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Abstract: With the increased sophistication of cyber-attacks, there is a greater demand for effective
network intrusion detection systems (NIDS) to protect against various threats. Traditional NIDS are
incapable of detecting modern and sophisticated attacks due to the fact that they rely on pattern-
matching models or simple activity analysis. Moreover, Intelligent NIDS based on Machine Learning
(ML) models are still in the early stages and often exhibit low accuracy and high false positives,
making them ineffective in detecting emerging cyber-attacks. On the other hand, improved detection
and prediction frameworks provided by ensemble algorithms have demonstrated impressive out-
comes in specific applications. In this research, we investigate the potential of ensemble models in the
enhancement of NIDS functionalities in order to provide a reliable and intelligent security defense.
We present a NIDS hybrid model that uses ensemble ML techniques to identify and prevent various
intrusions more successfully than stand-alone approaches. A combination of several distinct machine
learning methods is integrated into a hybrid framework. The UNSW-NB15 dataset is pre-processed,
and its features are engineered prior to being used to train and evaluate the proposed model structure.
The performance evaluation of the ensemble of various ML classifiers demonstrates that the proposed
system outperforms individual model approaches. Using all the employed experimental combination
forms, the designed model significantly enhances the detection accuracy attaining more than 99%,
while false positives are reduced to less than 1%.

Keywords: intrusion detection systems (IDS); ensemble learning; advanced attacks

1. Introduction
1.1. Background

In today’s technologically advanced world, computer networks have become integral
to our daily activities. However, this growing dependence on networks has also given rise
to a surge in cyber-attacks. While security defenses like intrusion detection systems (IDS),
firewalls, and anti-malware software play a crucial role in identifying attacks, their effec-
tiveness largely relies on the detection models they employ. Unfortunately, conventional
mechanisms often fall short in detecting advanced and sophisticated attacks, necessitating
the integration of intelligent models. To combat these emerging threats, the use of machine
learning, data analytics, and threat intelligence has become essential. By harnessing the
power of these technologies, hidden relationships among intrusion events can be extracted,
potential vulnerabilities identified, and indicators of compromise detected. This enables
proactive measures to anticipate and prevent cyber-attacks before they occur [1].

In network security infrastructure, NIDS have emerged as vital components. NIDS
are designed to monitor and analyze network traffic to identify suspicious and malicious
activities. To enhance the accuracy and efficacy of NIDS, machine learning algorithms
have proven to be essential to create intelligent security mechanisms [2]. One such pow-
erful technique is ensemble machine learning, which combines multiple homogenous or
heterogeneous models to achieve superior detection performance.
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The potential of machine learning to enhance the accuracy and responsiveness of NIDS
is immense [3]. By leveraging historical data, these models can effectively learn patterns
of normal and anomalous network behavior, enabling them to classify incoming traffic
as either benign or potentially malicious. This real-time detection capability empowers
security teams to respond swiftly to potential attacks, thereby preventing or mitigating
their impact [4]. Ultimately, integrating machine learning with NIDS can significantly
sustain network security and reduce the risk of cyber-attacks.

Ensemble machine learning has attracted significant attention in research due to its
ability to create more robust and accurate systems for attack detection [5]. This approach
addresses the limitations associated with individual algorithms, such as overfitting, bias,
or poor generalization of new data. By combining multiple classifiers, ensemble learning
consistently outperforms individual models, resulting in enhanced accuracy [6]. The col-
laborative nature of ensemble methods can be classified into three categories: bagging,
boosting, and stacking. Bagging involves training multiple models on different input
subset samples and averaging their predictions, effectively reducing variance and address-
ing overfitting [7]. Boosting, on the other hand, integrates multiple weak learners, each
learning from the mistakes of its predecessors, resulting in a stronger learner capable of
making improved predictions and reducing bias in the training set [8]. Stacking, a two-level
ensemble learning technique, combines the predictions of different single learning algo-
rithms to make more accurate predictions on new data [8]. Various combination methods
of ensemble algorithms including bagging, stacking, and boosting can be configured and
designed to improve the model performance. It is also essential for leveraging the strengths
and capacities of individual algorithms employed in different settings. ML algorithms
offer a distinct set of characteristics and operational efficiencies in different contexts with
diverse dimensionalities. Ensemble learning entails the combination of these available
capacities, resulting in a system with precise prediction of potential unknown attacks.
Moreover, limitations associated with a certain algorithm can be avoided by facilitating the
efficiency features of another algorithm. To ensure valid experimental evaluation, a bench-
mark dataset such as UNSW-NB15 is utilized, which consists of numerous features related
to network traffic and intrusion detection. The dataset features are analyzed, evaluated,
and processed to improve detection performance, reduce computational complexity, and
enhance the overall prediction accuracy.

1.2. Problem Statement

Current state-of-the-art network intrusion detection systems (NIDS) still face signifi-
cant challenges in accurately detecting cyber threats whether new or evolving. Traditional
NIDS approaches rely on pattern recognition and are not capable of detecting sophisticated
attacks such as zero-day attacks and advanced persistent threats (APT). On the other hand,
NIDS that use individual ML algorithms to generate detection models are criticized for
numerous drawbacks such as overfitting, bias, and poor generalization of new data. These
limitations can cause false negatives, where attacks go undetected, or false positives, where
legitimate traffic is misclassified as an attack. Ensemble machine learning has emerged
as a promising approach to address these limitations and improve the accuracy of attack
detection. However, there is a need to explore the effectiveness of different ensemble
methods and algorithm combinations for NIDS, as well as their potential limitations in
terms of interpretability, complexity, and computational resources.

