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Abstract: A fast Hough transform (HT)-based hyperbolic emitter localization system is proposed to
process time difference of arrival (TDOA) measurements. The position-fixing problem is provided for
cases where the source is known to be on a given plane (i.e., the elevation of the source is known),
while the sensors can be deployed anywhere in the three-dimensional space. The proposed solution
provides fast evaluation and guarantees the determination of the global optimum. Another favorable
property of the proposed solution is that it is robust against faulty sensor measurements (outliers).
A fast evaluation method involving the hyperbolic Hough transform is proposed, and the global
convergence property of the algorithm is proven. The performance of the algorithm is compared to
that of the least-squares solution, other HT-based solutions, and the theoretical limit (the Cramér–Rao
lower bound), using simulations and real measurement examples.
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1. Introduction

Localization and positioning in GNSS-denied areas are primary services for many
emerging applications, including indoor pedestrian tracking [1], robotics [2], UAV track-
ing [3], healthcare [4], engineering [5], wildlife protection [6], and security [7], just to
name a few. In particular, passive time difference of arrival (TDOA) emitter localization
methods are widely used in many application fields, e.g., geolocation [8–10], mobile user
tracking [11], speaker localization [12], damage localization [13], or acoustic shooter lo-
calization [7,14–17]. In one-stage or direct position determination (DPD) methods, the
received signals are used to determine the position estimate, without an explicit calculation
of the TDOA values [18,19]. In two-stage methods, the TDOA values are determined from
the measured signals in stage 1 (e.g., using various cross-correlation techniques [20–22]
or taking the differences of the direct time of arrival measurements [14,16]) and then the
location estimation (also called position fixing) is performed in stage 2.

DPD methods are reported to have higher accuracy when the signal-to-noise ratio of
the measurements is low, while their disadvantages include complex computations and
large communication bandwidth required to transfer the raw signal from the sensors to the
processing unit. Although not optimal, two-stage methods are asymptotically equivalent
to DPD methods [23] and are popular in massively distributed sensor systems, because
only a small amount of data (basically only time stamps) is generated at the sensors in
stage 1, which requires a small communication bandwidth. Additionally, the localization
performed in stage 2 may also be performed in a relatively simple manner [14].

Note that for applications in which the time measurement of incoming events is
achieved with the sensor units themselves, only the two-stage framework can be utilized
(e.g., shooter localization [14–16]). In this paper, the focus is on the position fixing of
two-stage methods.
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For position fixing (stage 2), the proposed solutions include iterative techniques [24,25],
closed-form solutions [26–30], particle filters [31,32], consistency functions [14,33], and
Hough transform (HT)-based solutions [31,34]. When outlier measurements are present,
the location estimate will be biased, unless the outliers are removed [35,36]. The voting
approach of HT, however, has the advantage of implicitly filtering out outliers; this makes
the location estimates robust against bad measurements resulting from sensor faults or
non-line-of-sight measurements.

In this paper, a novel HT-based TDOA emitter localization method is proposed. The
location estimate is found at the maximum of the hyperbolic HT (HHT), specially tailored
for hyperbolic localization. The proposed method involves a novel hierarchical search to
find the maximum of the HHT on a predefined grid. The novelties of the proposed search
methods are the following:

• The speed of the search is higher than those of the earlier HHT solutions [31];
• The search algorithm is guaranteed to find the global maximum on the predefined

grid.

The outline of the paper is as follows: In Section 2, related work is reviewed. In
Section 3, the proposed fast hyperbolic Hough transform is introduced. In Section 4, the
performance of the proposed method is compared to that of earlier solutions through
simulation examples and real measurements. Section 5 concludes the paper.

2. Related Work

The original Hough (line) transform was utilized to detect straight lines on im-
ages [37,38]. Since then, several variants and generalizations of the original HT have
been proposed and applied in various fields [39]. The different versions of HT have also
been successfully applied in various localization schemes. The bearing trace HT was used
to process sonar data for ship tracking and monitoring [40]. In the acoustic shot localization
system [41], the HT of the time-stamped angle of arrival measurements was used to detect
projectile trajectories. HT was also utilized to detect and localize reflector surfaces to pre-
vent suboptimal solutions in indoor localization [42]. An HT-based solution was proposed
for hyperbolic localization in [31], and the model was also extended to contain various
types of measurements [34]. We will refer to the variant of HT adapted for processing
TDOA measurements as hyperbolic HT (HHT).

