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Abstract: Arrays of memristive devices coupled with photosensors can be used for capturing and
processing visual information, thereby realizing the concept of “in-sensor computing”. This is a
promising concept associated with the development of compact and low-power machine vision
devices, which is crucial important for bionic prostheses of eyes, on-board image recognition systems
for unmanned vehicles, computer vision in robotics, etc. This concept can be applied for the creation
of a memristor based neuromorphic analog machine vision systems, and here, we propose a new
architecture for these systems in which captured visual data are fed to a spiking artificial neural
network (SNN) based on memristive devices without analog-to-digital and digital-to-analog con-
versions. Such an approach opens up the opportunities of creating more compact, energy-efficient
visual processing units for wearable, on-board, and embedded electronics for such areas as robotics,
the Internet of Things, and neuroprosthetics, as well as other practical applications in the field of
artificial intelligence.

Keywords: neuromorphic systems; memristive devices; machine vision; artificial intelligence;
artificial neural networks; spiking neural networks

1. Introduction

The desire to create machines that are capable of seeing the world around them the
way that people see it has motivated the development of computer vision systems for
many years. An interesting fact is that the first neurocomputer in the history of mankind,
created by Frank Rosenblatt in 1958 [1], was designed specifically to solve computer vision
problems—in particular, to recognize the letters of the English alphabet. The work of F.
Rosenblatt and many other pioneers in the field of neural network theory, more than half a
century ago, introduced the high potential of artificial neural networks (ANNs) for solving
computer vision problems; but, at that time, they did not receive intensive development for
a number of reasons and were forgotten for many years, known in history as the winter of
artificial intelligence.

Currently, computer vision systems are designed in accordance with the conventional
principles of creating computing systems with the von Neumann architecture. They have
digital processor units (e.g., the RISC (reduced instruction set computer), ARM (advanced
RISC machine), or VLIW (very long instruction word) instruction set architectures for DSP
(digital signal processor) and VPU (vision processing unit) microprocessors or GPUs (graph-
ics processing units)) for processing visual information, memories for storing commands
and data, as well as input devices in the form of photosensors (e.g., CCD (charge-coupled
device) or APS (active-pixel sensor) image sensors) with analog-to-digital converters. Dur-
ing the operation of such a system, the captured image of a scene from the outside world
undergoes digitization, encoding, software preprocessing, and processing using a machine
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learning model like ANNs (e.g., ResNet, VGG, Yolo, etc.), which involves storing a large
number of parameters of the model itself and making a huge number of memory requests
during the model’s inference on digital processor units with serial principles of data pro-
cessing (albeit multicore). Such systems require the use of specialized computers, which
makes them complex, thus consuming a lot of energy and making them expensive.

Analyzing the published reviews [2,3], one can find out that memristor-based systems
have advantages over modern transistor-based digital processing units in tasks related to
the hardware implementation of ANNs. In particular, existing memristor-based chips make
it possible to solve image processing problems with a high accuracy, while consuming two
to three orders of magnitude less energy than GPUs and digital neuromorphic processors
and using the chip area more efficiently. So, the authors of these papers have shown that
matrix multiplication, which is the most frequent operation in ANN algorithms, can be
performed in an analog form based on Ohm’s and Kirchhoff’s laws with a high level of
parallelism, and this makes it possible to create systems that have a high performance and
speed and consume little energy.

At the same time, the need for analog-to-digital and digital-to-analog conversions
minimizes the potential energy gain from using memristors. Due to the fact that memristive
devices open up opportunities for creating neuromorphic systems in which all process-
ing takes place in an analog form, it seems reasonable to exclude analog-to-digital and
digital-to-analog conversions from machine vision systems. In this case, the signals from
the photosensors can be fed to a memristor-based ANN and processed without digitiza-
tion, because in the pretrained ANNs, the memristor’s conductivities form the model of
visual information processing and simultaneously perform this processing. Moreover, if
we fed visual signals directly to a memristor-based SNN, its training could be performed
during the operation like in biological systems. In this paper, we propose a new archi-
tecture of memristors based on neuromorphic analog machine vision systems, relying on
these musings.

2. State-of-the-Art Studies
2.1. Memristor-Based Systems for Machine Vision

The memristor, as the fourth passive element of electrical circuits, was proposed in
1971 by Prof. Leon O. Chua [4]. A little later [5], in 1976, Prof. Leon O. Chua proposed a
generalized definition of the memristor and described it with a port equation equivalent
to Ohm’s law and a set of state equations that describe the dynamics of the internal state
variables. The start of the active study of memristors and systems based on these equations
can be considered to be in 2008, when the article [6] was published. Currently, memristors
are used to create computer memories ReRAM (Resistive Random Access Memory) [7]
and CAM (Content-Addressable Memory) [8], hardware implementation of ANNs [9,10],
and neuromorphic systems [11,12] (“in-memory computing”). It is important to note that a
main feature of these devices is that the signals inside them are processed in an analog form.