1.3. Research Objectives and Contributions

Ensemble machine learning techniques, which leverage the diversity and complemen-
tary strengths of multiple models, have the potential to significantly improve the accuracy,
efficiency, and robustness of NIDS for detecting known and unknown attacks. We hypothe-
size that an ensemble approach, which combines multiple machine learning algorithms
or models, will outperform a single-model approach in terms of detection accuracy, false
positive rate, and detection time, across different types of network attacks scenarios. This
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hypothesis emphasizes the advantages of using an ensemble approach for NIDS, which
include the ability to handle complex and dynamic attack patterns, mitigate the impact of
noisy or conflicting data, and adapt to evolving threats. It also highlights the key evaluation
metrics that would be used to test the hypothesis, such as accuracy (the ability to correctly
classify benign and malicious traffic), false positive rate (the frequency of misclassifying
benign traffic as malicious), and detection time (the speed of identifying and reporting
attacks). The hypothesis could be validated through empirical experiments that compare
the performance of different ensemble techniques with that of a baseline single-model
approach on benchmark datasets or real-world traffic traces.

The primary goal of this research paper is to evaluate the performance of ensemble
machine learning techniques in the analysis of Network Intrusion Detection systems (NIDS)
data. The predictive models created by different algorithms are utilized to recognize
sophisticated cyber-attacks and advanced persistent threats (APT).

The following specific objectives will be tackled:

• Examining the current state of NIDS systems and machine learning for cyber-attack
prediction. The application of ensemble machine learning to NIDS is reviewed to
identify the limitations and challenges that need to be addressed.

• Assessing and contrasting various machine learning algorithms for predicting cyber-
attacks using different NIDS datasets.

• Applying various stand-alone and ensemble machine learning mechanisms to develop
and implement a system as a predictive model for the detection of unknown and
advanced cyber intrusions.

• Selecting a realistic dataset that reflects real-world network traffic. The dataset contains
advanced attack and APT patterns in a spatial-temporal distribution.

• Conducting a feature engineering process to extract the most effective attributes from
the dataset to provide an accurate prediction.

• Evaluation of the efficacy of the proposed system using different performance criteria.

Despite the existence of few research efforts to evaluate ensemble learning approaches
in several applications, there is a demand for more technical studies using distinct ensemble
mechanisms, different tuning parameters, and various collections of ML algorithms. The
study’s contributions to the network security field can be presented in the following:

• Implementation and evaluation of distinct ensemble machine learning techniques for
improving attack detection in Network Intrusion Detection Systems (NIDS).

• Development and implementation of different structures of ensemble-based NIDS
trained in real-world attacks.

• Investigation of the impact of different ensemble techniques, including stacking,
boosting, and bagging, on the detection accuracy, false positive rate, and detection
time of NIDS.

• Evaluation of the proposed system using a well-known and documented benchmark dataset:

� In terms of popularity and usage, the KDD Cup 1999 [7] dataset is one of the
most widely used datasets for evaluating intrusion detection systems. However,
this dataset is quite old (it was released in 1999) and may not reflect the current
landscape of network attacks and traffic. Moreover, the NSL-KDD dataset [9],
which is a modified version of the KDD Cup 1999 dataset, is also quite popular
and has been used in many studies. However, it has been criticized for contain-
ing duplicate and irrelevant records, and for not representing realistic network
traffic patterns.

� In our work, we decided to use the UNSW-NB15 dataset [10–12], which has been
selected as it is a modern dataset that was released and later on was continu-
ously maintained and updated. It includes over 16 million records, including
both benign and malicious traffic, and covers a wide range of attack types and
scenarios. Furthermore, it has been used in several recent studies for ML-based
NIDS evaluation which allows comparison of our system design with others.
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• Identification of the strengths and limitations of ensemble-based NIDS, and insights
into the factors that affect their performance and scalability.

• Demonstration of the potential of ensemble-based NIDS for handling a wide range of
network attacks, including DoS, port scanning, malware infections, and multistage
sophisticated attacks.

• Contribution to the field of network security and machine learning by presenting work
that combines the benefits of ensemble techniques with the strengths of NIDS, and by
identifying new research directions and challenges.

2. Related Work

The use of machine learning techniques in NIDS has gained significant attention in
the research community [13,14]. NIDS plays a crucial role in monitoring network traffic to
identify potential cyberattacks. Machine learning algorithms help in identifying patterns
and behaviors in network traffic that may indicate malicious activities. These algorithms
learn from historical data and are capable of detecting new and previously unseen attacks.
One approach involves developing predictive models based on historical data to identify
specific attack behaviors. By categorizing network traffic into different classes such as
legitimate, suspicious, and malicious, machine learning algorithms assist in reducing false
positives and improving the accuracy of NIDS.

Numerous works have focused on using machine learning techniques, including
ensemble methods, for cyberattack prediction [15,16]. Supervised machine learning algo-
rithms have been widely employed to classify network traffic into different classes. By
training rule-based models on diverse datasets, NIDS can achieve more accurate classi-
fication and reduce false positives. On the other hand, unsupervised machine learning
techniques have been utilized to analyze clustering and association patterns in network
data, which can assist in identifying unknown attack patterns. However, in this paper, we
primarily focus on supervised machine learning approaches based on binary classification.

In the systematic review [17], authors discussed different ensemble techniques, in-
cluding bagging, boosting, and stacking. Bagging involves training multiple classifiers
on different subsets of the dataset and aggregating their predictions. Boosting, on the
other hand, focuses on sequentially training weak learners, with each subsequent learner
learning from the mistakes of the previous ones. Stacking is a two-level ensemble approach
that combines the predictions of multiple base classifiers using another meta-classifier. The
review also emphasized the advantages of ensemble learning in NIDS. By combining mul-
tiple classifiers, ensemble methods can reduce the number of false positives and enhance
the overall detection accuracy. They can effectively handle imbalanced datasets, improve
robustness against adversarial attacks, and handle concept drift, where the underlying
data distribution changes over time. The review paper [18] presents a comprehensive
review of ensemble learning techniques for intrusion detection. They explored various
ensemble strategies and their applications in the context of NIDS. The study highlighted
that ensemble methods can effectively handle complex and diverse data, improving the
detection of both known and unknown attacks.

