
Citation: Li, D.; Li, W.; Zhang, G.;

Chen, Y.; Zhong, X.; Lin, M.; Lu, S.

Dichotomy Graph Sketch:

Summarizing Graph Streams with

High Accuracy Based on Deep

Learning. Appl. Sci. 2023, 13, 13306.

https://doi.org/10.3390/

app132413306

Academic Editor: Tobias Meisen

Received: 26 October 2023

Revised: 7 December 2023

Accepted: 11 December 2023

Published: 16 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Dichotomy Graph Sketch: Summarizing Graph Streams with
High Accuracy Based on Deep Learning †

Ding Li 1 , Wenzhong Li 2,* , Guoqiang Zhang 3, Yizhou Chen 2, Xu Zhong 2, Mingkai Lin 2 and Sanglu Lu 2

1 School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China;
liding@hubu.edu.cn

2 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;
mf20330010@smail.nju.edu.cn (Y.C.); xuzhong@smail.nju.edu.cn (X.Z.); mingkai@smail.nju.edu.cn (M.L.);
sanglu@nju.edu.cn (S.L.)

3 School of Information Science and Technology, Hainan Normal University, Haikou 571158, China;
zgqoop_cn@hotmail.com

* Correspondence: lwz@nju.edu.cn
† This paper is an extended version of the paper published in Ding Li; Wenzhong Li; Yizhou Chen; et al.

Learning-Based Dichotomy Graph Sketch for Summarizing Graph Streams with High Accuracy. In
Proceedings of the 16th International Conference on Knowledge Science, Engineering and Management
(KSEM 2023), Guangzhou, China, 16–18 August 2023.

Abstract: In many applications, data streams are indispensable to describe the relationships between
nodes in networks, such as social networks, computer networks, and hyperlink networks. Funda-
mentally, a graph stream is a dynamic representation of a graph, which is usually composed of a
sequence of edges, where each edge is represented by two endpoints and a weight. As a result of its
large volume and highly dynamic nature, several graph sketches were proposed for the purposes
of summarizing large-scale graph streams and enabling fast query processing. By using a compact
data structure with hash functions, the graph sketches sequentially store the edges. Nevertheless, the
existing graph sketches suffer from low performance on graph query tasks as a result of unpredictable
collisions between heavy edges and light edges. To store heavy edges and light edges, this paper
introduces a novel learning-based Dichotomy Graph Sketch (DGS) mechanism that uses two separate
graph sketches, a heavy sketch and a light sketch. During a graph stream session, DGS obtains heavy
edges and light edges, and uses these edges as training samples for a deep neural network (DNN)
based binary classifier. The DNN-based classifier is then used to determine whether the upcoming
edges are heavy or not. We will store the edges that are classified as heavy edges in the heavy sketch,
and those that are classified as light edges in the light sketch. By combining the learnable classifier
and Dichotomy Graph Sketches, the proposed mechanism resolves the hashing collision problem in
conventional graph sketches and significantly improves graph query accuracy. The DGS algorithm
outperforms the state-of-the-art graph sketches in a variety of graph query tasks based on extensive
experiments that were conducted on four real-world graph stream datasets.

Keywords: graph stream; graph stream summarization; sketch; graph sketch; deep learning

1. Introduction

In many data stream applications, connections are essential in describing relation-
ships within networks, including social networks, computer networks and communication
networks. Unlike traditional data streams that are modeled as isolated items, the data in
these applications are organized as graph streams [1,2]. A graph stream can form a dynamic
graph that changes with every arrival of an edge. The network traffic, for instance, can be
viewed as a graph stream in which each item represents a communication between two
IP addresses. If a new packet is received, then the network traffic graph will be updated.
Another example would be the interactions between users of a social network. These

Appl. Sci. 2023, 13, 13306. https://doi.org/10.3390/app132413306 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132413306
https://doi.org/10.3390/app132413306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3859-5241
https://orcid.org/0000-0002-9199-3655
https://doi.org/10.3390/app132413306
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132413306?type=check_update&version=2

Appl. Sci. 2023, 13, 13306 2 of 17

interactions form a dynamic graph. When new interactions occur, the social network graph
will be dynamically updated. A graph stream, in formal terms, comprises a sequence of
items, where each item represents an edge of the graph, usually represented by a tuple
consisting of two endpoints and a weight.

Due to the increasing size of graphs, it is necessary to build an accurate but small
representation of the original graph so that analytics can be performed more efficiently.
In order to accomplish this goal, researchers studied the graph summarization problem in
order to maintain the overall structure of the graph, while reducing its size. For example,
Merchant et al. proposed a novel algorithm called SpecSumm [3] for graph summarization
via node aggregation. Additionally, Hajiabadi et al. have developed a utility-driven graph
summarization method G-SCIS [4] that produces optimal compression with no loss of utility.
They focused primarily on summarizing static graphs, which were incapable of handling
dynamic graphs formed by graph streams. To this end, some researchers proposed graph
sketch as a way to summarize graph streams. For example, Zhao et al. proposed gSketch
which utilized CM-sketch [5] to support edge query and aggregated subgraph query. In
addition, Tang et al. proposed a novel graph sketch called TCM [1]. Based on a hash
function, TCM mapped each edge to a bucket in a matrix, and each bucket was assigned
the edge weight. Since TCM kept topology information for the graph, it supported not
only edge queries but also node queries. In a recent work, Gou et al. proposed GSS [2],
a method that combines an adjacency list buffer with a matrix to improve edge query
accuracy. If a hash collision occurred in the matrix, then the adjacency list buffer stored the
edge. Their follow-up study has been published in [6]. In this study, the matrix used in
GSS was partitioned into multiple blocks, and the query was accelerated using bitmaps
and FPGA (field-programmable gate array).

Typical graph sketches use a random hash function to map each edge to a bucket of
a matrix, and then record the edge weight within the bucket, as illustrated in Figure 1.
As a result of the random nature of the hash function, hash collisions may occur when
querying an edge or a node with the graph sketch. There will be a significant performance
degradation on query tasks if a heavy edge (an edge with a large weight) collides with a
light edge (an edge with a small weight). In the example presented in Figure 1, the graph
stream contains one heavy edge (edge e2) with a weight of 100 and three light edges (edges
e1, e3 and e4). It is possible for a graph sketch to map a heavy edge e1 and a light edge
e2 to the same bucket of the matrix due to a hash collision. In graph sketch, the bucket
stores the sum of the edge weights (see Section 3 for details); therefore, the value recorded
in this bucket is 1 + 100 = 101. As a result, if we query the weight of edge e1, the graph
sketch will return the value 101, and the relative error (see Section 5.2.1 for details) of this
query is (101− 1)/1 = 100, which is extraordinary high for a light edge. We further test
the performance of TCM [1], a state-of-the-art graph sketch, on two real-world datasets,
subelj_jung (http://konect.cc/networks/subelj_jung-j/, access date: 10 December 2023)
and subelj_jdk (http://konect.cc/networks/subelj_jdk/, access date: 10 December 2023),
and the results are shown in Figure 2. It is demonstrated that TCM performs poorly on
edge query tasks, and the average relative error when querying light edges is extremely
high. The average relative error dramatically increases with the increase in compression
ratio (i.e., reducing the size of the graph sketch). Thus, a hash collision between a heavy
edge and a light edge will result in an unacceptably high query error for the light edge,
which is a major limitation of conventional graph sketches.