The authors of article [13] were among the first to propose an image recognition system
based on passive crossbar arrays of 20 × 20 memristors [13]. This is a multilayer feed-
forward ANN, trained to recognize images of letters of the Latin alphabet with an accuracy
of approximately 97%. This work has shown the potential of using such technologies in the
field of creating machine vision systems. This is also confirmed by significant advances in
the use of memristors for pattern recognition via convolutional ANNs, reservoir computing
models, and ANNs with artificial dendrites, as demonstrated in [14–17]. For example,
popular models including VGG-16 and MobileNet have been successfully implemented
and tested on an ImageNet dataset [14] and it was shown that for memristor-based ANNs,
the power consumption is more than three orders of magnitude lower than that of a central
processing unit and is 70 times lower than that of a typical application-specific integrated
circuit chip [17]. In addition to traditional ANN architectures based on memristors, the
authors of articles [18,19] presented and shared a human retina simulator that can be used
in the development of promising variants of analog vision systems, among others.
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The hardware implementation of a Hopfield network based on memristor chips and
the result of its operation as an associative memory is described in article [20]. The authors
have shown that by using both asynchronous and synchronous refresh schemes, complete-
emotion images can be recalled from partial information. In [21], the authors demonstrated
the processing of a video stream in real time with the selection of object boundaries using
a 3D array of memristive devices based on HfO2, which is designed for programming
the binary weights of four convolutional filters and parallel processing of input images.
Their achievements in the field of hardware implementation of ANNs for a wide range of
image processing tasks based on arrays of memristive devices with a size of 128 × 64 are
presented in [22,23], and they have also shown that such devices are several times superior
to graphics and signal processors in terms of speed and low power consumption.

The results of comparing systems based on memristors with modern ANN hardware
accelerators based on transistors for various indicators are given in the reviews [2,3,24–28].
It can be seen from these articles that despite the analog principles of information processing,
the prototypes of such systems provide high accuracy of the inference of the ANN models
in image recognition tasks; for example, the NeuRRAM chip [29] provides a 99% accuracy
on the MNIST dataset and an 85.7% accuracy on the CIFAR-10 dataset, 1 Mb resistive
random-access memory (ReRAM) nvCIM macro [30] provides an inference accuracy of
98.8% on the MNIST dataset, 2 Mb nvCIM macro [31] provides a 90.88 % accuracy on
the CIFAR-10 dataset for ResNet-20 and a 65.71 % accuracy on the CIFAR-100 dataset for
ResNet-20, etc.

In order to provide compatibility with modern digital IT infrastructure, systems based
on memristive devices must have interfaces that make it possible to receive digital input
data and return the results of their analog processing in digital form. For this reason, all the
above prototypes of neuromorphic systems based on memristive devices [13–32] contain
analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) to interact
with digital devices. Such sets of DACs and ADCs can become the bottleneck of memristor-
based computing system architectures, like the computer memory bus is the bottleneck of
the von Neumann architecture, which reduces the potential benefits of their applications
for solving specific practical problems set before existing computers. For example, if the
system uses a 16 × 16 memristor crossbar array, then 256 scalar multiplications can be
performed in one clock cycle, provided that all 16 input values are supplied simultaneously.
At the same time, in order to push the inputs into the DAC and then pull the outputs from
the ADC it is necessary to take at least 32 clock cycles, which is disproportionately more
than the requirements of performing matrix multiplication on the crossbar array.

That is why an actual area of research in this field is the development of architectures
in which there can be as few signal conversions as possible. For example, the importance of
developing such concepts was stated by the authors of article [8] in 2020, who proposed
an analog CAM circuit taking advantage of the analog memristor conductance tunability
for the first time. It enables the processing of analog sensor data without the need for
an analog-to-digital conversion step. In their study, a practical circuit implementation
composed of six transistors and two memristors was demonstrated in both an experiment
and a simulation. The authors note that the analog capability opens up the possibility for
directly processing analog signals acquired from sensors, and is particularly attractive for
Internet of Things applications due to the potential low power and energy footprint.

The idea of fully analog computing is not new and existed long before the invention
of memristive devices in 2008, and even before their theoretical description in the 70s.
For example, the US patent [33] published in 2006 discloses an analog CAM described in
1991 [34] that employs analog storage cells with programmable analog transfer function
capabilities. The use of electrically erasable programmable read-only memory (EEPROM)
cells in an analog storage device avoids the need to convert an analog waveform into a
digital representation, reducing the complexity embodied in an integrated circuit as well as
decreasing the die dimension. An earlier well-known example of a fully analog computer is
“Sceptron”—the device for analog signal recognition, developed in 1962 [35]. Sceptron not
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only performed a function that would require hundreds of conventional filters and a large
storage capacity at that time, but it ran a program itself for recognizing a complex signal
without detailed knowledge of its characteristics. If one considers analog computers with
neural network architecture, then one of the most famous is the adaptive Adaline neuron,
implemented in 1962 [36] using “memistors” (not to be confused with “memristors”). With
such an element it was possible to obtain an electronically variable gain control, along
with the memory required for storage of the system’s experiences of training. The authors
created a neuron capable of training and recognizing 3 × 3 patterns of the letters of the
English alphabet. Of course, the earliest example of a fully analog ANN is the Mark-1
neurocomputer created by Frank Rosenblatt [1] in 1958, which was mentioned above.