Various solutions were proposed to decrease the processing time of HT: probabilistic
HT [43] and randomized HT [44] reduce the computational cost by randomly decreasing
the number of processed pixels, while fast HT [45] uses a hierarchical approach, which
increases resolution only where detection is possible.

To increase the processing speed of HHT, in [31], two approaches were proposed. The
randomized HHT (R-HHT) uses randomly selected points of the parameter space. This
approach, however, still requires a high number of samples for reasonable accuracy (in [31]
as much as 50% and 75% of the grid points were utilized); thus, the increase in speed is
modest. The hybrid HHT (H-HHT) is performed in two stages: in stage 1, an R-HHT is
executed. In stage 2, a grid search is performed around the maximum value found in step
1, using a small grid size. According to the experiments, this approach provides faster
evaluation, but the speed gain is still moderate. It is worth noting that neither R-HHT nor
H-HHT guarantees that the global optimum is indeed found.

In this paper, a fast HHT (F-HHT) is introduced that significantly decreases the
required amount of computation and guarantees convergence to the global maximum of
the parameter space on a predefined grid.

3. Fast Hyperbolic Hough Transform
3.1. Problem Formulation

The measurement scenario is shown in Figure 1a. Let the sensors be denoted by
Si, i = 1, 2, . . . , N; Si is deployed at location (xi, yi, zi). The event, emitted by emitter E
at an unknown time instant t0 from an unknown position (x0, y0, 0) on a given plane, is
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detected by sensor Si at time instant ti. Notice that this situation (often referred to as the
2.5D scenario) is commonly encountered in practice when the emitter is located at ground
level, but the sensors are placed at positions of arbitrary height.
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The signal propagation speed (e.g., the speed of light or the speed of sound, depending
on the signal type and medium) is c. The distance between Si and E is di:

di = c(ti + ni − t0), (1)

where ni is the time measurement error of Si and ti + ni is the ideal time measurement.
The distance difference di,j is defined as follows:

di,j = di − dj = c
(
ti − tj + ni − nj

)
= cti,j + ∆di,j, (2)

where ti,j = ti − tj is the measured TDOA between sensors Si and Sj, and ∆di,j is the
distance difference error:

∆di,j = c
(
ni − nj

)
. (3)

Let us assume that the time measurement error ni can be modeled by Gaussian noise
ni = N (0, σt,i), and ni, nj, i ̸= j are independent. Then,

∆di,j = N
(
0, σi,j

)
, (4)

where the variance σ2
i,j of the distance difference di,j is

σ2
i,j = c2

(
σ2

t,i + σ2
t,j

)
. (5)

Let the reference sensor be S1. Let us calculate the distance differences from the TDOA
measurements ti,1:

∼
d i,1 = cti,1. (6)

The objective is to provide position estimate
(∼

x0,
∼
y0

)
, given sensor positions (xi, yi, zi),

measurements
∼
d i,1, and variances σ2

i,1. The estimation process is illustrated in Figure 1b.

3.2. Hyperbolic Hough Transform

To provide location estimates from TDOA measurements, an HHT was proposed
in [31]. Now a simpler, and physically more interpretable, version is introduced.
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Let us define a grid where the emitter location is searched for. Using (4), the likelihood

of the emitter being at grid position (x, y), given a measurement
∼
d i,1, is the following:

L(x, y|
∼
d i,1) =

1√
2πσi,1

e
− 1

2 (

∼
d i,1−di,1(x,y)

σi,1
)

2

, (7)

where
∼
d i,1 is the measured distance difference between sensors Si and S1, according to (6),

and di,1(x, y) is the exact distance difference at point (x, y), as follows:

di,1(x, y) = di(x, y)− d1(x, y) (8)

and
di(x, y) =

√
(x − xi)

2 + (y − yi)
2 + z2

i . (9)