To address the above issue, it is desirable to design a new graph sketch mechanism to
resolve the high query error caused by hash collisions. (This paper is a significant extension
of the conference paper published in [7]. In this paper, significant modifications have been
made to improve the practicability of the research problem, enhance the solution framework
and algorithm with rationale, and provide additional experimental results with detailed
analysis.) In this paper, we propose a novel Dichotomy Graph Sketch (DGS) approach,
which is able to differentiate heavy edges and light edges during the edge recording process
and, respectively, store them in two separate matrices to avoid hash collisions. DGS first

http://konect.cc/networks/subelj_jung-j/
http://konect.cc/networks/subelj_jdk/

Appl. Sci. 2023, 13, 13306 3 of 17

determines the type of edge by using the edge classifier when a new edge arrives. If the edge
is classified as a heavy edge, it will be stored in the heavy sketch; otherwise, it will be stored
in the light sketch. In order to train the edge classifier, we utilize a sample generator which
is comprised of a temporal graph sketch and two min-heaps. At the end of each session,
we obtain the heavy edges from the sample generator (see Section 4 for details) in order to
train the edge classifier. In this way, the hash collision in Figure 1 can be avoided and the
query performance can be improved.

A toy graph stream

S = (e1, 1), (e2, 100), (e3, 5), (e4, 9), ...

Hash function H(·)

Matrix M

101

Figure 1. Existing graph sketch stores all edges in a single matrix.

1/10 1/20 1/30
Compression ratio

0
10
20
30
40
50

AR
E

Querying light edges
Querying heavy edges

(a) subelj_jung

1/10 1/20 1/30
Compression ratio

0
10
20
30
40
50

AR
E

Querying light edges
Querying heavy edges

(b) subelj_jdk

Figure 2. Average relative error (ARE) of querying light edges and querying heavy edges using TCM
on dataset subelj_jung and subelj_jdk.

The main results and contributions of this paper are summarized as follows:

• As a novel method for summarizing graph streams, we propose Dichotomy Graph
Sketch (DGS). It is capable of distinguishing heavy edges from light edges during
edge updating.

• We adopt deep learning techniques in our graph sketch design. In particular, we design
a novel neural network architecture to detect heavy edges during the edge updating
process, which allows us to store heavy edges and light edges in two separate matrices.

• A comprehensive evaluation of the performance of DGS is conducted using three
real-world graph streams. According to the experimental results, DGS outperforms
state-of-the-art graph sketches in a variety of graph query tasks.

2. Related Work

We summarize the related work into two categories: data stream sketches and graph
stream sketches.

2.1. Data Stream Sketches

Data stream sketches are designed for data stream summarization. Differently from
graph streams, data streams are modeled as isolated items, and thus data stream sketches

Appl. Sci. 2023, 13, 13306 4 of 17

cannot answer graph topology queries. C-sketch [8] utilized several hash tables to record
data streams, but suffered from both overestimation and underestimation in the frequency
estimation task. Cormode et al. then proposed CM-sketch [5], which only suffered from
overestimation. Estan et al. designed CU-sketch [9] which improved CM-sketch’s query
accuracy at the cost of not supporting item deletions. The above sketches focused on
solving the problem of frequency estimation. However, in various scenarios, we need to
find lots of other important information in data streams. For instance, in financial markets,
a burst of trading volume may indicate the happening of financial fraud or illegal market
manipulation. For another example, persist items in the data streams can be used to
detect malicious behaviors in the network security field [10]. Li et al. designed a generic
algorithm, WavingSketch [11], and considered four query tasks: finding top-k frequent
items, finding top-k heavy changes, finding top-k persistent items and finding top-k super-
spreaders. Zhang et al. proposed On–Off sketch [12] which focused on the problem of
persistence estimation and finding persistent items by a technique to separate persistent
and non-persistent items. Similar to CM-Sketch, On–Off sketch adopted d hash tables to
simultaneously summarize data stream. The difference is that a bucket of On–Off sketch
can be updated at most once in one time window to avoid overestimation. More recently,
Zhong et al. proposed BurstSketch [13] to detect bursts accurately in real time. BurstSketch
used several hash tables to record a data stream, and find the potential bursts based on
the records. Finally, BurstSketch utilized other two hash tables to record the frequency of
potential bursts in two consecutive time windows to find real bursts. Liu et al. proposed
the concept of perodic batch, namely α consecutive batches of the same item, where these
batches arrive periodically, and they designed HyperCalm Sketch [14] to detect perodic
batches in data streams. Different from most data streams sketches which found local top-k
frequent items in a single data stream, Double-Anonymous Sketch [15] was designed to
find global top-k frequent items in multiple disjoint data streams. Double-Anonymous
Sketch consisted of two parts: a Randomized Admission Policy (RA) [16] as the top-k
part and a CMM sketch [17] as the count part. RA was used to report top-k items, while
CMM sketch was used to report an item’s frequency. Wang et al. proposed JoinSketch [18]
for inner-product estimation. JoinSketch considered the high skewness of real data, and
recorded items with different frequencies in different components to improve accuracy. Li
et al. designed SteadySketch [19] to find the steady items in data streams. SteadySketch was
comprised of SteadyFilter and RollingSketch. SteadyFilter was responsible for continuity
checking of small flows, while RollingSketch was responsible for continuity checking of
large flows. Fan et al. proposed PISketch [20,21] to find persistent but infrequent item in
data streams. Its key idea was to define a weight and its Reward and Penalty System for
each flow to combine and balance the information of both persistency and infrequency, and
to keep high-weighted flows in a limited space through a strategy.

Recently, researchers proposed a new research problem, i.e., summarizing data streams
in a sliding window, since—in some scenarios—older data are less valuable. In [22], Zhao
et al. proposed Stair Sketch which organized the memory used by different time periods
in the shape of stairs in order to memorizing recent events with higher accuracy. In
addition, Gou et al. designed a generic framework, Sliding sketches [23], which could
be applied to many existing solutions for membership query, frequency query and heavy
hitter query, and enabled them to support queries in sliding windows. Fan devised
HoppingSketch [24] which improved the original persistent bloom filter [25], and focused
on answering temporal membership query.

Besides designing novel data stream sketches, researchers also tried to devise some
generic optimization method in order to improve the performance of the existing data
stream sketches. For example, Liu et al. proposed SF-Sketch [26] which consisted of a Fat-
subsketch and a Slim-subsketch. The Fat-subsketch was used for updating and periodically
producing the Slim-subsketch, which was then transferred to the remote collector for
answering queries quickly and accurately. Miao et al. proposed SketchConf [27], an
automatic sketch configuration framework, which efficiently generated memory-optimal

Appl. Sci. 2023, 13, 13306 5 of 17

configurations, and could be applied to order-independent sketches. Stingy Sketch [28]
was a new sketch framework which utilized bit-pinching counter tree and prophet queue
to optimize both the accuracy and speed for frequency estimation task. To enable the
sketch fit into the on-chip memory, Yang et al. proposed a generic technique, self-adaptive
counters [29,30] (SA Counter) which could be applied to typical sketches to improve
their accuracy.

With the rapid development of the internet, researchers have also applied data stream
sketch to network measurement. Liu et al. proposed UnivMon [31] which was able to
simultaneously completed several measurement tasks including heavy hitter detection,
DDos detection, heavy changer detection and entropy estimation. Then, Huang et al.
proposed SketchVisor [32], which was a robust network measurement framework for
software packet processing. It augmented sketch-based measurement in the data plane
with a fast path, which was activated under high traffic load to provide high-performance
local measurement with slight accuracy degradations. Tang et al. designed MV-sketch [33]
which tracked candidate heavy items inside the sketch data structure via the idea of
majority voting. In addtion, Yang et al. proposed Elastic Sketch [34,35] which was adaptive
to various traffic characteristics including available bandwidth, packet rate, and flow size
distribution. Liu et al. claimed that sketches incurred significant computation overhead
in software switches, and presented the design and implementation of NitroSketch [36], a
sketching framework that systematically addresses the performance bottlenecks of sketches
without sacrificing robustness and generality.