Authors in [19] present an adaptive ensemble machine learning model for NIDS.
The combination of individual models is dynamically modified, and the model weight is
also adjusted in a flexible way. Multiple decision trees, random forest, kNN, and DNN,
models are employed as base classifiers. The averaging mechanism is an adaptive voting
method. The proposed design has been evaluated using the NSL-KDD dataset, and it
has achieved an accuracy of 84.2%, while an adaptive voting mechanism has an accuracy
of 85.2%. For improved outcomes, the authors recommend optimizing feature selection
and preprocessing. In the [20] research paper, the ensemble-based ML model is proposed
using several individual models including RF, GB, and AGX. Bagging and simple stacking
averaging techniques are utilized. A port scanning dataset called SIMARG21 has been used
and the obtained results illustrate that the RF model has achieved improved performance
metrics reaching 99% in accuracy.
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Ref. [21] provides an ensemble-based model that employs logistic regression, naive
Bayes, and a decision tree with a voting classifier. The efficacy of the model was assessed
using the CICIDS2017 dataset, which revealed considerable gains in accuracy in binary
and multi-class classification scenarios. Ref. [22] presents a cloud-based technique for
tasks to fog nodes. When tested on the NSL-KDD dataset, the technique performed well
in the fog layer and took less time to execute than stacking. Ref. [23] focused on the
application of ensemble techniques based on Random Forest for intrusion detection in
network traffic. Their study demonstrated the effectiveness of the ensemble model in
improving the detection accuracy of various network attacks. Moreover, references [24–28]
have utilized ensemble learning models for NIDS in different applications and various
domains such as IoT, cloud computing infrastructure, and sensor security. Distinct datasets
have been used to train different combinations of employed ML models.

These publications exemplify the growing interest in utilizing ensemble machine
learning approaches, such as Random Forest, Multilayer Perceptron, and other ensemble
techniques, to enhance the accuracy and performance of NIDS [29,30]. By leveraging
the strengths of multiple classifiers, these ensemble models contribute to the ongoing
research in network security and intrusion detection. Nevertheless, the majority of research
publications evaluate the designed model with some older datasets and focus on a specific
design or on a particular method. Therefore, in our work, we aim to use different designs
of ensemble ML as a solution for cyber-attack prediction. The proposed approach involves
combining multiple machine learning algorithms to improve the accuracy and reliability
of the prediction. Ensemble techniques such as bagging, boosting, and stacking are used
to train multiple models and then aggregate their outputs to make a final prediction. By
utilizing a variety of models, ensemble techniques can effectively handle complex and
diverse datasets, and improve the detection of both known and unknown attacks.

3. Application of Ensemble Learning in NIDS

The rapid proliferation of computer networks has transformed the way we live and
interact, bringing unprecedented convenience and connectivity to our daily lives. However,
this growing reliance on interconnected systems has also exposed us to an escalating wave
of cyber-attacks, posing serious threats to data security and privacy. In response, various
security defenses such as IDS, firewalls, and anti-malware software have been deployed to
safeguard networks from malicious activities. The inner workings of these systems range
from simple rules matching to sophisticated intelligent models.

3.1. Overview of Intrusion Detection Systems (IDS)

In today’s interconnected and digitally driven world, network security has become a
paramount concern for individuals, businesses, and organizations alike. As the volume
and complexity of cyber threats continue to grow, the need for robust IDS has become
more critical than ever before. Intrusion detection plays a pivotal role in safeguarding
computer networks and systems against a wide range of cyber-attacks, ranging from
common malware and denial-of-service (DoS) attacks to APTs and zero-day exploits. The
primary objective of intrusion detection is to detect and respond to unauthorized, malicious,
or suspicious activities within a network or host environment. An intrusion can be an
external attack launched from outside the network, an internal attack originating from
within the organization, or even unintentional actions that may pose security risks. As such,
IDS serve as a vigilant and watchful eye, continuously monitoring network traffic, system
logs, and various other data sources to identify anomalies and potential signs of intrusion.

There are two primary types of IDS: Host-based Intrusion Detection Systems (HIDS)
and Network-based Intrusion Detection Systems (NIDS). Host-Based Intrusion Detection
Systems (HIDS) are deployed on individual host machines or endpoints and focus on
monitoring activities specific to that host. These systems analyze various host-related
events, such as file system changes, login attempts, and process activities. HIDS are
effective in detecting attacks targeting a single host or instances where malicious activities
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are confined to a particular system. They can provide granular visibility into the security
of individual machines, making them valuable tools for endpoint security and forensic
investigations. However, HIDS have limitations, especially when it comes to detecting
attacks that span across multiple hosts or are distributed across the network. Since HIDS
only analyze activities within the scope of a single host, they may miss attacks that manifest
at the network level.

Unlike HIDS, Network-Based Intrusion Detection Systems (NIDS) operate at the
network level, analyzing network traffic as it traverses the network. NIDS are strategically
positioned at critical points within the network to capture and analyze data packets, headers,
and payload information. By inspecting network traffic, NIDS can detect a wide range of
attacks that may target multiple hosts or exploit vulnerabilities at the network level. NIDS
are particularly valuable for monitoring large-scale networks where numerous hosts are
interconnected, as they can provide a centralized view of potential threats across the entire
network. They are capable of detecting suspicious patterns, unauthorized access attempts,
malware propagation, and other network-based anomalies.

However, NIDS also face challenges. They may encounter performance bottlenecks
when handling high network traffic, and they can be susceptible to encrypted traffic,
which may conceal malicious activities from inspection. Moreover, NIDS may produce
a significant number of false positives if not appropriately configured or if they lack the
intelligence to differentiate between genuine threats and benign network activities. To
address these challenges, the integration of machine learning techniques into NIDS has
gained prominence. Machine learning enables NIDS to learn from historical network data,
recognize patterns of normal behavior, and detect deviations that may indicate potential
attacks. Moreover, by leveraging ensemble machine learning, NIDS can enhance their
accuracy and resilience against sophisticated cyber-attacks, offering a more effective defense
mechanism for safeguarding modern computer networks and critical infrastructure.