Due to the fact that the main goal of machine vision systems is not to capture and save
images, but to obtain information about objects in the field of vision (e.g., class, segment,
id., etc.), for the most optimal exploitation of computational resources all data processing
in such systems can be performed completely in analog form, as was proposed in [8]. In
the photosensors of computer vision systems, information is captured in analog form,
and it is reasonable to connect them to the memristor-based ANNs without ADCs and
DACs [37], implementing the concept of “in-sensor computing” [38]. As a result, there is
no need to use software algorithms and models interacting with computer memory to load
model parameters and store intermediate results. The system requires significantly fewer
electronic components, becoming potentially faster and more energy efficient. In general,
any electronic device capable of generating current (or changing the current strength in a
circuit) depending on the intensity of illumination can be used as a photosensor in such a
system (Figure 1).
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with the existing digital computer vision systems, “in-memory computing” makes it possible to 
process visual information entirely within the hardware when the ANN models work completely 

Figure 1. The main features of the neuromorphic analog machine vision systems, combining “in-
memory computing”, “in-sensor-computing”, and neuromorphic architectures. (A) In comparison
with the existing digital computer vision systems, “in-memory computing” makes it possible to
process visual information entirely within the hardware when the ANN models work completely
in analog form using computers based on memristive devices. (B) In comparison with the existing
general memristor-based computers, in the neuromorphic analog machine vision systems, there are
no analog-to-digital and digital-to-analog conversions in the process of capturing visual information
via photosensors. For these purposes, the devices for “in-sensor computation” can be used in the
sensory part of a system for capturing visual information in analog form, which is then fed to an
ANN based on memristors.
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In this paper, in order to illustrate the proposed architecture, we have considered
the use of photodiodes connected with memristive devices for making the sensory part;
however, there are alternative ways to achieve this. Over the past several years, great
progress has been provided in photo-sensing memristors based on SiOx RRAM devices [39],
MoS2 photosensitive field effect transistors [40], 2D materials-based photo-memristors [41],
thin carbyne–gold films [42], etc. Comprehensive analyses of state-of-the-art memristor-
based sensors for edge detection, mean filtering, stylization, and recognition have been
recently published in [43]. The coupling of memristors with photosensors shows that this
approach can simulate some retinal functions [44,45].

Some ways in which one can integrate the array of photosensors with the array of
memristors have been proposed in [43,46]. In particular, the authors of [43] proposed a
1D1M vision sensor’s schematic layout for CMOS-compatible silicon nitride (SiNx) mem-
ristive devices and demonstrated its use for image capturing and mean filtering. The
authors of [46] proposed a reconfigurable three-dimensional hetero-integrated technology
for vertically stacking a diverse range of functional layers such as sensors, processors, and
memory of a single-material system (for example, silicon). Such decisions could provide
energy-efficient sensor computing systems for edge computing applications.

2.2. Memristor-Based Spiking ANNs

Throughout the history of its development, the theory of the ANN has been inspired
by the results of studies on the principles of the functioning of biological neural networks
(BNNs) [47]. The most powerful tool for solving computer vision problems currently is the
convolutional ANN. Despite the fact that when developing the concept of convolutional
ANNs, the peculiarities of the functioning of the visual cortex of the cerebral hemispheres,
which has a parallel analogue nature of processing signals from the optic nerve, were taken
into account, the same strict mathematical transformations occur in convolutional ANNs as
in any other formal ANN architecture–matrix multiplication and activation. The weights
of synapses in such ANNs are calculated using the backpropagation method, and visual
information is encoded using the amplitude of the signal.

Inside the BNNs, information is transmitted through a network of neurons that have
some activation potential [48], using signals called spikes. Spikes are transmitted from one
neuron to another using an axon and are characterized by their frequency, duration, and
amplitude. Contacts between neurons are formed at strictly defined points called synapses.
It is currently believed that the phenomena of memory and learning in living organisms
arise due to the mechanisms of synaptic plasticity, which consists of the possibility of chang-
ing the strength of the synapse and, accordingly, changing the parameters of transmitted
signals. The existence of synaptic plasticity leads to the fact that the human nervous system
can independently configure individual groups of neurons to perform various functions.

The resistance of memristive devices to changes within the boundaries of the minimum
and maximum possible values is referred to as a LRS (low resistance state) or a HRS (high
resistance state). The curve describing the characteristics of the transition of a memristive
device from one state to another under the influence of voltage pulses with different
shapes, amplitudes, and frequencies is similar in appearance to that of experimental
measurements of synaptic plasticity in the BNNs [49]. Therefore, memristive devices are
the most biosimilar artificial analogues to the synapses of neurons in living systems, and
thus make it possible to implement neuromorphic ANN architectures in hardware.

In spiking ANNs (Figure 2A), memristive devices connect presynaptic and postsy-
naptic neurons. The presynaptic neuron in the input layer of the network acts in this case
as a generator of spikes, the frequency or timings of which encode the input information.
For example, to process grayscale images, the brightness values of each pixel, represented
by numbers from 0 to 255, can be represented by different frequencies ranging from 1 to
100 kHz. Spikes applied to a memristive device over a period of time change its resistance
(Figure 2B)—this is a type of self-learning based on the local rules for each synapse.
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Figure 2. Spiking ANNs based on memristive devices. (A) Common architecture includes presynaptic
neurons and postsynaptic neurons, connected by artificial synapses implemented with memristors.
Presynaptic neurons generate spikes encoding input information. Spikes go through the memristive
synapses and locally change their resistances in accordance with the STDP (spike timing-dependent
plasticity) rule, providing the self-learning of the whole ANN. (B) The dependence of the change ∆W
in synaptic conductance on the interval ∆t between a presynaptic spike and a postsynaptic spike for
different current synaptic conductance values W. (C) A spiking neuron receives sequences of spikes
on its inputs and, under certain conditions, generates a spike at its output; for example, in the LIF
(leaky integrate-and-fire) model, each spike contributes to the neuron’s status—its amplitude, which
decays over time; if a sufficient number of spikes contributes to the status in a certain time window,
the neuron’s amplitude exceeds a threshold, and the neuron generates an output spike [2].

