to evaluate the
response of the mass following the previous settlings: ωn = 50.27 rad/s and ζ = 0.01. The
simulation was performed in the Matlab/Simulink environment, and Figure 11 depicts the
model of the dynamic response of the mass. The time step was set to 0.5 ms.
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Figure 11. Simulation model for motion-induced vibration.

Figures 12–15 depict the vibration responses with different profiles for Cases 1–4. The
vertical dashed lines marked in corresponding colors represent the motion completion times
for the profiles. The same applies to the subsequent figures. Table 5 reports the comparison
results in terms of the peak-to-peak value of the residual vibration and settling time, with
the values in bold indicating the best results achieved among these profiles. The settling
time is defined as the time at which the induced vibration decays and remains within
a specified error band (±0.2 mm). It can be observed that the vibration level decreased
remarkably with an increase in the continuity of the motion profiles, albeit at the expense
of a slight prolongation of the duration.
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Table 5. Numerical comparison results of residual vibrations and settling times induced by different
motion profiles.

Case
Motion Profile

Trapezoidal
Velocity S-Curve Minimum-Time

Sinusoidal Jerk
Optimized

Sinusoidal Jerk

1
Residual vibration (mm) 8.913 (ref) 5.293 (−40.6%) 4.306 (−51.7%) 0.224 * (−97.5%)

Settling time (s) 7.385 (ref) 6.357 (−13.9%) 5.999 (−18.8%) 1.292 * (−82.5%)

2
Residual vibration (mm) 2.479 (ref) 1.473 (−40.6%) 0.672 (−72.9%) 0.359 * (−85.5%)

Settling time (s) 4.594 (ref) 3.554 (−22.6%) 2.067 (−55%) 0.992 * (−78.4%)

3
Residual vibration (mm) 1.960 (ref) 0.880 (−55.1%) 0.373 (−80.9%) 0.041 * (−97.9%)

Settling time (s) 4.626 (ref) 3.044 (−34.2%) 1.509 * (−67.4%) 1.520 (−67.2%)

4
Residual vibration (mm) 5.743 (ref) 0.143 (−97.5%) 0.027 (−99.5%) 0.010 * (−99.8%)

Settling time (s) 5.665 (ref) 0.442 * (−92.2%) 0.512 (−91%) 0.631 (−88.9%)

* The values in bold indicate the best results achieved among the tested profiles.

As expected, the trapezoidal profile, characterized by acceleration discontinuities,
induced the most severe residual vibrations in all the cases, whereas the proposed optimized
sinusoidal jerk profile exhibited the best performance in vibration mitigation. In addition,
the minimum-time sinusoidal jerk outperformed the trapezoidal velocity and S-curve
profiles, which is consistent with observations in previous literature. Specifically, the
residual-vibration level generated by the optimized sinusoidal jerk profile decreased by an
average of 95.2% relative to the trapezoidal velocity profile, and by 89.9% relative to the
S-curve profile. Meanwhile, the settling time, which serves as a reliable productivity metric,
was significantly shortened when using the optimized profile for Cases 1 and 2. In all the
test cases, the settling times were identical to the motion durations (Tf), as the vibration
magnitudes fell below the specified error after reaching the target positions. Hence, in
terms of the settling time, the optimized sinusoidal jerk profile achieves the most efficient
movement, despite having a slightly longer duration than the other profiles.

To further evaluate the robustness of the method, we performed experiments con-
sidering a 10% estimation error in the natural frequency (the actual natural frequency
varies from 8 Hz to 7.2 Hz). As mentioned earlier, setting a higher robustness degree (r)
enhances the insensitivity of the generated sinusoidal jerk profile to parameter uncertainties.
Tables 6 and 7 aggregate the computed parameters for the optimized profiles with the r
set to 2 and 3, respectively. Note that these profiles were tuned according to the nominal
natural frequency. The vibration responses for the optimized sinusoidal jerk profiles with
different robustness degrees in the absence and presence of a modeling error are plotted in
Figures 16–19, and the comparison results are summarized in Table 8.

Table 6. Parameters of optimized sinusoidal motion profiles (r = 2).