2.2. Graph Stream Sketch

In contrast to data stream sketches, graph sketches are specially designed for graph
stream summarization, keeping the topology of a graph and thus simultaneously support-
ing several queries such as edge query and node query. Zhao et al. designed gSketch [37],
which combined CM-sketch and with a sketch partitioning technique to support edge
query and aggregate subgraph query. Tang et al. proposed TCM [1] which adopted several
adjacency matrices with irreversible hash functions to store a graph stream. Different from
TCM, gMatrix [38] used reversible hash functions to generate graph sketches. Gou et al.
proposed GSS [2] which consisted of not only an adjacency matrix but also an adjacency list
buffer. Adjacency list buffer was used to store the edge when an edge collision happened
to improve the query accuracy. In their follow-up work [6], they proposed an improved
version called blocked GSS, and designed two directions of accelerating query: GSS with
node bitmaps and GSS implemented with FPGA. In [39], Li et al. proposed Dynamic Graph
Sketch which was able to adaptively extend graph sketch size to mitigate the performance
degradation caused by memory overload.

In summary, all the existing graph sketches use a single matrix to store both heavy
edges and light edges and thus suffer from low query accuracy (especially in light edge
query task) due to hash collisions.

3. Preliminaries

Some formal definitions are provided in this section, as well as a preliminary introduc-
tion to the basic idea of summarizing a graph stream using graph sketches.

Definition 1 (Graph stream). A graph stream is a consecutive sequence of items S = {e1, e2,
. . . , en}, where each item ei = (s, d, t, w) denotes a directed edge from node s to node d arriving at
timestamp t with weight w.

It is important to note that an edge ei may appear multiple times at different times-
tamps. Consequently, the final weight of ei is calculated using an aggregation function. There
are various types of aggregation functions, including min(·), max(·), average(·), sum(·), etc.
The sum(·) function is the most widely accepted [1,2], so we also use it as the aggregation
function in the remainder of this paper.

Appl. Sci. 2023, 13, 13306 6 of 17

Due to the fact that edges arrive one by one in a graph stream S = {e1, e2, . . . , en}, the
graph stream may form a dynamic graph which changes as edges arrive (both edge weight
and graph architecture may change as edges arrive).

Definition 2 (Session). A session C = {ei, ei+1, . . . , ej}(1 ≤ i < j ≤ n) is defined as a
continuous subsequent graph stream S = {e1, e2, . . . , en}.

Definition 3 (Heavy edge). In a graph stream S, an edge that ranks in the top k percentile out of
all the unique edges in a graph stream is considered to be a heavy edge.

Definition 4 (Light edge). Each edge in a graph stream S except the heavy edges is regarded as a
light edge.

Definition 5 (Graph sketch [1]). Supposing that a graph G = (V, E) is formed by a given graph
stream S, graph sketch K is defined as a graph K = (VK, EK) whose size is smaller than G, i.e.,
|VK| ≤ |V| and |EK| ≤ |E|, where a hash function H(·) is associated with map each node in V to
a node in VK. Correspondingly, an edge (s, d) in E will be mapped to the edge (H(s), H(d)) in EK.

In order to minimize the query error caused by hash collisions, it is common to
simultaneously utilize a number of graph sketches {K1,K2, . . . ,Km} that use different hash
functions {H1(·), H2(·), . . . , Hm(·)} to summarize a graph stream.

Definition 6 (Graph compression ratio [1]). Compression ratio r in graph summarization means
that a graph sketch uses |E| × r space to store a graph G = (V, E). For example, if a graph stream
contains 500,000 edges, compression ratio 1/50 indicates indicates that the graph sketch takes
500,000 × 1/50 = 10,000 space units, which is a

√
10,000×

√
10,000 (i.e., 100× 100) matrix. In

practice, adjacency matrix is usually adopted to implement a graph sketch. We call α =
√
|E| × r

the width of graph sketch.

In Figure 3, an example illustrates how a set of graph sketches can be used to summa-
rize a graph stream and answer queries. Considering two graph sketches with different
hash functions for summarizing a graph stream S, all the values in the two adjacency
matrices are initialized to 0 at the beginning. In response to the arrival of an edge, both
graph sketches conduct the following edge update operation.

Edge update: Each graph sketch Ki calculates the hash values (Hi(s), Hi(d)) for each
edge e = (s, d, t, w) in graph stream S. Afterwards, it locates the corresponding position
Mi[Hi(s)][Hi(d)] in the adjacency matrix and adds the value there by w.

Graph sketches are capable of answering edge queries and node queries in linear time
after processing all the edge updates. The method of answering queries are described
as follows.

Edge query: The purpose of edge query is to return the estimated weight of an given edge
e = (s, d). The first step in answering the query is to determine the weight of e in each
graph sketch. To be more specific, we locate the corresponding position Mi[Hi(s)][Hi(d)]
on each graph sketch Ki, and return its value as an estimated weight. As a result, we can
obtain a set of weights {w1, w2, . . . , wm}. Based on the count-min sketch principle [5], we
return min{w1, w2, . . . , wm} for the edge query.

Node query: The purpose of node query is to return the aggregated edge weight for a
given node n. The answer is obtained by finding the row corresponding to node n (i.e., the
Hi(n)th row) in the adjacency matrix M, and then summing the values in that row. In the
same manner, we obtain a set of sums {sum1, sum2, . . . , summ}, and return the minimum
value for the node query.

Top-k node query: The purpose of top-k node query is to return the list of top-k nodes
whose aggregated weights are the highest in graph stream S. In order to respond to this

Appl. Sci. 2023, 13, 13306 7 of 17

query, we maintain a min-heap with size k to hold the top-k nodes. Following the update of
each edge e = (s, d), we conduct a node query for node s and obtain its aggregated weight
ws. In the next step, we push the tuple (s, ws) into the min-heap. The lowest-weight tuple
will be popped out if the min-heap is full. We return the nodes in the min-heap as the
answer to top-k node queries after all edge updates have been completed.

Graph stream S

(a, b, t1, 1) (c, d, t2, 1) (d, a, t3, 3) (c, f, t4, 1)
(e, f, t5, 1) (b, f, t6, 2) (a, b, t7, 2) (e, d, t8, 1)

a b c

d e f

3

13 1

1

2

1

Graph G formed by S
N1(a, b)

N2(c, d) N3(e, f)

2

3

3

1

1

1
1

Graph sketch 𝓚1 and 𝓚2

N1(a, c, f)

N2(b, d) N3(e)

1

4

1

1

4
1

𝓚1 with hash function H1(·) 𝓚2 with hash function H2(·)

3 2

3 1 1

1 1

0

0

1 0

4 0 1

1 0

4

1

Adjacency matrix M1 Adjacency matrix M2

N3N1 N2

N1

N2

N3

N3N1 N2

N1

N2

N3

Implementation

Min-heap for heavy nodes

(a, 3) (d, 3)

(b, 2)

Figure 3. An example of using two graph sketches to summarize a graph stream.

4. Dichotomy Graph Sketch Mechanism

A detailed description of the Dichotomy Graph Sketch (DGS) mechanism is presented
in this section. DGS is able to mitigate the performance problem caused by hash collisions
between heavy edges and light edges. The proposed framework is illustrated in Figure 4.