The HHT uses a voting system, where a pair of sensors casts a vote to each of the grid
points: a high/low vote represents a high/low likelihood of the emitter being at the given
grid point. In the voting process, the normalized version Ln of likelihood function (7) is
utilized, where the maximum value of each vote is 1

N−1 :

Ln

(
x, y

∣∣∣∣∼d i,1

)
=

1
N − 1

e
− 1

2 (

∼
d i,1−di,1(x,y)

σi,1
)

2

. (10)

Thus, the HHT value at grid position (x, y) is the following:

A(x, y) = ∑N
i=2 Ln

(
x, y

∣∣∣∣∼d i,1

)
. (11)

The highest attainable value of A(x, y) is 1; this occurs when all the sensor pairs vote
with their maximum possible value. If the measurement error is zero, i.e., ni = 0, i =
1, 2, . . . , N, then at the true source position A(x0, y0) = 1. In practical scenarios, where
measurement noise is present, A(x0, y0) is lower than, but close to 1.

The position estimate is at the maximum of A(x, y) :(∼
x0,

∼
y0

)
= argmax

(x,y)
A(x, y). (12)

The HHT is illustrated in Figure 2, where four sensors are used, with S1 serving as
the reference. The sensors in the example are placed on the plane of the source. The sensor
positions are the same, but the source is placed in different positions in Figure 2a,b. In this
scenario, 3 pairs of sensors vote: darker points indicate higher votes (white corresponds to
zero and black corresponds to one). The result of votes of sensor pair (Si, S1) is denoted
by Hi,1, forming a hyperbola in Figure 2. The image corresponds well to the well-known

two-dimensional geometric interpretation: Ln is maximal when
∼
d i,1 = di,1(x, y), where

di,1(x, y) is the difference of distances di and d1, as shown in (8). Thus, the set of points
where Ln is maximal forms a hyperbola with focal points at Si and S1 and a major axis of
∼
d i,1. The sum of all votes is maximal where the hyperbolas intersect, providing the location
estimate (the darkest point).

Note that the width of the hyperbola depends on both the accuracy of measurements,
i.e., σi,1, and the geometric dilution of precision (GDOP) [46]. The higher σi,1, the wider
the likelihood function, and thus the hyperbola, as follows from (10). High GDOP makes
the hyperbola even wider, particularly noticeable for H2,1 in Figure 2b: H2,1 is narrow in
proximity to S2 and becomes wider at the top of the figure. The GDOP naturally effects the
accumulated HHT and, consequently, the position estimate: in Figure 2a, the small dark
area around the location estimate indicates good GDOP, resulting in high confidence in
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the location estimate. In Figure 2b, however, the dark area is significantly larger, forming
an ellipsoid-like pattern. As a result, small measurement errors can lead to significant
differences in the estimate, resulting in lower confidence in the location estimate.
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(a) Source at a position with good GDOP and (b) bad GDOP.

Notes:

• In practice, the exact values of the measurement variances are usually not known. In
such cases, σ2

i,1 can serve as an estimate of the true value. If the estimated value is
smaller than the true variance then the source position may be outside of the skirt of the
generated “wide hyperbola” Hi,1. On the other side, if the estimated variance is higher
than the true value then the source position is safely included inside Hi,1. Therefore,
in practice, the estimate σ2

i,1 should be an upper estimate of the true variance.
• In the 2.5D case, the shape of Hi,1 is not necessarily a hyperbola, but rather a general

intersection of a 3-dimensional hyperboloid surface and the plane of the source.

Similarly to other variants of Hough transform, the HHT can be evaluated on a grid.
The size of the grid has important implications:

(a) If the grid size is large, the maximum may be missed;
(b) The grid size determines possible accuracy: a smaller grid size can provide higher

accuracy;
(c) Smaller grid size implies a higher computational cost. Note that if the grid contains

M × M points, then the number of likelihood function evaluations will be M2, and
the search for the maximum will also require M2 (albeit simpler) operations.

To improve calculation speed, in [31] the randomized R-HHT was proposed. However,
this method faces an obstacle resulting from implication (a): the number of required
sampling points to achieve a high probability of finding the global maximum remains
high; the improvement, reported in [31], was not better than twofold. The hybrid H-HHT
method [31] increases the accuracy and reduces the number of trials, using a fine-grid
search in the second phase. In the next subsection, the fast HHT will be introduced, which
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not only significantly reduces the computational costs but also guarantees that the optimum
on the given grid is found.