3.2. Machine Learning in Intrusion Detection Systems

Machine learning has emerged as a powerful and versatile approach to enhancing
the capabilities of IDS. Traditional rule-based and signature-based IDS approaches have
limitations in detecting unknown and sophisticated attacks. Machine learning techniques,
on the other hand, offer a data-driven and adaptive approach that can effectively identify
complex patterns and anomalies in network traffic, enabling IDS to stay ahead of evolving
cyber threats. The main advantage of machine learning in IDS is its ability to learn from
historical data and adapt to new attack techniques, making it particularly well-suited
for dynamic and ever-changing cybersecurity landscapes. By training on vast datasets
containing both normal and anomalous network behavior, machine learning models can
discern subtle deviations and recognize novel attack patterns that may evade traditional
rule-based systems.

Ensemble machine learning has garnered significant attention in the field of IDS due to
its ability to mitigate the limitations of individual algorithms and improve overall detection
performance. By combining multiple machine learning models, ensemble methods create
a robust and collaborative system that outperforms the individual classifiers. There are
three main categories of ensemble learning: bagging, boosting, and stacking. Bagging, such
as the Random Forest algorithm, involves training multiple models on different subsets
of the data and combining their predictions through averaging or voting. This approach
reduces variance and enhances the overall accuracy of the IDS. Boosting, on the other
hand, as exemplified by algorithms like AdaBoost and Gradient Boosting Machines (GBM),
focuses on sequentially training multiple weak learners, with each learner learning from
the mistakes of its predecessors. The resulting ensemble model is a strong learner that
can generalize better to new and unseen data, effectively reducing bias in the detection
process. Stacking is a two-level ensemble technique where the predictions of multiple
individual models serve as inputs to a higher-level model, known as the meta-classifier.
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The meta-classifier learns to make final predictions based on the outputs of the individual
models, taking advantage of their diverse perspectives and expertise.

In the context of NIDS, ensemble machine learning can significantly improve the
accuracy and reliability of attack detection. By combining the strengths of decision trees,
support vector machines, and deep neural networks, the proposed ensemble model aims
to achieve superior performance in categorizing network traffic and identifying potential
security threats. Through this research, we envision that the integration of ensemble
machine learning in NIDS will lead to a more robust and proactive defense against cyber-
attacks. By harnessing the collective power of multiple algorithms, this approach holds
the potential to fortify network security, reduce false positives, and enhance the overall
resilience of computer networks against the ever-growing spectrum of cyber threats.

3.3. Research Methodology

The proposed methodology for this research involves creating an ensemble of eight
different classifiers, including a Random Forest (RF), Logistic Regression (LR), Decision Tree
(DT), K Nearest Neighbors (KNN), Support Vector Machine (SVM), XGBoost (XG), CatBoost
(CB), and Artificial Neural Networks (ANNs), to improve the accuracy and robustness
of NIDS. Each classifier will be trained on different techniques based on the combination
design specification. Some mechanisms require training on the same set of labeled data
while others use distinct samples of the dataset. The constructed trained models are
required to produce a separate prediction for each incoming network packet (packet
record). The ensemble model will combine these predictions using different methods
such as bagging, boosting, and stacking, in addition to simpler averaging and voting
mechanisms, where the majority vote determines the final classification.

To evaluate the effectiveness of the proposed methodology, common performance
metrics will be used, such as accurate detection rate, false alert rate, and processing time.
Confusion matrix consisting of Accuracy, Precision, F-Measure and Recall is employed,
to evaluate the final model. The Receiver Operating Characteristic (ROC) is also utilized
to measure the classifier’s efficiency. The evaluation will be conducted on a large dataset,
UNSW-NB15 representing real-world network traffic, including both normal and attack
traffic. The dataset is preprocessed to extract relevant features and remove noise and
redundancy. Cross-validation and parameter-tuning techniques will be used to optimize
the performance and avoid overfitting. The results are analyzed and visualized using
various tools and techniques, such as statistical analysis, data visualization, and report
generation. The research methodology can be briefed in the following stages, and it is
illustrated in Figure 1:

1. Data Preprocessing: the UNSW-NB15 dataset will be preprocessed to ensure its quality
and usability. This involves removing duplicate and irrelevant records, handling miss-
ing values and outliers, and normalizing or scaling the data as needed. Additionally,
feature selection will be performed to reduce the dimensionality of the dataset and
improve the performance of the models.

2. Feature Engineering: feature selection is performed using a correlation matrix to
identify the most relevant features for detecting network attacks. The correlation
matrix is used to compute the pairwise correlations between all pairs of features in the
dataset. Features with high correlation coefficients are considered redundant and will
be removed. The remaining features will be evaluated based on their discriminative
power and ability to capture different types of attacks.

3. Model Implementation: different machine learning models will be used to build the
proposed NIDS system. These models are selected based on their performance in
previous studies and their suitability for handling complex and high-dimensional
data. Implementation is performed using the Jupyter Notebook environment.

4. Model Training: the dataset is split into training and testing sets using different
methods such as 70:30 ratio and 10-fold cross-validation. The training set is used to
train the models, while the testing set is used to evaluate their performance.
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5. System Evaluation: the proposed system is evaluated using a Confusion Matrix,
which is a common and effective method for evaluating the performance of binary
classifiers. The Confusion Matrix is used to compute various performance metrics
such as accuracy, precision, recall, and F1-score. The results will be compared with
those of existing approaches to determine the efficacy of the proposed system.
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4. Implementation and Pre-Dataset Processing
4.1. Dataset

The evaluation of the proposed models has been conducted using the UNSW-NB15 [10–12]
dataset, which is widely recognized in the field of network intrusion detection. The
UNSW-NB15 dataset was created from real traffic data captured in an Australian univer-
sity network, providing a more realistic representation of network activity. This dataset
includes various attack types, normal traffic, and encrypted traffic, making it a compre-
hensive resource for evaluating IDS performance. Nonetheless, some researchers criticize
the UNSW-NB15 dataset for its skewed class distribution [31], which can lead to biased
performance evaluations, especially when dealing with rare or novel attack types.