To begin with, we represent the edges in the current session by a sub-graph stream
C = {ei, ei+1, . . . , ej}. Then, an edge classifier is fed sequentially with these edges. The
edge will be stored in the heavy sketch if it is classified as a heavy edge; otherwise, it will be
stored in the light sketch. Due to the lack of training of the edge classifier, all edges will be
stored in the light sketch during the first session. To generate training samples for the edge
classifier, a sample generator is applied. During the current session, it queries the min-heap
to find all heavy edges, and then it randomly chooses the same number of light edges.
Combined with the chosen light edges, the heavy edges serve as training samples for the
edge classifier. Upon completion of each session, the sample generator is reset to null, and
DGS proceeds to build the graph sketches incrementally in the next session.

DGS consists of four main components, namely the heavy sketch, the light sketch, the
sample generator, and the edge classifier.

Sample generator

Temporal graph
sketch 𝓚s

Min-heap for
heavy edges

Edge classifier

Training

samples

Heavy edges

Light edges

Light sketch

Graph sketch 𝓚l

Training Process

Fetch heavy

edges from the

meap-heap

 Randomly

select some

light edges

Estimated edge weight

(for light edge)

Answer

Estimated edge weight

(for heavy edge)

Top-k heavy nodes

Answer

Heavy sketch

Graph sketch 𝓚h

Min-heap for
heavy nodes

Heavy
nodes

Heavy node
candidate list

AnswerID weight

32

24

...

1519

1178

...

C=(ei, ei+1, ... , ej)
A session

A graph stream
S=(e1, e2, ... , en)

 Query the weight

of edge e=(s, d)

k sessions

Figure 4. The framework of our proposed Dichotomy Graph Sketch.

Appl. Sci. 2023, 13, 13306 8 of 17

4.1. Heavy Sketch and Light Sketch

Both heavy sketches and light sketches function as basic graph sketches (see Definition 5 for
details). A graph edge will be fed first into the edge classifier when it arrives. The edge
will be stored in the heavy sketch if it is classified as a heavy edge; otherwise, it will be
stored in the light sketch. In practice, we set the size of the heavy sketch smaller than the
size of the light sketch because the number of heavy edges is usually much smaller than
the number of light edges.

4.2. Sample Generator

Using a temporal graph sketch and two min-heaps, we design a sample generator
in order to obtain the heavy edges and nodes in each session. The temporal graph is
constructed in exactly the same way as a basic graph sketch. One min-heap is used to
obtain heavy edges, and the other one is used to obtain heavy nodes. After the sample
generator finishes all edge updates of the current session, the heavy edges in the min-heap
will be used as training samples to train the edge classifier, and heavy nodes together with
their aggregated weights will be recorded in the heavy node candidate list (which is a hash
table that maps the node ID to its aggregated weight as shown in Figure 4) as the candidates
for top-k nodes query. The aggregate weight of a node in the heavy node candidate list will
simply be updated by adding the new weight to the old weight. As a final step, sample
generator resets all the values of the temporal graph sketch to null, and clears the min-heaps
before processing the edges in the next session.

4.3. Edge Classifier

A binary probabilistic classification model is used during the edge updating process in
order to distinguish heavy edges from light edges. Essentially, we try to learn a model f that
predicts whether an edge ei = (na, nb) is heavy or not. In other words, we can train a deep
neural network classifier based on dataset D = {(ei = (na, nb), yi = 1)|ei ∈ H} ∪ {(ei =
(na, nb), yi = 0)|ei ∈ L} whereH denotes the set of heavy edges, and L denotes the set of
light edges (from the sample generator). To train the DNN, the node embeddings are also
included in the input feature vector based on the discussion in Section 4.3.1.

4.3.1. Node Embeddings Using a Graph Auto-Encoder

Graph representation learning [40,41] typically involves obtaining node embeddings
which are essentially feature representations, in order to help accomplish downstream
tasks. Thus, using a graph auto-encoder (GAE) [40] model, we obtain node embeddings to
assist the classifier in classifying heavy edges and light edges accurately.

Formally, given a graph G = (V, E) with |V| = N, we denote its degree matrix as D,
and its adjacency matrix as A. In addition, node features are summarized in an N ×M
feature matrix X.

GAE utilizes a two-layer graph convolutional network (GCN) [42] as encoder to
form the node embeddings of a graph. Formally, the node embeddings are denoted by
Z = GCN(X, A) where GCN(·) denotes the two-layer graph convolutional network. The
two-layer GCN is defined as

GCN(X, A) = ÃReLU(ÃXW0)W1, (1)

where ReLU(·) = max(0, ·), and Ã = D−
1
2 AD−

1
2 is the symmetrically normalized adja-

cency matrix. To reconstruct the graph, GAE adopts Â = σ(ZZT) as the decoder where Â
denotes the adjacency matrix of the reconstructed graph G′.

To train a GAE for a graph G, we can feed the G′s adjacency matrix A together with its
node feature matrix X into the GAE, and obtain the adjacency matrix Â of the reconstructed
graph G′. Then, we minimize the following cross-entropy loss:

L =
1
N ∑ ylogŷ + (1− y)log(1− ŷ), (2)

Appl. Sci. 2023, 13, 13306 9 of 17

where y denotes the element in A, and ŷ denotes the element in Â. After the GAE is well
trained, we can obtain the current node embeddings Z = GCN(X, A).

Note that constructing a lossless graph G for every graph stream session is both time-
consuming and space-expensive. Since a graph sketch can be regarded as the compression
of an original graph, we use the temporal graph sketch Ks in the sample generator as input
to train the GAE to reduce the complexity.

4.3.2. Architecture of the Edge Classifier

In Figure 5, we present the structure of the proposed deep neural network classifier.
The input consists of two nodes (source and destination of an edge) as well as their
corresponding node embeddings as we mentioned previously. The input first, respectively,
goes through two fully connected layers. Afterward, the output of the fully connected
layer is sent to a softmax layer, which generates a probability distribution representing the
probability that the input edge is heavy.

Node
ID na

Node
ID nb

Embedding
of node a

Embedding
of node b

DNN-based
edge classfier

Graph auto-encoder (GAE)

...

GCN layer 1

...

GCN layer 2

Encoder (GCN)

Node embeddings Z

Graph sketch

Decoder

f=𝜎(ZZT)

Reconstructed
Graph sketch

Reconstruction loss L

Compressed
graph

Reconstructed
graph

Figure 5. The details of the proposed edge classifier.

The details of the edge classifier is illustrated in Figure 5.

4.4. Implementation of Graph Query Tasks

We discuss how DGS answers different types of queries in this section.

4.4.1. Dealing with Edge Query and Node Query

Given an edge ei = (s, d), we first feed node s, node d, and their node embeddings into
the trained edge classifier to predict whether ei is a heavy edge. If ei is classified as a heavy
edge, the heavy sketch will answer the weight of ei (the method to answer the weight is
exactly the same as that introduced in Section 3); otherwise the light sketch will answer the
weight of ei. As for node query for node n, we first locate the row corresponding to node n
in the graph sketch, sum up the values in that row, and then return the minimum value
among all the sums.

4.4.2. Dealing with Top-k Node Query

Having stored each session’s heavy nodes in the heavy node candidate list, we can
simply return the top-k heavy nodes with the largest weight in the heavy node candidate
list as the answer.