Case Selection T1 (s) T2 (s) T3 (s) Tf (s)

1 C2, C3 0.1047 0.1453 0.6453 1.3548
2 C2, C3 0.0589 0.4411 0.0661 1.1840
3 C2, C3 0.1144 0.0106 1.1357 1.6145
4 C1, C3 0.1875 0 0 0.7500

Table 7. Parameters of optimized sinusoidal motion profiles (r = 3).

Case Selection T1 (s) T2 (s) T3 (s) Tf (s)

1 C1, C2, C3 0.1875 0.0625 0.5625 1.4376
2 C1, C2, C3 0.1875 0.3125 0.0625 1.4376
3 C1, C2, C3 0.1875 0.0625 0.9375 1.8126
4 C1, C2, C3 0.1875 0.0625 0.0625 0.9375
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Table 8. Comparative results of optimized sinusoidal jerk profiles with different robustness degrees
with/without modeling errors.

Case
r = 1 r = 2 r = 3

w/o Modeling
Error

w/ Modeling
Error

w/o Modeling
Error

w/ Modeling
Error

w/o Modeling
Error

w/ Modeling
Error

1
Residual vibration (mm) 0.224 2.201 0.051 1.768 0.001 * 0.221 *

Settling time (s) 1.292 * (ref) 5.102 (+295%) 1.355 (ref) 4.637 (+242%) 1.438 (ref) 1.438 * (+0%)

2
Residual vibration (mm) 0.359 1.362 0.037 2.418 0 * 0.156 *

Settling time (s) 0.992 * (ref) 3.760 (+279%) 1.184 (ref) 5.182 (+338%) 1.438 (ref) 1.438 * (+0%)

3
Residual vibration (mm) 0.041 0.564 0.018 0.332 0 * 0.045 *

Settling time (s) 1.520 * (ref) 2.356 (+55%) 1.615 (ref) 1.615 * (+0%) 1.813 (ref) 1.813 (+0%)

4
Residual vibration (mm) 0.010 0.445 0.002 0.190 0 * 0.081 *

Settling time (s) 0.631 * (ref) 0.881 (+39.6%) 0.750 (ref) 0.750 * (+0%) 0.938 (ref) 0.938 (+0%)

* The values in bold indicate the best results achieved among the tested profiles.

As shown in Table 8, under nominal conditions, all the optimized sinusoidal jerk
profiles effectively attenuated the residual vibrations. However, when an estimation
error was introduced, the residual-vibration levels increased in all the test cases. It is
worth noting that the optimized profiles with onefold vibration mitigation produced
noticeably larger vibrations as the resonant frequency deviated, resulting in a certain
degree of performance degradation. In contrast, the optimized profile with threefold
vibration mitigation achieved a superior robustness performance under the frequency
perturbation, leading to the smallest increment in the residual vibrations. The profile with
twofold vibration mitigation was characterized by an intermediate robustness between the
profiles with twofold and twofold vibration mitigation. This difference can also be observed
with ease by measuring the setting times. Table 8 reports the percentage increments in the
settling time due to the modeling error for each motion profile. On average, the increments
in the settling time for the profiles with onefold and twofold vibration mitigation are 167%
and 145%, respectively, while the settling times for the profiles with threefold vibration
mitigation remain the same as the moving time (Tf).

To better quantify the influence of the parameter perturbations on the results, the
magnitude evolution curves of the residual-vibration envelope with respect to a ± 10%
variation in the actual natural frequency in the four test cases are plotted in Figure 20. The
results confirm the consistency of the sensitivity reduction brought on by the optimized
profiles with threefold vibration mitigation. The vibration level remains limited within
the allowed tolerance despite minor parameter perturbations, as the harmonic contents
are eliminated in a wider neighborhood of the resonant frequency with the increase in
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the r. Therefore, the motion profile with threefold vibration reduction is preferable in the
presence of system modeling errors.
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5. Experimental Results

To further verify the practicality of the proposed method, experiments were conducted
on a linear-motion stage manufactured by PARADOX Inc., which is commonly used in
production equipment such as bonding machines, transfer robots, inspection instruments,
and dispensers. A stainless-steel beam was attached to the base to imitate the flexible
behavior of the tool side. During operation, high-speed movements of the stage base
can induce vibrations in the beam along the motion direction that need extra standby
time to dissipate at the end positions. Minimizing the induced vibrations is crucial for
improving the positioning accuracy and efficiency. The motion stage was controlled by
a host computer through a motion control board (GHN, Googoltech) connected via the
gLink-II bus. The optimization algorithms were programmed and implemented on the host
computer, and the resulting motion profiles were subsequently sent to the control board
as the reference input to drive the motor. To measure the vibration accelerations at the
beam tip, an accelerometer (1B103, DHTEST) was utilized, with a sampling frequency of
5.12 kHz. The experiment platform is depicted in Figure 21.