While the aforementioned datasets have significantly contributed to the advancement
of intrusion detection research, they all have their limitations that researchers should be
mindful of [32]. To ensure robust and accurate evaluation of intrusion detection systems,
it is crucial to select datasets that reflect the latest cyber-threat landscape, encompassing
a diverse set of attack scenarios, and avoid biases in class distribution. Additionally,
researchers should consider the specific requirements of their study and carefully validate
the suitability of the chosen dataset for their research goals. By utilizing the UNSW-NB15
dataset, the experimental methodology aims to assess models’ ability to accurately detect
and classify different attacks based on real-world network traffic patterns. The inclusion of
a wide range of attack types in the dataset ensures that the models are exposed to diverse
and realistic attack scenarios, enabling a comprehensive evaluation of their performance
in cyber-attack prediction. UNSW-NB15 is a comprehensive dataset commonly used
to evaluate IDS models, created by the Cyber Range Lab of UNSW Canberra [10–12].
The dataset is a combination of modern real-world normal network traffic and simulated
modern attack behaviors that reflect different security attack scenarios. A total of 2.5 million
traffic records are stored in several files, and the ground truth table is given.

The UNSW-NB15 dataset has been selected for its realistic and sophisticated attack
scenarios, a broad feature set that can be adapted based on the model functionality, variety
of attack types accompanied with their corresponding vectors, and enhanced performance.
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Data records contain normal and malicious activities that have been extracted from three
distinct virtual servers. Additionally, it contains 49 features that have been obtained from
network packets using the Bro-IDS and Argus. Before using this dataset to develop classifier
models, however, issues like overlap, extreme values and class imbalance need to be
resolved. Authors in [33] have conducted an in-depth analysis of the UNSW-NB15 dataset
compared to the KDD99, focusing on the relevance of the features to model performance.
They have concluded that the accuracy of the model is influenced by a limited set of
features. Every record in the UNSW-NB15 is classed as either normal or attacked, with the
attack label additionally split into ten categories for further granularity. This allows the
classification to be performed in binary or multiclass fashion.

4.2. Ensemble Learning Mechanism

The design of the proposed model is illustrated in Figure 2, which begins with a
data analysis phase. To ensure consistent data representation, numerical attributes are
scaled to eliminate the mean and achieve unit variance. Categorical features are encoded to
facilitate the sampling method, which addresses the challenge of imbalanced classification.
Identifying a precise and accurate selection of features that directly affect the dependent
variable is a critical stage in the process.
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In Ensemble learning, a number of ML algorithms are selected, therefore, we have
selected the following algorithms: Random Forest (RF), Logistic Regression (LR), Decision
Tree (DT), K Nearest Neighbours (KNN), Support Vector Machine (SVM), XGBoost (XG),
CatBoost (CB), and Artificial Neural Networks (ANNs). Utility functions are used for
model tuning by selecting model hyperparameters such as learning rate to obtain accurate
prediction in an acceptable learning time. This can be performed automatically by trying
different combinations of parameters and values. Grid search and random search methods
are used for hyperparameter optimization.

Essentially, ensemble learning design entails building a set of multiple machine learn-
ing (ML) algorithms that may be used in various ways depending on how the learning
process is organized along with the dataset used. We have implemented the proposed
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system using three approaches: bagging, boosting, and stacking to compare the obtained
results from each learning procedure. As a result, we have to select which algorithms to
use for base models and which ones are used to create the meta-model. Figure 3 illus-
trates the implementation and evaluation process. It’s important to note that the ensemble
model maintains multiple models, which might lead to increased complexity and higher
processing requirements.
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Following the selection of ML algorithms, the model structure is designed by arranging
these algorithms and how to obtain the final prediction. There are several effective methods
for ensemble learning that can be utilized in different structures as shown in Figure 3.
Begging (Bootstrapping) ensemble learning is performed by generating multiple samples
(bags) of the main datasets. Learning algorithms, also known as base models, are applied
independently to each subset of the data. The obtained outcomes are combined using
an averaged activity, maximum voting, or any aggregation mechanisms. The goal is to
decrease the prediction variance and to improve the predictor force.

On the other hand, boosting ensemble learning, also referred to as forward additive
modeling, uses a similar concept but applies a sequential procedure to each subset adap-
tively rather than conducting the training process in parallel. Each training model is based
on the results of the previous one in order to boost the performance of every model. Subsets
are not created randomly, yet it depends on the performance of the previous model.

In the ensemble stacking approach, two levels of the training process are performed,
in level 1. The main dataset is used to train the model using heterogeneous learning
algorithms (base models). The outcome of level 1 training is used as an input to the level
2 training, also known as a prediction vector, which is obtained from base models. The
new dataset with its features is considered as an input for the meta-model which is created
to generate the final prediction. The stacking algorithm is shown in Algorithm 1. as an
instance of an ensemble mechanism.