3.3. Fast HHT

The basic idea behind the F-HHT is similar to that of the fast HT [45]: instead of
calculating the transform on a dense grid, a hierarchical approach is utilized. First, a search
with a large grid size is performed. In the next round, the search is focused on “promising”
areas, now with smaller grid size. The process is iteratively repeated until the required
accuracy (i.e., grid size) is achieved. The main novelty is the utilization of two metrics: the
exact value of the HHT at a given point and the upper bound of the HHT in the vicinity of
this point. This approach allows fast and provable convergence to the global maximum of
the HHT.

The search space is divided into rectangular tiles with grid points at the centers of
the tiles, as shown in Figure 3. In the first round, the tile size is D1; in the second round,
“promising” tiles are divided into four smaller tiles of size D2 = D1/2. In general, in the
n-th round, the tile size is reduced to

Dn =
D1

2n−1 . (13)
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To ensure that the global optimum is found, the F-HHT utilizes two metrics at each
grid point (x, y). The first is the exact value A(x, y), according to (11), while the second is
the upper bound A(x, y) of the HHT in the actual tile surrounding (x, y).

Consider a tile of size Dn with center P = (x, y), as shown in Figure 4. The difference
of distances PSi = di and PS1 = d1 is di,1, according to (8). Let P′ be an arbitrary point
inside the tile, where P′S1 = d′1, P′Si = d′i, and d′i,1 = d′i − d′1.

d′i,1 − di,1 =(
d′i − d′1

)
− (di − d1) =

(
d′i − di

)
−

(
d′1 − d1

) (14)
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From the triangle inequality applied to SiPP′, it follows that −PP′ ≤ d′i − di ≤ PP′.
Since PP′ ≤ Dn√

2
, the following inequity holds, for all i:

− Dn√
2
≤ d′i − di ≤

Dn√
2

. (15)

From (14) and (15), the following inequality follows:

−
√

2Dn ≤ d′i,1 − di,1 ≤
√

2Dn. (16)

The likelihood function at any point P′ in the tile is

Ln

(
P′
∣∣∣∣∼d i,1

)
=

1
N − 1

e
− 1

2 (

∼
d i,1−d′i,1

σi,1
)

2

. (17)

Since ∣∣∣∣∼d i,1 − d′i,1

∣∣∣∣ = ∣∣∣∣(∼
d i,1 − di,1

)
−

(
d′i,1 − di,1

)∣∣∣∣, (18)

using the reverse triangle theorem, it follows that∣∣∣∣∼d i,1 − d′i,1

∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣∼d i,1 − di,1

∣∣∣∣− ∣∣d′i,1 − di,1
∣∣∣∣∣∣. (19)

Let us denote

∆di,1 =

∣∣∣∣∼d i,1 − di,1

∣∣∣∣. (20)

If ∆di,1 >
√

2Dn then, using (16), the inequity (19) can be rewritten as∣∣∣∣∼d i,1 − d′i,1

∣∣∣∣ ≥ ∆di,1 −
√

2Dn, (21)

otherwise it is certainly true that ∣∣∣∣∼d i,1 − d′i,1

∣∣∣∣ ≥ 0. (22)

Notice that Ln

(
P′
∣∣∣∣∼d i,1

)
in (17) increases if

∣∣∣∣∼d i,1 − d′i,1

∣∣∣∣ decreases. Thus, using (21) and

(22), in the tile with center P, an upper bound Ln

(
P
∣∣∣∣∼d i,1

)
for Ln

(
P′
∣∣∣∣∼d i,1

)
can be obtained,

as follows:

Ln

(
P
∣∣∣∣∼d i,1

)
=

 1
N−1 e

− 1
2 (

∆di,1−
√

2Dn
σi,1

)
2

if ∆di,1 >
√

2Dn
1

N−1 otherwise,
(23)

while the exact value of the likelihood function in center P is

Ln

(
P
∣∣∣∣∼d i,1

)
=

1
N − 1

e
− 1

2 (
∆di,1
σi,1

)
2

. (24)

Thus, the HHT in a grid point P is the following:

A(P) = ∑N
i=2 Ln

(
P
∣∣∣∣∼d i,1

)
, (25)
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and the upper bound of the HHT in this tile is

A(P) = ∑N
i=2 Ln

(
P
∣∣∣∣∼d i,1

)
. (26)

Using the above results, Algorithm 1 describes the operation of the F-HHT.