4.5. Time and Space Complexity Analysis

In this section, we analyze the space cost and time complexity of DGS. The memory
cost of DGS is O(α2), where α is the width of the light sketch. Specifically, the memory cost
of DGS includes the light sketch, the heavy sketch, the heavy node candidate list and the
edge classifier. Since the sample generator is temporal and its memory can be freed when
all edges have been processed, we do not calculate its memory cost here. Supposing that αh
denotes the width of heavy sketch, the memory cost of heavy sketch is O(α2

h). Since αh < α
(see Section 4.1 for detail), O(α2

h) is below O(α2). The memory cost of heavy node candidate
list is a constant c1 and in practice c1 is small (c1 < 200). Thus, it is below O(α2). The

Appl. Sci. 2023, 13, 13306 10 of 17

memory cost of edge classifier is a constant c2 since the size of DNN is fixed. In addition,
we set c2 < α2 in practice, and thus c2 is also below O(α2).

The edge update of DGS includes three steps: inferring with the edge classifier,
locating the right position in the light sketch/heavy sketch, and updating the value in
that position. Supposing that the number of neurons in the ith fully connected layer is βi,
and the input feature vector contains βinput elements, the time cost of DNN inference is
O(βinputβ1 + β1β2 + β2β3). Locating the right position in the sketch is O(1), since we only
need to calculate two hash values. Obviously, updating the value is also O(1). Thus, the
total time cost of edge update is O(βinputβ1 + β1β2 + β2β3). In practice, since β1, β2, and
β3 is fixed in the DNN inference process, the time cost can be regarded as O(βinput). The
process of edge query is similar to that of edge update, and thus the time cost of edge query
is O(βinput) as well. For top-k heavy nodes query, since we can directly obtain top-k nodes
from the heavy node candidate list, the time cost is O(k).

5. Performance Evaluation

A comprehensive set of experiments was conducted on three real-world graph stream
datasets in order to validate the effectiveness of the Dichotomy Graph Sketch (DGS). Our
method was compared to two state-of-the-art graph sketches: TCM [1] and GSS [2]. A
laptop equipped with Intel Core i5-9300H processors (4 cores, 8 threads), 8GB of RAM
and NVIDIA GeForce RTX 2060 GPU was used for all experiments. Except for GSS, all
sketches were implemented in Python. For GSS, we used the C++ source code provided on
the Github (https://github.com/Puppy95/Graph-Stream-Sketch). Because GSS does not
limit the memory usage of its adjacency list buffer, we disabled it for fair comparison. Our
proposed edge classifier was implemented using the PyTorch library [43].

5.1. Datasets

We use three real-world graph stream datasets, which are described as follows.

• wiki_talk_cy: The first dataset consists of the Welsh Wikipedia’s communication
network (http://konect.cc/networks/wiki_talk_cy/). Users are represented by nodes,
and an edge from user A to user B indicates that user A posted a message on the talk
page of user B at a specific time. It contains 2233 users (nodes) and 10,740 messages
(edges).

• subelj_jung: The second dataset is the software class dependency network of the
JUNG 2.0.1 and javax 1.6.0.7 libraries, namespaces edu.uci.ics.jung and java/javax
(http://konect.cc/networks/subelj_jung-j/). A node represents a class, and an edge
between two nodes indicates that these classes are dependent on one another. It
contains 6210 classes (nodes) and 138,706 dependencies (edges).

• facebook-wosn-wall: The third dataset is the directed network of a small subset of
posts to other user’s wall on Facebook (http://konect.cc/networks/facebook-wos
n-wall/). A node in the network represents a Facebook user, and a directed edge
represents a post, connecting the user writing a post with the user whose wall the post
appears on. It contains 46,952 users (nodes) and 876,993 posts (edges).

• slashdot: The fourth dataset is the reply network of technology website Slashdot
(http://konect.cc/networks/slashdot-threads/). Nodes are users and edges are
replies. The edges are directed and start from the responding user. Edges are
annotated with the timestamp of the reply. It contains 51,083 users (nodes) and
140,778 replies (edges).

5.2. Performance Metrics

We adopt the following metrics for performance evaluation in our experiments.

https://github.com/Puppy95/Graph-Stream-Sketch
http://konect.cc/networks/wiki_talk_cy/
http://konect.cc/networks/subelj_jung-j/
http://konect.cc/networks/facebook-wosn-wall/
http://konect.cc/networks/facebook-wosn-wall/
http://konect.cc/networks/slashdot-threads/

Appl. Sci. 2023, 13, 13306 11 of 17

5.2.1. Average Relative Error (ARE)

Average relative error measures the accuracy of the weights that are estimated by a
graph sketch in the edge query task. Given a query q, the relative error RE(q) is formally
defined as follows:

RE(q) =
| f̂ (q)− f (q)|

f (q)
(3)

where f̂ (q) denotes the estimated answer of query q, and f (q) denotes the ground truth
answer of query q.

Given a set of queries Q = {q1, q2, . . . , qn}, the average relative error (ARE) is calcu-
lated by averaging the relative errors over all the queries in Q, and it is formally defined
as follows:

ARE(Q) = ∑n
i=1 RE(qi)

n
(4)

5.2.2. Intersection Accuracy (IA)

Intersection accuracy [1] measures the accuracy of the top-k heavy nodes reported by
a graph sketch. Supposing that X denotes the set of reported top-k heavy nodes, and
Y denotes the set of ground truth top-k heavy nodes. The intersection accuracy (IA) is
formulated as follows:

IA =
|X ∩Y|

k
(5)

It is obvious that IA ∈ [0, 1], and a larger IA means more top-k heavy nodes are found.

5.2.3. Normalized Discounted Cumulative Gain (NDCG)

Normalized discounted cumulative gain [44] is a measure of ranking quality. Given a
ranking list of heavy nodes reported by a graph sketch, discounted cumulative gain (DCG@k)
measures the usefulness (also called gain) of a node based on its position in the ranking list,
and it is formally defined as follows:

DCG@k =
k

∑
i=1

reli
log2(i + 1)

(6)

where reli is the relevance value of the result at position i, and reli ∈ {0, 1}. If the ith node
in the ranking list is indeed a heavy node, then reli will be 1; otherwise, it will be 0. Using
the definition above, NDCG@k is formulated as follows:

NDCG@k =
DCG@k
IDCG@k

(7)

where IDCG@k represents the DCG@k of an ideal ranking list. The ideal ranking list can be
obtained by sorting the nodes in the ranking list in descending order with respect to their
relative scores. It is obvious that NDCG ∈ [0, 1], and the higher NDCG indicates a stronger
ability to find top-k heavy nodes.

5.3. Numerical Results

A numerical analysis of edge query and node query results is conducted for various
sketches. In order to make a fair comparison, TCM, GSS and our proposed DGS all use the
same amount of memory for both edge query tasks and node query tasks. Note that the DGS
framework refers to two hyperparameters: the compression ratio and the size of the edge
classifier (i.e., the number of neurons in each fully connected layer). In our experiments,
we set these hyperparameters as shown in Table 1. Furthermore, we examine the effect of
hyperparameters in Section 5.3.4.

Appl. Sci. 2023, 13, 13306 12 of 17

Table 1. The setting of hyperparameters.

Number of Neurons in Fully Connected Layer Compression Ratio

32 1/10

5.3.1. Edge Query

To evaluate the ability to answer edge query on the baseline methods and our proposed
DGS, for each dataset, we query all the edges and calculating the average relative error
(ARE). Tables 2–5 show the ARE of edge query task achieved by TCM, GSS and our
proposed DGS. Besides calculating the total ARE by querying all edges, we also separately
calculate the ARE of querying heavy edges and that of querying light edges. As can be
seen, DGS achieves the lowest ARE among all three methods. Specifically, in TCM and
GSS, the ARE of edge queries on dataset subelj_jung is 22.359 and 39.386, respectively. In
contrast, our proposed DGS outperforms the other algorithms significantly, and its ARE
is only 17.264. Moreover, both the ARE of querying light edges (17.295) and that of query
heavy edges (1.433) achieved by DGS are the lowest compared with the baseline methods.
Similarly, DGS also achieves the lowest ARE on the other three datasets. It verifies the
effectiveness of DGS for edge query.