To implement and evaluate the proposed model, several tools and methodologies
were employed. The models were developed using Python and implemented with the
Anaconda package and Jupyter Notebook as a development environment. The evalua-
tion process involved several steps. Firstly, the dataset was pre-processed to ensure its
compatibility with the models. This includes tasks such as data cleaning, feature selection,
and normalization to enhance the quality and consistency of the input data. Next, the
dataset was divided into training and testing sets to assess the models’ performance. The
training set has been used to train the models on known network traffic patterns and attack
instances, while the testing set has been used to evaluate the models’ ability to accurately
predict unseen attacks.
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Algorithm 1. Ensemble Learning—Stacking

Input: UNSW-NB15 Dataset D = {(x1,y1), (x2,y2), . . .. . .. . ..., (xn,yn)}
Base models L1,L2,. . .. . .Lk
Meta model Lm
Output: Trained Model M
Initialize k base models L1,L2,. . .. . .Lk
For each Li do
train Li (D)
End For
create a new training dataset D’ for the meta-model Lm
For each xi in D do
create a new instance (zi, yi) where features are predictions of Li
add (zi, yi) to D′

End For
train Lm using D′

M = Lm (D′)

Therefore, we have trained individual ML algorithms, using the same processes, and
that is to give a thorough comparison between various learning methods. Second, we
have implemented the ensemble learning model using the three approaches: bagging,
boosting and stacking. The implementation stages can be divided into two parts: (1)
Implementation of individual learning algorithms and (2) creating an ensemble model
based on a combination of these individual models. The stacking technique involves
training the model using the base learners and then a meta-model is generated which
combines the outputs of the base learners. All base learners are trained on the entire dataset
and all resulting predictions are collected to form the meta-learner. We have selected the
LR model to represent the meta-model for its scalability and consistency.

4.3. Dataset Pre-Processing

The availability of reliable datasets to evaluate various IDSs, has been a challenge
for many years as the quality of the dataset plays a critical role in building IDS models.
The dataset UNSW-NB15 and similar datasets have been created to overcome some issues
such as unbalanced data, and missing values. However, to obtain accurate and high-
performance security models it is required to construct a data pre-processing framework to
utilize the dataset features efficiently. The dataset instances are labeled as normal or attack
and the attack records are classified further into 11 categories as shown in Table 1. The
attack classes can be used to represent intrusion scenarios that reflect sophisticated and
multi-stage attacks seen in real life.

Table 1. Attack Classes and counts.

Attack Class Count Attack Class Count

Generic 215,481 Analysis 2677

Exploits 44,525 Backdoor 2329

Fuzzers 49,576 Shellcode 1511

DoS 16,353 Worms 174

Reconnaissance 12,228

The dataset contains 94 various features that specify different traffic characteristics
including traffic flow details, content information, time data, connection statistics, and
instance classification as normal or attack, in addition to attack categories. These features
can be also recognized as flow-based features obtained from the details of sequences of
packets directed from source to destination and packet-based features extracted from the
packet header and payload fields. Categorical, binary, and numerical datatypes are the three
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types of network traffic data. The distribution of attack categories creates an imbalance
in the dataset. For instance, the number of worm instances is only 174 which is 0.007%,
whereas normal traffic constitutes 87% of the total data. To obtain a reliable evaluation of
intelligent models, a comprehensive preprocessing is required. Moreover, the dataset has
been partitioned into training and testing subsets. However, the splitting operation will be
conducted directly from the main dataset file using 30% obtained randomly to be the test
subset and 70% as the training subset. Therefore, we start with the preprocessing stage and
all operations are applied to the training set only.

4.3.1. Data Cleaning and Preprocessing

Irrelevant features dropped include “id” as this feature is just an index and does
not have any role in building the designed model. In addition, all features which are
strongly correlated should be removed from the feature subset because of no contribution
to the generalization problem. For instance, the feature “attack_cat” is strongly linked to
the record label giving an accurate prediction but without any support to construct high
quality model. We have checked null values in the label feature and replaced them with
“normal” values.

A clamping process is applied to limit values in a range to be between two certain
data points to avoid extreme values in the dataset and to minimize the skewness of some
distributions. We applied clamping using the rule of 10 times the median, in other words, if
the value exceeds 10 times the median. It is pruned to 95%, which is close to the maximum,
and small values are treated similarly. In order to achieve normal distribution for numerical
values and to handle skewed distribution, log transformation is used. Every value in the
feature will be logged, and replaced by its exponent value, and as a result, the X scale’s
value grows exponentially.

4.3.2. Class Distribution

The class of each observation in the dataset can be one of the two available Labels:
attack category (11 attack classes) and a binary label designating whether the observation is
“Normal” indicated by “0” or “Attack” indicated by “1”. Binary classification has been used
for attack prediction. Figure 4 shows the data distribution in both training and test samples.
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Exploratory analysis is an essential stage in gaining a good grasp of the data. We
have implemented several steps to extract important features and to determine the best
parameter settings. First, we have created a heatmap to determine the degree of correlation
between different features as shown in Figure 5. The Pearson correlation coefficient is used
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to generate the correlation matrix of the features, which shows the degree of correlations.
The correlation strength is calculated within the [−1 to +1] range using the following
formula, where r is the coefficient, xi and yi are the features, x and y are the means, and n is
the number of observations [34].

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2(yi − yx)2

(1)
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We determined the most correlated features are shown in the list shown in Table 2.

Table 2. The most correlated features.

First Feature Second Feature Correlation Strength

sbytes sloss 95.15%
dbytes dloss 99.13%
dbytes dpkts 97.06%
sttl ct_state_ttl 90.58%
sttl Label 90.43%
dloss Dpkts 99.22%
swin Dwin 99.72%
stime Ltime 100.00%
tcprtt Synack 93.32%
tcprtt Ackdat 92.02%
ct_srv_src ct_srv_dst 95.67%
ct_srv_src ct_dst_src_ltm 94.21%
ct_srv_dst ct_dst_src_ltm 95.10%
ct_dst_ltm ct_src_ltm 93.85%
ct_dst_ltm ct_src_dport_ltm 96.01%
ct_src_ltm ct_src_dport_ltm 94.53%
ct_src_dport_ltm ct_src_dport_ltm 92.14%
ct_src_dport_ltm ct_dst_src_ltm 91.09%
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Secondly, we have processed all features with a correlation of more than 95% from the
list. Alternatively, using the visualized figure, the values of any two features that when
plotted form a straight line are regarded as with high a strong correlation. We will explain
two examples to show how highly correlated features can be detected by visualization.