In the experiment, the motion stage was required to travel a distance of 0.3 m,
and the actuator limits were specified as follows: Vmax = 0.4 m/s, Amax = 2 m/s2, and
Jmax = 20 m/s3. The beam was characterized by a natural frequency of 8.81 Hz and a damp-
ing ratio of 0.008. The desired positioning accuracy at the target point was set to± 0.2 m/s2.
The proposed optimized sinusoidal jerk profile, as well as other baseline methods in previ-
ous studies [16,23], were tested. Figure 22 shows the actual position profiles of the base
read from the linear encoder and the velocity profiles deduced from the derivation of the
actual positions. It can be seen that the actual profiles of the base are basically consistent
with the reference design and accurately reach the desired positions. Figure 23 illustrates
the measured vibration accelerations corresponding to different profiles. An additional test
was performed to verify the robustness of the profiles by attaching an extra mass at the
beam tip, causing its natural frequency to change from 8.81 Hz to 7.55 Hz, which represents
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a modeling error of 14.3%. Figures 24 and 25 illustrate the measured vibration accelerations
with modeling errors corresponding to the baseline profiles and the optimized sinusoidal
jerk profile with different robustness degrees. To evaluate the overall energy distribution
across the frequency spectrum, the power spectral density (PSD) curves of the vibration
signals with each profile are plotted in Figure 26. The quantitative experimental results are
summarized in Table 9.
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Table 9. Experimental comparison results of residual vibrations and settling times induced by
different motion profiles.

Motion Profile
Residual Vibration (m/s2) Settling Time (s)

w/o Modeling Error w/ Modeling Error w/o Modeling Error w/ Modeling Error

Trapezoidal velocity 11.065 (ref) 15.019 (ref) 16.611 (ref) 23.230 (ref)
Yoon et al. [16] 0.720 (−93.5%) 10.386 (−30.9%) 3.653 (−78.0%) 20.733 (−10.8%)

Martinez et al. [23] 1.297 (−88.3%) 4.283 (−71.5%) 6.811 (−59.0%) 16.517 (−28.9%)

Proposed
r = 1 0.293 (−97.4%) 1.643 (−89.1%) 1.121 * (−93.3%) 10.459 (−55.0%)
r = 2 0.150 * (−98.6%) 1.221 (−91.9%) 1.148 (−93.1%) 7.303 (−68.6%)
r = 3 0.292 (−97.4%) 0.207 * (−98.6%) 1.192 (−92.8%) 1.192 * (−94.9%)

* The values in bold indicate the best results achieved among the tested profiles.

From the analysis in Figures 22–26 and Table 9, it is possible to outline the following
points:

• Starting with the visual impression in Figure 22, the sinusoidal jerk profile guarantees
good smoothness of movement. Due to its continuity up to the jerk level, the adverse
influence of high-frequency harmonics can be eliminated;

• As shown in Figure 23, the classic trapezoidal velocity profile, characterized by accel-
eration discontinuities and infinite jerk, offers the minimum execution time. However,
it induces the highest vibration level and, consequently, the longest settling time. By
adjusting the acceleration time, the technique in [16] significantly reduced the vibra-
tion to 6.5% of the initial level. The proposed sinusoidal jerk profile yields the lowest
residual-vibration amplitude, achieving improvements of 59.3% and 77.4% compared
to the profiles in [16] and [23] when r = 1, respectively;

• The employed profile optimization introduces a slight delay in the reference motion
completion time. However, this delay is more than compensated for by the reduced
settling time, as the beam reaches a complete standstill state earlier, effectively increas-
ing the operational productivity. The settling time of the proposed profile is identical
to the moving time for the nominal case, as the vibration at the end of the motion falls
within the specified allowable range;