Algorithm 1 Operation of the F-HHT

Input:

1. measurements
∼
d i,1, σi,1, i = 2, 3, . . . , N

2. sensor positions (xi, yi, zi), i = 1, 2, . . . , N
3. desired grid size D f inal

Initialization:

4. create a grid over the search area S with grid size D1
5. add each tile to the PromisingList
6. GridSize := D1

7. set the minimal required value Amaxmin

(
e.g., to 2

N−1

)
Iteration:

8. while GridSize > D f inal/2
9. calculate A(P) and A(P) for each tile in PromisingList
10. bestA := max(A(P))
11. bestP := argmax

P
(A(P))

12. pruning 1: remove tiles with A(P) < Amaxmin
13. pruning 2: remove tiles with A(P) < bestA
14. GridSize := GridSize/2
15. replace each tile with four smaller tiles of size GridSize
16. end

Output: bestP

The inputs of F-HHT are the measurements, sensor positions, and the size of the grid
on which the maximum is searched for (see steps 1–3). In step 4 of the initialization phase,
the initial coarse grid is created. Then, in step 5, each tile is added to the list of promising
tiles (PromisingList). The initial coarse grid size is set in step 6. The value Amaxmin in step 7
is the minimum required value of maxA(P), i.e., max(A(P)) > Amaxmin. In a conservative
solution Amaxmin = 2

N−1 , since at least two hyperbolas intersect at the source position.
When multiple sensors are available and there is a priori knowledge of the minimum
number R of reliable measurements, then Amaxmin may be set close to, but below, R

N−1 .
The iteration is performed between steps 8 and 16. In step 9, the F-HHT algorithm

calculates the exact HHT (25) and the upper bound (26) for each promising tile center.
The current highest exact value is bestA (step 10) at positions bestP (step 11). A tile with
center P is non-promising (the maximum cannot be inside the tile) if A(P) < Amaxmin or
A(P) < bestA. In the pruning steps 12 and 13, the non-promising tiles are removed from
the further search. In step 15, promising tiles are replaced by four new promising tiles with
smaller size (see Figure 3). When the required grid size is reached, the center(s) of tile(s)
with the highest HHT (bestP) form the output.

Note that the output bestP may contain multiple grid points (tile centers). In such
cases, the location estimate can be calculated as the mean of bestP.

3.4. Global Convergence

In this subsection, Theorem 1 will be proven:
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Theorem 1. Let the global maximum of the HHT, calculated over search area S on fine grid G f
of grid size DG f , be AG f , such that the maximum is at grid point(s) P0, i.e., AG f = A(P0) =

max
P∈G f

A(P). Let us create a coarse grid Gc by omitting grid lines from G f , such that the grid size of

Gc is D1 = 2k−1DG , k ∈ N. If the output of the F-HHT algorithm, executed over S with initial
grid Gc, using k iterations, is P0,FHHT , then P0, FHHT = P0.

The theorem ensures that the global maximum of the HHT, calculated on a fine grid
with size DG f , can be found with the F-HHT in k iteration steps, starting from a much

coarser grid of size 2k−1DG f . Note that P0 may contain one or more grid points of G f .

Lemma 1. If there is a promising tile T with center P that contains one or more points of P0, then
this tile is preserved (not removed) during the pruning step.