(i) The two features sbytes and sloss have a correlation strength of more than 95%, and
as shown in Figure 6a there is a straight line that represents this correlation.

(ii) The three features: ct_srv_src, ct_srv_dst and ct_dst_src_ltm ranged from 0–60, how-
ever, feature values tend to be close to 0 and less than 10. Some values are scattered
around the origin point, but we can see a straight line to represent the feature correla-
tion as shown in Figure 6b.
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The next step is to deal with categorical values including attack category(attack_cat),
protocol(proto), service(service), and protocol state(state). Additionally, some features
with numerical values are considered categorical such as is_sm_ips_ports, ct_state_ttl, and
is_ftp_login. The attack category involves nine classes that are assigned to the records
labeled as ‘Attack’, while other records are considered ‘Normal’ as shown in Table 3. The
dataset is considered unbalanced because the number of non-attack records is dominant.

Table 3. Label Distribution in (i) Train Data. (ii) Test Data.

(i) Train Data

label count percent

0 1,552,862 87.335998
1 225,170 12.664002

(ii) Test Data

label count percent

0 665,902 87.386994
1 96,113 12.613006

To minimize the unbalanced effect in the dataset, we reduced the rare values of
certain features. The values of protocol, services, and state features are reduced to include
[proto=‘tcp’, ‘udp’, ‘unas’, ‘arp’, ‘ospf’], [service=‘dns’, ‘http’, ‘smtp’, ‘ftp-data’, ‘ftp’, ‘ssh’,
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‘pop3’], and [state=‘int’, ‘fin’, ‘con’, ‘req’]. The probability density function (pdf) indicates
the probability of continuous features taking on a specific value. Log transformation [35]
‘log1p’ is used for PDF curves for handling skewed data and, hence, resulting in a higher
level of data symmetry.

Xnew = log(1 + X) (2)

For Numerical features, the density figure function is utilized to display the values of
every data record. Feature values are analyzed to normalize the existing data in order to
remove the effect of dataset outliers. For instance, ct_dst_ltm feature represents the number
of concurrent connections to the same destination IP address in the number of connections
(100 connections). It is noticed that the range of this feature is from 0–70 connections.
For normal traffic, the range is between 0 and 10 while it is from 0 to 30 for attack traffic.
Figure 7 shows the density of this feature using log transformation.
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Another example of numerical features is ‘ct_flw_http’_mthd which represents the
number of flows associated with HTTP methods such as GET and POST. For attack traffic,
the value of this feature is commonly 0. Furthermore, the feature of ct_srv_src measures
the number of connections of the same service as shown in Figure 8.
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4.3.3. Feature Engineering

We have performed several measures to improve the features’ representation of the
required model, involving:

1. Removing highly correlated features: to increase efficiency and to avoid unnecessary
cost of memory and as a result more accurate prediction model. The features [‘sloss’,
‘dloss’, ‘dpkts’, ‘dwin’, ‘ltime’, ‘ct_srv_dst’, ‘ct_src_dport_ltm’, ‘ct_dst_src_ltm’] have
been removed from the training data.

2. Adding New Features: total network bytes as a sum of ‘sbytes’ (Source to Destination
bytes) and ‘dbytes’ (Destination to Source bytes).

3. Normalization: to keep feature values in a certain range and to avoid extreme values
we apply stadardscaler to have these values in the range [0, 1].
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4. Encoding of categorical features: convert text data in categorical features into numeri-
cal ones using onehotencoder. For instance, in the binary category, we assign 0 for
True and 0 for False, and for several values, we can assign numbers starting from 1.
Table 4 shows an excerpt of the application of log transformation to data columns.

Table 4. log transformation of some data features.

First Feature Correlation log_Correlation

dur 0.0019274028701131475 −0.03254413756460623
sbytes 0.010344749695229565 −0.35616315558984374
dbytes −0.07641408324436148 −0.5193868283741477
sload 0.19211948100086756 0.3474660145034949
dload −0.21978094390126515 −0.6033545881626365
spkts −0.12200425437154418 −0.3163533826967563
stcpb −0.23365153315010911 −0.3135563222142905
dtcpb −0.23346071773809843 −0.3134006479812102
smeansz −0.06517990378993671 −0.15111450989648337
dmeansz −0.27230605607442226 −0.564640212740172
res_bdy_len −0.0268968526601601 −0.06794901821505799

5. Evaluation and Discussion
5.1. Evaluation Results

In order to assess and compare the performance of the constructed models, various
evaluation metrics such as accuracy rate, false positive rate, and true negative rate need to
be calculated. These metrics are derived from a confusion matrix, which presents a tabular
representation of predicted and actual classes [36]. Instead of an image, Table 5 below
illustrates the structure of the confusion matrix, such that:

• True Positives (TP): Represent the instances where the classifier correctly predicts
positive classes.

• True Negatives (TN): Indicate the instances where the classifier correctly predicts
negative classes.

• False Positives (FP): Refer to the instances where the classifier incorrectly predicts
positive classes.

• False Negatives (FN): Represent the instances where the classifier incorrectly predicts
negative classes.

Table 5. The structure of the confusion matrix.

Predicted Positive Predicted Negative

Actual Positive True Positives (TP) False Negatives (FN)

Actual Negative False Positives (FP) True Negatives (TN)

To assess the performance of the models, several key metrics can be calculated based
on the terms. These metrics provide valuable insights into the accuracy and reliability of
the models. The following calculations can be applied:

• Accuracy (TPR):

Accuracy, also known as the true positive rate, measures the overall correctness of the
predictions. It is computed using the following formula:

TPR = (TP + TN) / (TP + TN + FP + FN) (3)

The accuracy metric takes into account both the true positives and true negatives and
provides an overall assessment of the model’s performance.
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• Precision (P):

Precision refers to the percentage of positive predictions that are correct. It is deter-
mined by the following formula:

P = TP / (TP + FP) (4)

Precision focuses on the correctness of positive predictions and provides insights into
the model’s ability to accurately identify positive instances.