Table 2. The ARE of edge query (wiki_talk_cy).

Method Total ARE ARE of Light Edges ARE of Heavy Edges

TCM 10.388 10.436 0.274
GSS 10.038 10.083 0.622
DGS 7.875 7.909 0.202

Table 3. The ARE of edge query (subelj_jung).

Method Total ARE ARE of Light Edges ARE of Heavy Edges

TCM 22.359 22.399 2.079
GSS 39.386 39.458 3.320
DGS 17.264 17.295 1.433

Table 4. The ARE of edge query (facebook-wosn-wall).

Method Total ARE ARE of Light Edges ARE of Heavy Edges

TCM 2.261 2.262 0.015
GSS 5.256 5.258 0.340
DGS 2.056 2.057 0.212

Table 5. The ARE of edge query (slashdot).

Method Total ARE ARE of Light Edges ARE of Heavy Edges

TCM 5.345 5.349 0.923
GSS 8.909 8.915 1.499
DGS 5.188 5.192 0.643

5.3.2. Top-k Heavy Node Query

We evaluate the ability to find top-k heavy nodes of DGS as well as TCM. We do not
conduct this experiment with GSS since GSS does not support heavy node query. The
results are shown in Figures 6 and 7. As shown in Figure 6, DGS outperforms TCM on
all four datasets. Specifically, in the task of finding top-20 heavy nodes, DGS achieves an
IA of 95%, 85%, 90% and 90% on datasets wiki_talk_cy, subelj_jung, facebook-wosn-wall and
slashdot, respectively. In contrast, TCM only achieves an IA of 80%, 25%, 45% and 45% for
each of these, respectively. In the task of finding top-50 and top-100 heavy nodes, DGS also

Appl. Sci. 2023, 13, 13306 13 of 17

outperforms TCM significantly. This illustrates that DGS has strong ability to find heavy
nodes accurately.

Top-20 Top-50 Top-1000
0.2
0.4
0.6
0.8
1.0

In
te

rs
ec

tio
n

ac
cu

ra
cy TCM DGS

(a) wiki_talk_cy

Top-20 Top-50 Top-1000
0.2
0.4
0.6
0.8
1.0

In
te

rs
ec

tio
n

ac
cu

ra
cy TCM DGS

(b) subelj_jung

Top-20 Top-50 Top-1000
0.2
0.4
0.6
0.8
1.0

In
te

rs
ec

tio
n

ac
cu

ra
cy TCM DGS

(c) facebook-wosn-wall

Top-20 Top-50 Top-1000
0.2
0.4
0.6
0.8
1.0

In
te

rs
ec

tio
n

ac
cu

ra
cy TCM DGS

(d) slashdot

Figure 6. Heavy node query (intersection accuracy).

NDCG@20 NDCG@50 NDCG@1000
0.2
0.4
0.6
0.8
1.0

ND
CG

TCM DGS

(a) wiki_talk_cy

NDCG@20 NDCG@50 NDCG@1000
0.2
0.4
0.6
0.8
1.0

ND
CG

TCM DGS

(b) subelj_jung

NDCG@20 NDCG@50 NDCG@1000
0.2
0.4
0.6
0.8
1.0

ND
CG

TCM DGS

(c) facebook-wosn-wall

NDCG@20 NDCG@50 NDCG@1000
0.2
0.4
0.6
0.8
1.0

ND
CG

TCM DGS

(d) slashdot

Figure 7. Heavy node query (NDCG).

We also calculate the NDCG based on the result list of top-k heavy node query. The
results are shown in Figure 7. Similarly, the NDCG achieved by DGS is much higher than
that of TCM.

5.3.3. Memory Usage Comparison on Different Datasets

In this section, we make a memory usage comparison with respect to the datasets
used in the experiments. As shown in Table 1, we set the default compression ratio to
1/10. Taking the dataset wiki_talk_cy as example, the space units used by heavy sketch
and light sketch is |E| × r =10,740 × 1/10 = 1074. Supposing that the size of an integer is
4 Bytes, the memory usage of dataset wiki_talk_cy is 4 Byte × 1074 = 4296 Byte ≈ 4.19 KB.
In the same manner, the memory that are needed on dataset subelj_jung, facebook-wosn-wall,

Appl. Sci. 2023, 13, 13306 14 of 17

slashdot can also be calculated, and we present the memory usage comparison respect to
the four datasets in Table 6.

Table 6. Memory usage comparison with respect to the datasets.

Dataset Wiki_talk_cy Subelj_jung Facebook-Wosn-Wall Slashdot

Memory usage 4.19 KB 54.18 KB 342.57 KB 54.99 KB

5.3.4. Hyperparameter Analysis

The DGS framework refers to two hyperparameters: the size of the edge classifier, and
compression ratio. We study the influence of these hyperparameters on edge query task
using the dataset subelj_jung and slashdot, and the results are shown in Figures 8 and 9.

8 16 32 64 128
Number of neurons per layer

14

16

18

20

22

AR
E

(a) Size of the edge classifier

1/10 1/20 1/30 1/40 1/50
Compression ratio

15

25

35

45

AR
E

(b) Compression ratio

Figure 8. Hyperparameter analysis on edge query task using dataset subelj_jung.

8 16 32 64 128
Number of neurons per layer

4.5

5

5.5

6

AR
E

(a) Size of the edge classifier

1/10 1/20 1/30 1/40 1/50
Compression ratio

10

20

30

40

AR
E

(b) Compression ratio

Figure 9. Hyperparameter analysis on edge query task using dataset slashdot.

Figures 8a and 9a show the change of ARE when tuning the number of neurons in each
fully connected layer of the edge classifier from 8 to 128. The results show that a small-size
DNN classifier is sufficient to differentiate heavy edges from light edges, helping DGS
achieving a low ARE on edge query task. Enlarging the size of DNN does not significantly
lower the ARE. Thus, we set the number of neurons to 16.

Figures 8b and 9b show the change of ARE when tuning the compression ratio from
1/10 to 1/50. The results show that the ARE is very sensitive to compression ratio. With the
increase in compression ratio, the ARE increases drastically. Thus, to avoid an unacceptable
ARE, we should use a relatively low compression ratio.

6. Conclusions

The DGS framework is proposed in this paper as a novel method for summarizing
large graph streams. To avoid the serious performance drops caused by collisions between
hashes, DGS uses two separate matrices, the heavy sketch and the light sketch, to store
heavy edges and light edges, respectively. In order to determine whether an edge is heavy
or not, DGS first obtains node embeddings using a GAE, and adopts a DNN-based edge
classifier which utilizes the node embeddings as features to make the classification. Edges
classified as heavy edges will be stored in the heavy sketch, while edges classified as light
edges will be stored in the light sketch. Furthermore, DGS sets a sample generator to

Appl. Sci. 2023, 13, 13306 15 of 17

periodically generate training samples for the edge classifier, and record the heavy edges
of each session in the heavy node candidate list for fast top-k nodes query. In extensive
experiments using four real-world graph streams, the proposed method was able to achieve
high accuracy for graph queries including edge query and top-k nodes query compared
to the state of the art. The ARE of edge query achieved by DGS was reduced by up to
24.19% compared to TCM, and was reduced by up to 60.88% compared to GSS. Meanwhile,
the IA of node query achieved by DGS is significantly higher than that achieved by TCM.
Finally, we made a hyperparameter analysis and found the best hyperparameters for the
DGS framework.