A postsynaptic neuron is a device capable of accumulating charge from all presynaptic
neurons (Figure 2C), taking into account the voltage drop across the memristors (the so-
called neuron membrane). It has a certain threshold charge value, exceeding which leads to
the generation of a spike by the postsynaptic neuron. The final distribution of resistances
of memristive devices determines the functionality of such a network of presynaptic and
postsynaptic neurons and allows the solving of problems in the field of robotics, prosthetics,
telecommunications, etc.

In neuroscience, there are currently several mathematical models of spiking neu-
rons [50]: Hodgkin–Huxley [51], FitzHugh–Nagumo [52], Izhikevich [53], Koch and
Segev [54], Bower and Beeman [55], Abbott [56], etc. The differences between these models
lie in their degree of biological realism, the type of object being modeled (presynaptic neu-
ron, neuronal membrane, neuron’s morphology, etc.), and in their level of computational
complexity. The latter property is very important for the hardware implementation of
neuromorphic processors, since it directly affects the number of components used, the com-
plexity of electrical circuits, and their energy consumption. The research in [11,17,57–62]
shows that even simple spike shapes (rectangular or triangular) and neuron models (leaky
integrate-and-fire) make it possible to solve recognition problems in memristor-based
SNNs, reducing energy consumption and increasing robustness [59] in comparison with
formal ANNs. Unsupervised learning in such systems is based on the STDP mechanism
and provided by the overlapped waveform of pre-spikes and post-spikes within a certain
time window, which determines the behavior of memristive devices during the feedback
process [11,58,60].

To generate presynaptic spikes, specialized electrical circuits based on analog switches,
operational amplifiers, and current mirrors, such as in [63–65], have been developed.
They are controlled digitally and externally using an FPGA or microcontroller, initiating
spike generation based on the input data. With this approach, the spike generator acts
as a device that encodes the input digital information received by the computer through
an external interface in the form of a sequence of pulses represented in analog form.
This makes it possible to encode any information—tabular, visual, audio, etc. However,
in most papers, either the electrical circuits of spike generators are not considered in
detail [10,13,15,16,20,22,57,66,67], since the authors pay more attention to signal processing
inside the crossbar arrays, or multi-channel DACs are used as a generator while also having
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external control from an FPGA or microcontroller, as in [9,24,29,61]. Such systems have
versatility with respect to the type of information being processed, but require external
control and interfaces for receiving data.

Thus, memristive devices make it possible to implement in hardware artificial synapses
for different ANN types [57,66], e.g., for the formal ANNs, in which the processed infor-
mation is encoded according to the signal amplitude, and for the spiking ANNs, in which
the processed information is encoded according to the signal frequency. However, spiking
ANNs are more biologically plausible, because they make it possible to realize unsuper-
vised learning in terms of an STDP mechanism or paired-pulse facilitation [68,69]. So, on
the way of bringing together “in-sensor computing” and “in-memory computing”, the
most prospective system’s architecture must be based on the spiking ANN architectures.

3. The System’s Architecture

The proposed system’s architecture includes two main parts—sensory and neural.
The sensory part is designed to capture and encode visual information. The signals from
the sensory part, after being captured, are transmitted to the neural part for processing.
The electrical circuit of the sensory part is presented in Figure 3 for two versions of ANNs—
formal (Figure 3A) and spiking (Figure 3B).
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Figure 3. The electrical circuits of the sensory part (input channels) for the capturing and encoding of
visual information in analog form and its subsequent transmission to an ANN without digitization.
(A) An input channel for the formal ANNs. It consists of a photodiode PD, a load resistor Rload (for
converting photocurrent iph to voltage), an operational amplifier U1, and a bias voltage source Vbias

(reverse biasing is used in the photoconductive mode providing a wider bandwidth, higher sensitivity,
and improved linearity (for sensitivity control at different weather conditions, day time, etc.), but also
increases noise and dark current). The SPDT and SPST switches control the operating modes of the
circuit: the “write mode”, when recording the ANN weights (by changing the memristor’s resistance
from Rinit to the target RT), and the “inference mode”. Visual information in this case is encoded
using the voltage amplitude Vi in each input channel. (B) An input channel for the spiking ANN. It
consists of the same elements as the input channel for the formal ANN, except for the integrator with
threshold U2. The integrator accumulates charge and generates pulses of the same amplitude but
at different frequencies, like an integrate-and-fire neuron (I&F). The multiplexer (MUX) U3 and the
SPDT switch control the operating modes of the circuit: for recording ANN weights, self-learning (by
changing the memristor’s resistance from Rinit to Rinf), and inference. Visual information is encoded
according to signal frequency fi.
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The input channel for a formal ANN operates in two stages. At the first stage
(Figure 3A, on the left), the SPDT key breaks the connection of the input channel with
the memristor ANN and connects it to the circuits for supplying initialization and pro-
gramming pulses. At this stage, an initialization pulse Vinit is sent to the ANN, erasing
information about the weights of neuron synapses. Next, synaptic weights are recorded by
applying Vwrite recording pulses. At this time, the shutter of the optical system is closed
and no light enters the sensor part. It is necessary to avoid the influence of illumination
on the unlearned model during the write mode. After the weights of the neuron synapses
are written into the neural part, SPDT keys connect the ANN circuits to the circuit of input
channels. The ANN then becomes ready to process visual information, and the entire
system enters the second stage of operation.