• It can be seen from the dominant energy peaks in Figure 26a that the vibration mode
at 8.81 Hz is mainly excited during the motion. The peak PSD magnitudes obtained
using the trapezoidal, modified trapezoidal [16], seven-segment [23], and proposed op-
timized (r = 1) profiles are 13.35 dB, −12.17 dB, −4.77 dB, and −21.80 dB, respectively.
Notably, the energy peak is remarkably reduced with the optimized profile, supporting
the finding of a more than 90% vibration reduction, as depicted in Figure 23. Moreover,
the PSD of the excitation vibration with this profile is smaller than those with the
other methods in the high-frequency domain, indicating the smoothness property of
the profile;

• In the case of a modeling error, the performance of the proposed profile degrades but
still remains superior to the other profiles, as depicted in Figure 24. Increasing the
robustness degree (r) can enhance the insensitivity to parameter perturbation. The
increment in the settling time due to the modeling error for the optimized profile with
the r set to 1 is approximately one order of magnitude, while it remains unchanged
with the r set to 3 (Figure 25b);

• While the developed profile demonstrates an outstanding capability of vibration
reduction in lightly damped systems, a limitation is that this capability decreases
when the damping ratio is significant. Therefore, for future work, it is crucial to
improve the profile design by utilizing a complex domain transformation to address
damped cases.

On the whole, the obtained experimental results are in good agreement with the
numerical results, clearly validating the superiority of the proposed profile optimization
method in terms of robust vibration suppression for high-speed machines. This finding
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is beneficial for substantially enhancing the positioning accuracy and productivity in
industrial applications.

6. Conclusions

This paper proposes a novel motion profile design methodology based on a piecewise
trigonometric jerk function to address the vibration excitation problem of high-speed
machines. The complete analytical mathematical expressions of the motion profile are
formulated from the jerk profile. Based on the obtained results, the following conclusions
can be drawn:

(1) The motion profile features good smoothness and ensures continuity up to the jerk
level. The possibility of introducing physical limits on the velocity, acceleration, and
jerk enables the adaptation of the profile to different machines. The critical constraint
conditions corresponding to specific cases are derived to obtain the minimum-time
solution under physical limitations;

(2) Unlike most previous investigations that focus solely on time optimality as the design
metric, this study examined the characteristics of the motion profiles from the perspec-
tive of dynamic response in order to take full advantage of the vibration elimination
capability inherent in the profiles. The findings highlight the significance of the time
durations of specific profile segments, rather than lower jerk values, as the usual
manner for motion-induced vibration control;

(3) Based on the established vibration-free conditions, an optimization algorithm is suggested
to generate the time–frequency-optimal motion profile such that both the execution time
and residual vibration are minimized while respecting the given constraints on the
actuator capacities and robustness. The determination of the optimal profile parameters
is achieved in an analytical way and does not pose computational difficulties;

(4) A sequence of simulation and experimental tests on a motion stage were carried out to
validate the effectiveness of the proposed technique. The results show that the gener-
ated velocity, acceleration, and jerk profiles are all bounded and continuous for various
given constraint conditions. The comparison studies with other baseline methods
demonstrate that the optimized sinusoidal jerk profile exhibits a better performance
in terms of vibration reduction and robustness. In particular, it achieves a more than
90% suppression ratio in the residual-vibration amplitude compared to the classical
trapezoidal velocity profile. Consequently, the settling time is remarkably shortened,
which is beneficial to prevent unnecessary standstill in manufacturing processes. The
PSD curves indicate that the high-frequency harmonics are effectively suppressed due
to the low-pass filtering effect of the profile;

(5) By adjusting the specified robustness degree, the proposed profiles exhibit high insensi-
tivity to system modeling errors. The optimal profile with threefold vibration mitigation
maintains a constant settling time, even if the actual natural frequency deviates by over
10% from its nominal value, for which the motion profile is optimized. This feature
makes it suitable for cases in which accurate system parameters are not available.

The application of this newly elaborated motion profile design allows industrial
machines to achieve fast and high-precision movements, thereby enhancing both the
productivity and task quality. In future work, this profile design will be improved by a
complex domain transformation to address damped cases, and the optimization of more
types of motion laws will be investigated through an analysis of the vibration characteristics.
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