• Recall (R):

Recall, also known as sensitivity or true positive rate, measures the proportion of
positive instances that are correctly identified by the model. It is calculated as follows:

R = TP/(TP + FN) (5)

Recall is crucial in scenarios where detecting all positive instances is of utmost impor-
tance. It helps evaluate the model’s ability to capture positive instances.

• F1-score:

The F1-score is a weighted average of precision and recall, providing a balanced
measure of the model’s performance. It can be computed using the following formula:

F1-score = 2 × (Precision × Recall)/(Precision + Recall) (6)

The F1-score combines precision and recall, giving equal importance to both metrics.
It is particularly useful when there is an imbalance between positive and negative instances
in the dataset. By calculating these metrics, we can gain a comprehensive understanding
of the model’s performance in terms of accuracy, precision, recall, and overall balance
between precision and recall using the F1-score.

Table 6 illustrates performance metrics extracted from the confusion matrix for dis-
tinct eight individual models in addition to the three implementations of the ensemble
model. The application of an ensemble model based on bagging, boosting, and stacking is
compared with standard individual algorithms. Moreover, Table 7 illustrates the detailed
performance metrics for Bagging, Boosting, and Stacking mechanisms.

Table 6. Performance results of Individual and ensemble models.

Model Accuracy Precision Recall F1-Score

RF 0.94 0.95 0.95 0.93

LR 0.94 0.95 0.92 0.93

DT 0.93 0.99 0.93 0.94

KNN 0.88 0.92 0.90 0.90

SVM 0.89 0.91 0.91 0.92

XG 0.90 0.93 0.92 0.92

CB 0.90 0.94 0.91 0.91

ANN 0.91 0.94 0.91 0.90

Bagging 0.99 0.97 0.98 0.99

Boosting 0.99 0.98 0.98 0.98

stacking 0.99 0.99 0.99 0.99
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Table 7. Detailed Performance Results of the Three Ensemble mechanisms.

Ensemble Mechanism Precision Recall F-Score Support

Ba
gg

in
g

Normal 1.00 0.99 0.99 665,902
Attack 0.95 0.97 0.96 96,113

Accuracy 0.99 762,015
Macro avg 0.97 0.91 0.92 762,015

Weighted avg 0.99 0.92 0.92 762,015

Bo
os

ti
ng

Normal 1.00 1.00 1.00 665,902
Attack 0.98 0.98 0.98 96,113

Accuracy 0.99 762,015
Macro avg 0.99 0.99 0.99 762,015

Weighted avg 0.99 0.99 0.99 762,015

St
ac

ki
ng

Normal 1.00 0.99 0.99 665,902
Attack 0.95 0.97 0.96 96,113

Accuracy 0.99 762,015
Macro avg 0.98 0.98 0.98 762,015

Weighted avg 0.99 0.99 0.99 762,015

The methods of bagging and boosting have also performed well with a percentage that
is almost identical to the stacking mechanism. Furthermore, great accuracy is accomplished
by balanced precision-recall trade-offs. We have analyzed various models to predict accu-
rately unknown security events. Experimental results of the proposed model combination
demonstrate that ensemble algorithms achieve better performance compared with regular
processing of ML algorithms. However, the selection of base models and feature space
size plays a significant role in achieving higher performance. It is also noticeable that
individual algorithms also have more accurate detection compared to other studies in the
literature. This indicates that our method in feature engineering and dataset pre-processing
has contributed to producing effective learning operations. The development of optimal
IDS capable of detecting unknown and advanced attacks can be constructed using reliable
datasets in addition to an extensive analysis of traffic data.

5.2. Discussion

The findings of this experimental study indicate that ensembles can improve per-
formance and eliminate misclassifications that are present in individual classifiers. The
essence of the machine learning algorithm is to search for the most accurate hypothesis in
the possible hypothesis space (
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to obtain more accurate detection results and at the same time, false positives should
be lower to the minimum. Throughout this research, three heterogeneous ensemble-
learning approaches—stacking, boosting, and bagging—are used to combine four ML
algorithms. According to our findings, ensemble-learning algorithms are able to achieve
greater prediction accuracies than base classifiers. The employment of meta-classifiers by
the stacking bagging, and boosting ensembles to reduce errors made during the learning
phase led to greater prediction performance. The stacking mechanism can improve the
accuracy of base classifiers by increasing the internal diversity of the stacking model and
reducing bias and variance. The structure of heterogeneous ensemble-learning models
brings more reliable and robust results to support IDS functionality to detect unknown
attacks. An overall performance metric across all potential classification criteria is measured
by AUC as illustrated in Figure 9.
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6. Conclusions

Traditional security solutions are incapable of detecting advanced, sophisticated, and
novel attacks, whereas ensemble learning models have demonstrated promising outcomes
in predicting new unknown attack vectors. We have proposed an architecture of an en-
semble model using several classification algorithms incorporated into various system
architectures. The UNSW-NB15 dataset has been used to evaluate the proposed system. The
selected algorithms have been combined together and integrated into different strategies
to construct an ensemble model. The experimental findings demonstrate that ensemble
methods outperform individual algorithms achieving more than 99% accuracy in all set-
tings. Stable predictions and more balanced data are also obtained and that incorporates
effectively in generating accurate models. The study has also added a new source of analy-
sis and applications of an ensemble model in IDS design methodologies. The selection of
ML algorithms to construct ensemble learning models is one of the most significant issues
that require comprehensive experimental assessments. The challenge is to combine base
classifiers that are able to improve different aspects of the learning process. In the future,
we will explore how to integrate optimization models to construct ensemble learning, in
addition, to applying the constructed model to additional datasets.
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