Proof of Lemma 1. For tile T ,A(P) ≥ A(P0) = AG f . Since AG f > Amaxmin, A(P) >

Amaxmin, therefore T is not removed in step 12. Notice that each coarser grid during the
iteration is part of the fine grid G f . Thus, for the actual bestA calculated in step 10, it
holds that bestA ≤ AG f . This ensures that T is not removed in step 13, either. Thus T is
preserved. □

Proof of Theorem 1. At the start of the first iteration step, all tiles are marked promising,
thus the tiles containing one or more points of P0 are also marked as promising. According
to Lemma 1, these tiles are preserved in the pruning step and then they are replaced by
four smaller promising tiles. These smaller tiles also contain the points of P0. Thus, in the
beginning of the second iteration step, promising tiles still contain all points of P0. This is
true for all iteration steps, thus at the beginning of the kth (last) iteration step, promising
tiles contain all points of P0.

Notice that in the last iteration step the set of search lists PromisingList is a (small)
subset of the fine grid G f (with grid size of D1/2k−1 = DG f ), where the HHT was evaluated.
Thus, points of P0 are the center points of some promising tiles. Since all points in P0 are
preserved, the maximum points bestP, computed in the last iteration step, are necessarily
the same as the maximum points calculated by the HHT on the whole grid G f . Therefore
P0,FHHT = P0. □

4. Performance Evaluation

In this section, the performance of the F-HHT will be studied and comparisons with
other methods and the theoretical limit will be provided. For comparison purposes, the
standard and widely utilized least squares (LS) method was chosen, along with two earlier
HHT methods: random HHT (R-HHT) and hybrid HHT (H-HHT). The performances of
the localization methods will be investigated through simulations. First, the test setup
will be introduced, followed by demonstrative examples to illustrate the operation of the
F-HHT. The performance comparisons include accuracy, speed, computational cost, and
also robustness. Finally, the performance of the proposed method will be illustrated with
real measurements.

4.1. Test Simulation Setup

The simulation test setup, using 7 sensors, is shown in Figure 5, and the sensor
locations are listed in Table 1.

In the tests, two source positions were used: a near-range position Ps = (157.3 m,
113.9m, 0m) and a long-range position Pl = (250.2 m, 1280.4 m, 0 m). Notice that the source
positions are known to be on the ground level, according to the 2.5D problem.
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Table 1. Sensor placement in the 7-sensor experiment.

Sensor ID Position (m)

1 (10, 10, 100)
2 (430, 190, 50)
3 (450, 350, 200)
4 (70, 300, 150)
5 (400, 10, 150)
6 (200, 50, 50)
7 (250, 470, 20)

In the tests, c = 340 m/s was utilized (speed of sound), and the measurement errors
were modeled by additive white noise. Two different noise levels were used: σt,i = 210 µs
and σt,i = 2.1 ms, resulting in σi,1 = 0.1 m and σi,1 = 1 m, respectively. The final resolution
D f inal of the F-HHT and H-HHT was 0.1m, 1m, and 5m. The parameters of the six scenarios
are summarized in Table 2.

Table 2. Parameters of the simulations.

Scenario Source Position σi,1 Dfinal

#1 (157, 114) 0.1 m 0.1 m
#2 (157, 114) 1 m 0.1 m
#3 (157, 114) 1 m 1 m
#4 (250, 1280) 0.1 m 0.1 m
#5 (250, 1280) 1 m 1 m
#6 (250, 1280) 1 m 5 m

Scenarios 1–3 are near-range, while scenarios 4–6 are long-range. In both ranges,
different noise levels and final grid sizes were applied, as shown in Table 2.

All of the tested methods were implemented in Matlab v. 9.11. Notes on the utilized
algorithms:

• The LS algorithm was Matlab’s built-in quasi-Newton solver in function fminunc.
The gradient search was started from a random point within a 50m radius of the true
source position.

• The F-HHT algorithm used final grid size parameter D f inal . In the H-HHT, the same
grid size was used in the second stage of the algorithm, where the search area was
50·D f inal × 50·D f inal around the result provided by the R-HHT in the first stage.

• The search area for the HHT methods was set to [0, 0, 500, 500] in the near-range cases
and [0, 0, 1500, 1500] in the long-range cases.
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• The R-HHT and H-HHT algorithms were implemented using the HHT as defined in
section III-B.

• The likelihood function (7) includes the measurement noise estimate σi,1. In practical
cases, the exact value of the noise is often unknown. Therefore, it is recommended to
overestimate the noise level and use the overestimated value in the HHT. To replicate
this procedure in the simulations, we used σi,1 to generate the measurements, and for
the HHT algorithms, we provided 3σi,1 as the noise level estimate.