Author Contributions: Conceptualization, D.L. and W.L.; methodology, D.L. and W.L.; software,
D.L., Y.C. and X.Z.; validation, D.L. and M.L.; formal analysis, D.L.; investigation, D.L. and W.L.;
resources, W.L. and S.L.; data curation, D.L. and G.Z.; writing—original draft preparation, D.L.;
writing—review and editing, D.L. and W.L.; visualization, D.L., G.Z. and M.L.; supervision, W.L.;
project administration, W.L.; funding acquisition, W.L. and S.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China Grant
Numbers 62262018, 61972196.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this article can be found at http://konect.c
c/networks/wiki_talk_cy/, http://konect.cc/networks/subelj_jung-j/, http://konect.cc/netw
orks/facebook-wosn-wall/, and http://konect.cc/networks/slashdot-threads/ (accessed on 10
December 2023).

Acknowledgments: This work was partially supported by the Collaborative Innovation Center of
Novel Software Technology and Industrialization, and the Sino-German Institutes of Social Computing.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Tang, N.; Chen, Q.; Mitra, P. Graph Stream Summarization: From Big Bang to Big Crunch. In Proceedings of the 2016 International

Conference on Management of Data (SIGMOD’16), San Francisco, CA, USA, 26 June–1 July 2016; pp. 1481–1496.
2. Gou, X.; Zou, L.; Zhao, C.; Yang, T. Fast and Accurate Graph Stream Summarization. In Proceedings of the 35th IEEE International

Conference on Data Engineering (ICDE’19), Macao, China, 8–11 April 2019; pp. 1118–1129.
3. Merchant, A.; Mathioudakis, M.; Wang, Y. Graph Summarization via Node Grouping: A Spectral Algorithm. In Proceedings

of the WSDM’23: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, Singapore,
27 February–3 March 2023; pp. 742–750.

4. Hajiabadi, M.; Singh, J.; Srinivasan, V.; Thomo, A. Graph Summarization with Controlled Utility Loss. In Proceedings of the
KDD’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual, Singapore, 14–18 August 2021;
pp. 536–546.

5. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. J. Algorithms
2005, 55, 58–75. [CrossRef]

6. Gou, X.; Zou, L.; Zhao, C.; Yang, T. Graph Stream Sketch: Summarizing Graph Streams with High Speed and Accuracy. IEEE
Trans. Knowl. Data Eng. 2022, 35, 5901–5914. [CrossRef]

7. Li, D.; Li, W.; Chen, Y.; Zhong, X.; Lin, M.; Lu, S. Learning-Based Dichotomy Graph Sketch for Summarizing Graph Streams with
High Accuracy. In Proceedings of the KSEM’23: The 16th International Conference on Knowledge Science, Engineering and
Management, Guangzhou, China, 16–18 August 2023; pp. 47–59.

8. Charikar, M.; Chen, K.C.; Farach-Colton, M. Finding Frequent Items in Data Streams. In Proceedings of the 29th International
Colloquium on Automata, Languages and Programming, Málaga, Spain, 8–13 July 2002; pp. 693–703.

9. Estan, C.; Varghese, G. New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice.
ACM Trans. Comput. Syst. 2003, 21, 270–313. [CrossRef]

10. Giroire, F.; Chandrashekar, J.; Taft, N.; Schooler, E.M.; Papagiannaki, D. Exploiting Temporal Persistence to Detect Covert Botnet
Channels. In Proceedings of the Recent Advances in Intrusion Detection, 12th International Symposium, RAID 2009, Saint-Malo,
France, 23–25 September 2009; Volume 5758, pp. 326–345.

http://konect.cc/networks/wiki_talk_cy/
http://konect.cc/networks/wiki_talk_cy/
http://konect.cc/networks/subelj_jung-j/
http://konect.cc/networks/facebook-wosn-wall/
http://konect.cc/networks/facebook-wosn-wall/
http://konect.cc/networks/slashdot-threads/
http://doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1109/TKDE.2022.3174570
http://dx.doi.org/10.1145/859716.859719

Appl. Sci. 2023, 13, 13306 16 of 17

11. Li, J.; Li, Z.; Xu, Y.; Jiang, S.; Yang, T.; Cui, B.; Dai, Y.; Zhang, G. WavingSketch: An Unbiased and Generic Sketch for Finding
Top-k Items in Data Streams. In Proceedings of the KDD’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, 6–10 July 2020; pp. 1574–1584.

12. Zhang, Y.; Li, J.; Lei, Y.; Yang, T.; Li, Z.; Zhang, G.; Cui, B. On-Off Sketch: A Fast and Accurate Sketch on Persistence. Proc. VLDB
Endow. 2020, 14, 128–140. [CrossRef]

13. Zhong, Z.; Yan, S.; Li, Z.; Tan, D.; Yang, T.; Cui, B. BurstSketch: Finding Bursts in Data Streams. In Proceedings of the SIGMOD’21:
International Conference on Management of Data, Virtual, 20–25 June 2021; pp. 2375–2383.

14. Liu, Z.; Kong, C.; Yang, K.; Yang, T.; Miao, R. HyperCalm Sketch: One-Pass Mining Periodic Batches in Data Streams. In
Proceedings of the ICDE’23: 39th IEEE International Conference on Data Engineering, Anaheim, CA, USA, 3–7 April 2023.

15. Zhao, Y.; Han, W.; Zhong, Z.; Zhang, Y.; Yang, T.; Cui, B. Double-Anonymous Sketch: Achieving Fairness for Finding Global
Top-K Frequent Items. In Proceedings of the SIGMOD’23: International Conference on Management of Data, Seattle, WA, USA,
18–23 June 2023.

16. Ben-Basat, R.; Einziger, G.; Friedman, R.; Kassner, Y. Randomized admission policy for efficient top-k and frequency estimation.
In Proceedings of the INFOCOM’17: IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9.

17. Fan, D.; Rafiei, D. New Estimation Algorithms for Streaming Data: Count-Min Can Do More. 2014. Available online:
https://www.researchgate.net/publication/228531010_New_estimation_algorithms_for_streaming_data_Count-min_can_d

o_more (accessed on 10 December 2023).
18. Wang, F.; Chen, Q.; Li, Y.; Yang, T.; Tu, Y.; Yu, L.; Cui, B. JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product

Estimation. In Proceedings of the SIGMOD’23: International Conference on Management of Data, Washington, DC, USA, 18–23
June 2023.

19. Li, X.; Fan, Z.; Li, H.; Zhong, Z.; Guo, J.; Long, S. SteadySketch: Finding Steady Flows in Data Streams. In Proceedings of the
IWQoS’23: IEEE/ACM International Symposium on Quality of Service, Anaheim, CA, USA, 3–7 April 2023.

20. Fan, Z.; Hu, Z.; Wu, Y.; Guo, J.; Liu, W.; Yang, T.; Wang, H.; Xu, Y.; Uhlig, S.; Tu, Y. PISketch: finding persistent and infrequent
flows. In Proceedings of the FFSPIN ’22: The ACM SIGCOMM Workshop on Formal Foundations and Security of Programmable
Network Infrastructures, Amsterdam, The Netherlands, 11–25 May 2022; pp. 8–14.