At the second stage of operation, visual information is processed. The shutter of
the optical system opens at a given frequency (fps), and at this time, light falls on the
photodiodes in the input channels and photocurrent iph begins to flow in the circuit from
the cathode to the anode. The sensitivity of the sensor can be increased by applying a
voltage Vbias. During periods of shutter opening, the photocurrent is converted into voltage
pulses with different amplitudes—the stronger the illumination, the higher the voltage
amplitude. Thus, visual information is encoded with the amplitude of the signal. One
impulse equals one interference. Voltage pulses are supplied to the neural part of the
first layer of the ANN and so on through the entire network, thereby processing visual
information completely in analog form. At the output of the neural part, a signal is
generated in accordance with the ANN model recorded in the memristors. With the correct
selection of the load resistance Rload of the input channel, the maximum amplitude of the
operating voltage (the maximum voltage during the inference) will not be greater than the
threshold voltage of the memristor.

The input channel for the spiking ANN (Figure 3B) additionally has an integrator
with a threshold. The integrator’s task is to accumulate charge and generate a pulse of
unit amplitude at those moments of operation when the accumulated charge in the input
channel exceeds the threshold value. Thus, in the input channels, the signal amplitude is
converted into frequency, or, more precisely, the illumination is converted into the pulse
frequency. The higher the illumination of the input channel, the higher the frequency
of voltage pulses supplied to the ANN. In this case, the processing of one visual image
(inference) will no longer be performed in one clock cycle, but over a given time interval
during which the shutter of the optical system is open.

Regardless of the input channel circuit option, the signal encoding visual informa-
tion is fed to the neural part without digitization. In the neural part, memristors act as
synapses. Moreover, memristors make it possible to implement in hardware the synapses
of traditional formal ANN architectures (multilayer perceptron [13], Hopfield network [20],
deep ANNs [14,70], convolutional ANNs [16,24,71], LSTM networks [72], etc.), in which
input information is multiplied by a pre-programmed weight, and synapses for spiking
ANNs, in which the memristor exhibits mechanisms of synaptic plasticity similar to living
BNNs [73,74].

In the simplest case, one synapse and the operation of scalar multiplication of two
numbers can be implemented on one memristor using Ohm’s law (Figure 4A). For the
input value x, it is necessary to set the equivalent input voltage Vin and apply it to a
circuit with a memristor having a pre-recorded resistance value Rm. The resistance Rm in
memristive devices can be changed within the boundaries of the minimum (LRS or Rmin)-
and maximum (HRS or Rmax)-possible resistances. Then, a current I will flow in the circuit,
which can be converted into an output voltage Vout, for example, through a load resistor
or a transimpedance amplifier (TIA). The resistance of the load resistor RL or the negative
feedback resistance of the TIA Rf, together with the memristor resistance Rm will form the
weight of the synapse.
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Figure 4. The most common options for implementing a memristor-based ANN synapse for the neu-
romorphic analog computer vision systems. (A) The unipolar weight is formed with one memristor
and can be mathematically calculated in different ways: for Equations (1) and (2), the weight plot is a
hyperbola, and for Equation (3), it is a straight line from 0 to 1. (B) The bipolar weight is formed by
a pair of memristors. The sign is obtained due to the differential output. (C) A similar circuit, but
where the sign is obtained due to the differential input. One input x corresponds to two inputs Vin

and −Vin. The weight plot for Equations (4) and (5) is a hyperbola. (D) The bipolar weight is formed
by the memristor bridge proposed in [75]. The weight plot for Equation (6) is a straight line ranging
from 0 to 1. The linear relationship between resistance and weight makes mathematical calculations
easier, but requires a much larger number of memristors, which leads to additional resource costs.

With this approach, only unipolar weights can be implemented, since the resistance
cannot be negative. For bipolar weights, it is necessary to use circuits with two or, for
example, four [75] memristors (Figure 4B–D). In the variants of circuits presented in Figure 4,
the weights of the neuron synapses will already have bipolar values due to the difference
in several resistances of the memristive devices. In the circuit in Figure 4B, this is achieved,
in particular through the use of an additional differential amplifier, the output of which is
the difference in voltage obtained by converting the current in each branch containing the
memristor. In the circuit in Figure 4C, this is achieved by duplicating the inputs, one of
which is inverse. In the circuit in Figure 4D, the output voltage is differentially taken from
two voltage dividers formed by four memristors. The shape of the graph of the dependence
of weight on resistance for the first case is hyperbolic, and for the second, it is linear.