4.2. Illustration of the Operation

In this subsection, the operation of the HHT and F-HHT will be illustrated. First, an
example is shown in Figure 6, where the shape of the HHT can be observed. The HHT
function values were calculated on a grid with resolution of 0.5 m. The insets show the
functions around the global maximum, which is in close proximity to the true location,
indicated by a blue cross. Figure 6a shows a near-range example using scenario #2, while
Figure 6b shows a long-range example using scenario #5.
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Figure 6. The HHT. (a) Near-range example, (b) long-range example.

In the near-range example, one local minimum is visible (around location (160,20)),
while in the long-range case several local minima can be observed. Thus, finding the
global maximum is not a trivial problem. The impact of GDOP is also apparent in the
figure: although the measurement noise is the same in both examples (σi,1 = 1 m), in the
near-range case the peak is narrow and can be contained in a 20 m × 20 m box, while in the
long-range case the peak is spread over a much larger area of approx. 100 m × 500 m.

Figure 7 illustrates the operation of the F-HHT in scenario #2. The figure shows steps
1, 2, 3, and 10 of the iteration. Red dots indicate the centers of the actual promising tiles,
the figure titles also show their number Ntile. In the final step, the best grid point (bestP) is
also shown, which is the position estimate.

In the experiment shown in Figure 7, the total number of processed tiles was approxi-
mately 1200, resulting in approximately 1200 evaluations of (25) and the same number of
(26) (which has approximately the same computational complexity as (25)). This means that
there were a total of around 2400 HHT evaluations. It is worth noting that the final grid size
was 0.1 m, which would have required 25·106 HHT calls of (25) in the brute force solution.
Thus, in this example, the F-HHT resulted in an approximately 10,000-fold decrease in
computational complexity.

Figure 8 shows the distribution of the F-HHT location estimates. Again, scenarios
#2 and #5 were used; in both scenarios, 100 independent experiments were conducted;
the estimates are shown by red dots. The estimates are scattered around the true source
position. Despite both scenarios having the same noise level of σi,1 = 1 m, the long-range
scenario has significantly higher variance due to the higher GDOP.
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Figure 7. Operation of the F-HHT. Sensor positions are shown by blue circles. The source position
and the estimated position are shown by a blue cross and a green x, respectively. The centers of
promising tiles are shown by red dots. n: iteration, Dn: grid size, Ntile: number of promising tiles.
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Figure 8. The near-range and the long-range experiments, conducted with a distance noise standard
deviation of σi,1 = 1 m.
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4.3. Error Analysis

The performance of the F-HHT will be compared to the theoretical limit of the Cramér–
Rao lower bound (CRLB). The CRLB of our 2.5D TDOA problem, where the sensors are
in 3D but the source position is searched for in a plane, can be derived using the method
described in [27,47], as follows:

CRLB(x, y) = trace
(

F−1
)

, (27)

where F is the Fisher information matrix

F =
1

c2 GTQ−1G, (28)

with
Q = σ2

t,11N−11T
N−1 + EN−1Σ2

N−1, (29)

Σ2
N−1 =

[
σ2

t,2, σ2
t,3, . . . , σ2

t,N

]T
, (30)

G =

gT
2 − gT

1
...

gT
N − gT

1

, (31)

gT
i =

[x, y]− [xi, yi]

∥[x, y, 0]− [xi, yi, zi]∥2
, 1 ≤ i ≤ N (32)

and 1k is the vector of length k containing 1 s and Ek is the identity matrix of size k × k.
The results for all scenarios are shown in Table 3. The table shows the square root of

the CRLB and the measured root mean square error (RMSE) for all algorithms, using 1000
independent experiments in each scenario.

Table 3. Comparison of localization errors.