21. Fan, Z.; Hu, Z.; Wu, Y.; Guo, J.; Wang, S.; Liu, W.; Yang, T.; Tu, Y.; Uhlig, S. PISketch: Finding Persistent and Infrequent Flows.
IEEE/ACM Trans. Netw. 2023. [CrossRef]

22. Zhao, Y.; Zhang, Y.; Yi, P.; Yang, T.; Cui, B.; Uhlig, S. The Stair Sketch: Bringing more Clarity to Memorize Recent Events. In
Proceedings of the ICDE’22: 38th IEEE International Conference on Data Engineering, Kuala Lumpur, Malaysia, 9–12 May 2022;
pp. 164–177.

23. Gou, X.; Zhang, Y.; Hu, Z.; He, L.; Wang, K.; Liu, X.; Yang, T.; Wang, Y.; Cui, B. A Sketch Framework for Approximate Data
Stream Processing in Sliding Windows. IEEE Trans. Knowl. Data Eng. 2022, 35, 4411–4424. [CrossRef]

24. Fan, Z.; Zhang, Y.; Dong, S.; Zhou, Y.; Liu, F.; Yang, T.; Uhlig, S.; Cui, B. HoppingSketch: More Accurate Temporal Membership
Query and Frequency Query. IEEE Trans. Knowl. Data Eng. 2022, 35, 9067–9072. [CrossRef]

25. Peng, Y.; Guo, J.; Li, F.; Qian, W.; Zhou, A. Persistent Bloom Filter: Membership Testing for the Entire History. In Proceedings of
the SIGMOD’18: Proceedings of the 2018 International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018;
pp. 1037–1052.

26. Liu, L.; Shen, Y.; Yan, Y.; Yang, T.; Shahzad, M.; Cui, B.; Xie, G. SF-Sketch: A Two-Stage Sketch for Data Streams. IEEE Trans.
Parallel Distrib. Syst. 2020, 31, 2263–2276. [CrossRef]

27. Miao, R.; Dong, F.; Zhao, Y.; Zhao, Y.; Wu, Y.; Yang, K.; Yang, T.; Cui, B. SketchConf: A Framework for Automatic Sketch
Configuration. In Proceedings of the ICDE’23: 39th IEEE International Conference on Data Engineering, Anaheim, CA, USA, 3–7
April 2023.

28. Li, H.; Chen, Q.; Zhang, Y.; Yang, T.; Cui, B. Stingy Sketch: A Sketch Framework for Accurate and Fast Frequency Estimation.
Proc. VLDB Endow. 2022, 15, 1426–1438. [CrossRef]

29. Yang, T.; Xu, J.; Liu, X.; Liu, P.; Wang, L.; Bi, J.; Li, X. A generic technique for sketches to adapt to different counting ranges.
In Proceedings of the INFOCOM’19: IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 2017–2025.

30. Liu, X.; Xu, Y.; Liu, P.; Yang, T.; Xu, J.; Wang, L.; Xie, G.; Li, X.; Uhlig, S. SEAD counter: Self-adaptive counters with different
counting ranges. IEEE/ACM Trans. Netw. 2021, 30, 90–106. [CrossRef]

31. Liu, Z.; Manousis, A.; Vorsanger, G.; Sekar, V.; Braverman, V. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the SIGCOMM’16: The Annual Conference of the ACM Special Interest Group on Data
Communication, Florianopolis, Brazil, 22–26 August 2016; pp. 101–114.

32. Huang, Q.; Jin, X.; Lee, P.P.; Li, R.; Tang, L.; Chen, Y.C.; Zhang, G. Sketchvisor: Robust network measurement for software
packet processing. In Proceedings of the SIGCOMM’17: The Annual Conference of the ACM Special Interest Group on Data
Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 113–126.

33. Tang, L.; Huang, Q.; Lee, P.P.C. MV-Sketch: A Fast and Compact Invertible Sketch for Heavy Flow Detection in Network Data
Streams. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’19), Paris, France, 29 April–2 May
2019; pp. 2026–2034.

http://dx.doi.org/10.14778/3425879.3425884
https://www.researchgate.net/publication/228531010_New_estimation_algorithms_for_streaming_data_Count-min_can_do_more
https://www.researchgate.net/publication/228531010_New_estimation_algorithms_for_streaming_data_Count-min_can_do_more
http://dx.doi.org/10.1109/TNET.2023.3272287
http://dx.doi.org/10.1109/TKDE.2022.3151140
http://dx.doi.org/10.1109/TKDE.2022.3221111
http://dx.doi.org/10.1109/TPDS.2020.2987609
http://dx.doi.org/10.14778/3523210.3523220
http://dx.doi.org/10.1109/TNET.2021.3107418

Appl. Sci. 2023, 13, 13306 17 of 17

34. Yang, T.; Jiang, J.; Liu, P.; Huang, Q.; Gong, J.; Zhou, Y.; Miao, R.; Li, X.; Uhlig, S. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the SIGCOMM’18: The Auunal Conference of the ACM Special Interest Group on Data
Communication, Budapest, Hungary, 20–25 August 2018; pp. 561–575.

35. Yang, T.; Jiang, J.; Liu, P.; Huang, Q.; Gong, J.; Zhou, Y.; Miao, R.; Li, X.; Uhlig, S. Adaptive measurements using one elastic sketch.
IEEE/ACM Trans. Netw. 2019, 27, 2236–2251. [CrossRef]

36. Liu, Z.; Ben-Basat, R.; Einziger, G.; Kassner, Y.; Braverman, V.; Friedman, R.; Sekar, V. Nitrosketch: Robust and general sketch-
based monitoring in software switches. In Proceedings of the SIGCOMM’19: The annual ACM Special Interest Group on Data
Communication, Beijing, China, 19–23 August 2019; pp. 334–350.

37. Zhao, P.; Aggarwal, C.C.; Wang, M. gSketch: On Query Estimation in Graph Streams. Proc. VLDB Endow. 2011, 5, 193–204.
[CrossRef]

38. Khan, A.; Aggarwal, C.C. Query-friendly compression of graph streams. In Proceedings of the 2016 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM’16), Davis, CA, USA, 18–21 August 2016; Kumar,
R., Caverlee, J., Tong, H., Eds.; pp. 130–137.

39. Li, D.; Li, W.; Chen, Y.; Lin, M.; Lu, S. Learning-Based Dynamic Graph Stream Sketch. In Proceedings of the PAKDD’21: Advances
in Knowledge Discovery and Data Mining—25th Pacific-Asia Conference, Virtual, 11–14 May 2021; Volume 12712, pp. 383–394.

40. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308.
41. Hamilton, W.L.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the NeurIPS’17:

Advances in Neural Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034.
42. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the ICLR’17: 5th

International Conference on Learning Representations, Toulon, France, 24–26 April 2017.
43. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS’19), Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035.

44. Järvelin, K.; Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 2002, 20, 422–446. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNET.2019.2943939
http://dx.doi.org/10.14778/2078331.2078335
http://dx.doi.org/10.1145/582415.582418

	Introduction
	Related Work
	Data Stream Sketches
	Graph Stream Sketch

	Preliminaries
	Dichotomy Graph Sketch Mechanism
	Heavy Sketch and Light Sketch
	Sample Generator
	Edge Classifier
	Node Embeddings Using a Graph Auto-Encoder
	Architecture of the Edge Classifier

	Implementation of Graph Query Tasks
	Dealing with Edge Query and Node Query
	Dealing with Top-k Node Query

	Time and Space Complexity Analysis

	Performance Evaluation
	Datasets
	Performance Metrics
	Average Relative Error (ARE)
	Intersection Accuracy (IA)
	Normalized Discounted Cumulative Gain (NDCG)

	Numerical Results
	Edge Query
	Top-k Heavy Node Query
	Memory Usage Comparison on Different Datasets
	Hyperparameter Analysis

	Conclusions
	References