Using the circuits of the input channels (Figure 3) and synapses (Figure 4), it is
possible to create various variants of formal and spiking ANNs for machine vision systems.
Figure 5A shows a variant of the formal ANN. The light falls on the photodiodes of the
input channels and forms a different amplitude of the input signals Vin depending on
the illumination. These signals, without digitization, are fed to the inputs of the neural
part implemented in the crossbar array of the memristive devices. The resistances of
the memristors in the crossbar array are pre-programmed to perform the work of one
of the ANN models for processing visual information. Figure 5B shows a variant of a
spiking ANN. The light falls on the photodiodes of the input channels and forms a different
frequency of spikes of the input signal Vin, depending on the illumination. These spikes,
without digitization, are fed to the inputs of the neural part, eventually changing the
conductivity of the memristors according to the STDP rule. In this way, the ANN is trained,
and will subsequently perform a specific task of processing visual information.
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Figure 5. Architectures of the neuromorphic analog machine vision systems based on memristive
devices. (A) For formal ANNs, weights are mapped to a crossbar array of memristive devices in
cases where the bipolar weights are obtained due to a differential input. The input sensory circuits
are connected directly to the inputs of neurons without digitalization. Visual information is encoded
via the voltage amplitude, depending on illumination. (B) For spiking ANNs, presynaptic neurons
generate spikes, the frequency of which depends on illumination. The value of the synaptic weights
changes during the learning process. A postsynaptic neuron generates spikes when the charge on the
membrane exceeds a threshold “Th”. So, the entire analog machine vision system is a spiking ANN
without analog-to-digital and digital-to-analog converters.

4. Experiments and Results

Several computer models have been developed to verify the architectures proposed
here. The operation of the sensory part of a formal ANN can be demonstrated using
a SPICE model (Figure 6). This model contains the following main components: an
equivalent photodiode circuit, containing a photocurrent source; a memristor model [76];
an initialization and recording signal generator; and switching circuits. The signal generator
allows you to supply an initialization signal to the memristor in the form of a rectangular
pulse with a given amplitude and duration (init) and a recording signal in the form of a
sequence of rectangular pulses with increasing amplitudes (write). For inference, a signal
from the sensor is generated at the output of the U3 microcircuit in the form of rectangular
pulses with a given duration.

The switching of generator signals is performed by switches S1–S6 by supplying a high
level of control signals Vki for initialization, Vkp for recording, and Vkws for processing
visual information. The stages of the circuit operation described in Section 3 are switched
by control signals Vks, Vksi (high), and Vkw (low) for initialization, and Vks, Vkw (high),
and Vksi (low) for recording the ANN model (stage one) and for inference (stage two). The
current in the circuit with the memristor is converted by the transimpedance amplifier U5
into voltage to control the recording and transferal of processed data to subsequent layers
of the ANN.

The graph in Figure 6 is plotted for the current in the memristor circuit at point TE.
When an initialization signal of duration tinit is applied, the memristor is transferred from
an LRS to an HRS (RESET). Next, when a write signal is applied during the time twrite, the
memristor is programmed to the target resistance RT. This ends stage one. In the next stage,
the current source I2 produces photocurrent. To simulate different illumination levels, the
current source I2 produces five photocurrent values, from 10 to 100 µA. This current is
converted into voltage pulses with different amplitudes and a fixed duration texp, which
are then applied to the memristor and cause current to flow in the circuit.
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Figure 6. The SPICE model of a formal ANN circuit and an illustration of its operation. The
initialization and programming signal generators, as well as the equivalent photodiode circuit, are
on the left side. The memristor model and the OpAmp-based current-to-voltage convertor are
on the right side. The current plot is shown for the TE point of the memristor. The plot shows
two stages of the operation of the sensory part: the “write mode”—for recording the weight of an
ANN synapse, and the “inference mode”—for scalar multiplication of the signal proportional to
illumination according to the weight of an ANN synapse. Different colors correspond to different
illumination levels or photocurrents—from 10 (pink) to 100 µA (green).

From Figure 6 it can be seen that a brighter illumination level corresponds to a higher
current in the circuit with the memristor. This is then converted into voltage pulses
with a coefficient Rf and is processed in the following layers. The maximum voltage
(corresponding to the maximum current I2) does not change the memristor’s resistance due
to the fact that Rf is calculated at the memristor threshold voltage.

The operation of the sensory part of the spiking ANN can be demonstrated using
the following SPICE model (Figure 7). This model contains, in addition to the model in
Figure 6, an integrator with a threshold U4 and an amplifier U1. An additional two switches
have been added to the circuit—S7 for connecting the amplifier U1 with a high level setting
on Vkpp, and S8 for supplying pulses in an unamplified form with a high-level setting on
Vkwp. An additional amplifier U1 is needed to regulate the amplitude of the sensor part
pulses in order to study their effect on the memristor resistance.

The graph in Figure 7 is plotted for the current in the memristor circuit at point TE.
The left side of the graph is the same as in the case of a formal ANN. It shows the process
of recording the weights in cases where the spiking ANN is obtained via transformation
from a formal ANN. An example of the self-learning of this model is discussed below. The
right part of the graph (Figure 7) is plotted for the mode of capturing video information via
the sensor. From Figure 7 it can be seen that a brighter level of illumination corresponds
to a higher pulse frequency (pink color), and vice versa—a lower level of illumination
corresponds to a lower pulse frequency (green color).
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Figure 7. The SPICE model of a spiking ANN circuit and the illustration of its operation. In
comparison with the previous model (described in Figure 6), an integrator with a threshold U4 has
been added, which converts illumination into pulse frequency. An additional amplifier U1 and two
additional switches S1 and S7 are used to amplify the pulses if the signal is used to potentiate or
depress the weights of the first layer of a spiking ANN. The current plot shows that the frequency at
which the pulses are fed into the memristor at the TE point is various—with a high frequency (pink
color) for intensive illumination, and vice versa (green color).

To demonstrate the operation of the proposed concept of neuromorphic analog com-
puter vision systems, an experimental set-up was made (Figure 8). It consists of an experi-
mental chip (Figure 8A), which includes in particular two necessary types of memristive ar-
rays: a 63 × 1 linear memristive array for investigating the sensory part, and a 32 × 8 1T1R
memristive crossbar array for investigating the neural part of the system. Memristive
devices were fabricated on the basis of a Au/Ta/ZrO2(Y)/Pt/Ti multilayer structure. Each
cell of the crossbar array was equipped with an N-channel MOSFET transistor (Figure 9,
right side). The chip was mounted into a standard metal–ceramic package and connected
with a light-proof container covering the silicon photodiodes and light sources, which can
be turned on using a PC.

Then, two test models of the ANN were created—a formal model and a spiking
model. To train the ANNs, a dataset was generated that included small visual patterns of
mathematical symbols (“+”, “–”, “/”, “×”, “=”) 3 × 3 pixels in size, where each pixel is
specified by the photocurrent value—for bright pixels, the photocurrent was more than for
dark ones (Figure 9, left side). A size of 3 × 3 pixels is a demo example that makes it possible
both to map the ANN to a single 32 × 8 memristive crossbar array using 90 items (two
memristors per synapse × nine inputs × five classes) from 256 devices for the recognition
of visual images and to interact with memristive devices using our experimental set-up
(Figure 8B).
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63 × 1 memristive array for the sensory part and a 32 × 8 memristive crossbar array for the ANN
neurons. IV-curves of the memristive devices can be seen on the right. (B) Several parts are connected
in the set-up: 1—PC; 2, 3, 6—PCB with the necessary electronic devices; 4—memristive chip; 5—light-
proof container covering the light sources (LEDs) and the photodiodes (PDs).

To generate the dataset, the deviation of photocurrent values for each pixel was set
within 30% margins from the mean value, measured using the experimental set-up (100 µA
when the light source is turned on, and about 3 µA when it is turned off). The values
of the photocurrent for the light and dark pixels were measured by turning on the light
sources in different combinations, corresponding to the mathematical symbols. The dataset
consisted of 800 training and 200 testing images. The mathematical model of a formal ANN
consists of one layer with five neurons (Figure 9, central part) and nine inputs. As a result
of supervised learning, each neuron must respond to its own pattern.

Memristive devices demonstrate bipolar switching of anionic type between the high
resistance state and low resistance state. Both states are characterized by nonlinear current–
voltage characteristics (Figure 8A, right panel). For the formal ANN, training was carried
out on a mathematical model using the backpropagation method. The loss function is the
mean square of errors. Accuracy was calculated as the ratio of correctly recognized patterns
to the total number of patterns. Since the task of recognizing 3 × 3 pixel images is not
difficult for an ANN, the training resulted in 100% accuracy even with a 30% deviation
in the input data. The synapse weights obtained after training were then converted into
memristor resistances using Formula (5) for Figure 4, circuit C:

Rm1 = Rm2
1−k·Rm2

, Rm2 = RHRS, f or w < 0,

Rm2 = Rm1
k·Rm1+1 , Rm1 = RLRS, f or w > 0, k = w

R f

(1)
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Figure 9. Computer modeling of a machine vision system with a formal ANN model. This figure
shows examples of visual patterns that represent mathematical symbols. These images are fed
to the input of a single-layer formal ANN. Each pixel of each image corresponds to a different
signal amplitude. It can be seen that after training and transferring the synapse weights to the
memristor resistances in the crossbar, each ANN neuron responds to the corresponding class of the
visual pattern.

The calculated resistance values were transferred to a computer model of a machine
vision system with a deviation δ, thereby simulating the memristor programming error.
The parameters δ were set as a percentage of the nominal resistance value; then, they were
recalculated into standard deviation according to the three-sigma rule and fed into the
pseudo-random number generation function according to the normal distribution law.
After setting the weights, the operation of the network was emulated and the experiment
was repeated 1000 times.

The computer model of the hardware implementation of the formal ANN, in turn, had
18 inputs, since it used a scheme for generating bipolar weights with a differential input
(Figure 9). To create the neural part of the ANN, a crossbar model of 18 × 5 memristive
devices was used, in which the signal from the sensory part is directly supplied to the
rows of the crossbar, and the inference result is formed on the columns. The N-channel
MOSFET transistor models were used for SPICE simulation. The response of the ANN to the
presented visual patterns was fixed with a high voltage level on the corresponding column
of the crossbar. After transferring this ANN model to a simulation model of a computer
vision system, the accuracy of operation (inference) for five classes of mathematical signs
was: 100% at δ = ±10%; 99.5% at δ = ±20%; and 99.1% at δ = ±30%. In this case, it is
clear that the error in the memristor resistances in the ANN does not greatly reduce the
recognition accuracy, which has been repeatedly demonstrated in other problems [29].

To test the operation of the spiking ANN (Figure 10), the computer model of the
formal ANN was upgraded. The sensory part was replaced with circuits with an integrator
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(Figure 7), which act as presynaptic neurons that respond to light. Feedback from the
outputs to the inputs containing an inverting amplifier and a switch was added to the
neural part (Figure 10, left side). Feedback in this case is necessary in order to automatically
adjust the synaptic weight setting. The simulation was performed in two stages—at the
first stage, each presynaptic neuron was shown one pattern for a specified time of 200 ms.
After this, the probability of recognition error was assessed by presenting other patterns to
the presynaptic neuron and monitoring the spike frequency on the postsynaptic neuron.
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Figure 10. Computer modeling of a computer vision system with a spiking model of an ANN. The
architecture of this ANN is the same as for the formal ANN; however, this design contains integrators
with a threshold and feedback from outputs to inputs. Feedbacks are active only during ANN
training. During the training process of the ANN, the weights to which the high-frequency signal is
applied tend to increase, and vice versa. Thus, ANN neurons learn to recognize visual patterns.

The spike ANN training process was performed as follows. At the beginning, the
weights were initialized to low values by feeding initialization pulses into the ANN. Then,
when visual patterns were presented to the neurons, spikes began to be generated in them
depending on the illumination level of each channel. Spikes change the resistance of odd
memristors towards low resistance and even ones towards high resistance, since the inputs
of the ANN are duplicated in accordance with Figure 4C. This is equivalent to the fact
that the weights of the synapses increase. It turns out that for channels with a high spike
frequency, the rate of such change is much higher than for channels with a low frequency,
since the total charge of the signal passing through the memristor in the first case is greater.
When the threshold charge value on the membrane is reached, the postsynaptic neuron
generates a spike, which is amplified in the feedback circuit, inverted, and supplied to
all inputs. This leads to the opposite process—the resistance of odd memristors changes
towards high resistance, and even ones change towards low resistance, which is equivalent
to a decrease in the weight of the synapse. Since the rate of weight increase in high-
frequency channels is high, a short-term decrease does not greatly affect the final value; and
vice versa—in low-frequency channels, the influence of the postsynaptic spike is strong
and the weight of the synapse decreases (Figure 10, right side). The inference accuracy after
the ANN’s self-tuning was, as in the previous case, 100%.
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5. Discussion

As a result of our modeling, by using simple examples, it was demonstrated that the
connection of the sensory part and neurons based on memristors without analog-to-digital
and digital-to-analog conversions makes it possible to implement analog processing of
visual information in hardware using formal and spiking ANN models. This architecture
can be scaled to the size of modern matrices in photo and video recording devices and used
as a hardware accelerator for ANN models currently used to work with images, and can
also be used as a platform for the further development of this direction in accordance with
the developed roadmap (Figure 11).
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The operation of a formal ANN is demonstrated on one dense layer. Such layers can
be combined together to form multilayer feed-forward ANNs. Since the main mathematical
operation for most formal ANN architectures (convolutional ANNs, LSTMs, etc.) is matrix
multiplication, the results of the demonstration can be extended to these—one part of the
crossbars will perform the functions of memristor-based neurons, and the other part, for
example, can perform the functions of core convolutions based on memristors [61]. From a
mathematical point of view, this is equivalent.

To demonstrate the operation of a spiking ANN, only one special case of a self-
learning option is proposed, inspired by article [58]. Currently, there are other approaches
to train spiking ANNs [37,77,78], and in many of them, as in the example considered
above, information is encoded according to spike frequency. This means that the developed
concept can be further developed and improved by developing new designs of analog
neuromorphic computer vision systems based on memristive devices.

In any case, the proposed architecture is at its initial stage of development and is
associated with a large number of related tasks. One of the subjects of further research could
be replacing the “photodiode–memristor” circuit with a single device—a memristor—that
changes its resistance depending on the light intensity. Currently, such devices are being
developed based on MIS (metal-insulator–semiconductor) structures, for example, based
on ZrO2(Y) films with self-organized Ge nanoislands [79]. There are also tasks associated
with the integration of the developed class of systems with the existing infrastructure,
which are made possible with the improvement of component manufacturing technologies
and the development of models and algorithms. As a result of the generalization and
systematization of tasks, a road map for the development of this area was formed, presented
in Figure 11.
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6. Conclusions

A potential advantage of the discussed concept for creating a machine vision system
relative to digital hardware implementation is that all visual information processing is
performed at the hardware level. As a result, there is no need to execute program code that
implements ANN models and algorithms, and there is no need to reuse the data bus and
access the computer memory to load model parameters and write results. This architecture
requires significantly fewer electronic components and consumes less power.

The advantage of the presented architecture relative to existing hardware implementa-
tions of ANNs based on memristors is the significant reduction in the number of DACs and
ADCs used in the process of signal processing via arrays of memristive devices, as well
as the possibility of a transition from formal ANN architectures, such as perceptrons and
convolutional ANNs, to neuromorphic architectures, in which information is processed in
a similar way as in BNNs.

The scope of application of the considered class of devices is associated with the
creation of systems for which a low power consumption, small dimensions, and a high
speed of operation when performing intellectual tasks (e.g. recognition, classification)
are important. All on-board or wearable computing systems, such as mobile devices,
unmanned vehicles and aircraft, ammunition equipment, etc., fall under these requirements.
In addition, memristors are highly resistant to ionizing and defect-forming radiation, which
allows them to be used in areas where radiation-resistant electronics are required.
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