Scenario
√

CRLB
RMSE

LS R-HHT H-HHT F-HHT

#1 0.064 m 0.071 m 0.080 m 0.079 m 0.075 m
#2 0.64 m 0.69 m 0.72 m 0.71 m 0.70 m
#3 0.64 m 0.68 m 0.80 m 0.82 m 0.81 m
#4 1.98 m 2.03 m 2.06 m 2.32 m 2.04 m
#5 19.8 m 21.0 m 21.3 m 21.6 m 21.1 m
#6 19.8 m 21.0 m 21.3 m 21.8 m 21.2 m

In all cases, the measured errors of LS, H-HHT, and F-HHT were close to the theoretical
limit. The LS algorithm was the most accurate, which is probably due to the fact that the
search of the HHT was performed on a finite grid. The F-HHT provided results almost as
accurate as the LS method, when the final grid size was set to a sufficiently small value.

The impact of grid size can be observed in experiments #2 and #3. The theoretical error
limit was approximately 0.6m, so the grid size of 0.1m in experiment #2 was safely below
it, while in experiment #3, the grid size of 1m exceeded the error limit. As expected, the
estimation error in experiment #2 was closer to the theoretical limit, while in experiment #3
the error was significantly higher. The distinction between experiments #5 and #6 is less
apparent, as both grid sizes (1 m and 5 m) were significantly below the theoretical error
level (20 m).

Note that for the R-HHT and H-HHT algorithms, there is an additional parameter for
the number of trials. This parameter defines the number of random test positions where
(11) is evaluated. Increasing the number of trials decreases the error level, but the increase
in accuracy is small near the theoretical level. Therefore, a small increase in accuracy
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requires a large increase in trial numbers. To ensure a fair performance comparison, the
trial numbers of R-HHT and H-HHT were adjusted so that the error levels of R-HHT,
H-HHT, and F-HHT were approximately equal (see Table 3). This allows for a comparison
of the required computational power in the next section.

4.4. Evaluation Time

In this subsection, the evaluation time of F-HHT will be compared to that of other
methods. The run times of the algorithms are listed in Table 4. As mentioned before, the
trial numbers of the R-HHT and H-HHT were selected to achieve accuracy similar to that of
F-HHT. The run times of the R-HHT and H-HHT were measured for settings corresponding
to the accuracy levels, shown in Table 3. The run times were measured on a computer
featuring an Intel i5 processor with a clock frequency of 1.6 GHz and 24 GB of RAM, using
Matlab (without parallel processing).

Table 4. Comparison of evaluation times.

Scenario
Run Time (ms)

LS R-HHT H-HHT F-HHT

#1 5.4 59 × 103 4.3 × 103 2.6
#2 4.5 2.6 × 103 66 3.4
#3 4.4 539 48 2.3
#4 4.4 59 × 103 839 41
#5 3.7 513 30 16
#6 3.8 513 6.3 7.7

The trial numbers are also shown in Table 5, along with the theoretical number of grid
points Ngrid for a full grid with a grid size of D f inal .

Table 5. Trial numbers of R-HHT, H-HHT, and F-HHT.

Scenario Ngrid
Trials

R-HHT H-HHT F-HHT

#1 2.5 × 107 7 × 107 5 × 106 2.5 × 103

#2 2.5 × 107 3 × 106 4 × 104 1.9 × 103

#3 2.5 × 105 6 × 105 2 × 104 1.3 × 103

#4 2.25 × 108 7 × 107 1 × 106 7.1 × 104

#5 2.25 × 106 6 × 105 3 × 104 2.8 × 104

#6 9 × 104 6 × 105 6 × 103 1.2 × 104

In the tests, the LS solution converged in approximately the same amount of time in
all scenarios. However, the evaluation times of HHT-based algorithms were spread over
a wider range due to two effects: GDOP and measurement noise. The primary effect is
GDOP: small GDOP results in sharp peaks in the HHT, while large GDOP widens the peaks
(see Figure 6 for an illustration of this effect). The measurement noise also blurs the peaks,
resulting in smaller peaks with gentler slopes.

The F-HHT algorithm performs very well when the peaks are sharp: in the near-range
scenarios (#1, #2, #3) F-HHT was the fastest of all algorithms. In these cases, the elimination
steps quickly excluded most of the search area, resulting in the processing of a small number
of tiles and fast evaluation times.

In the long-range cases (with wider peaks), the elimination process of F-HHT was less
efficient: a larger area was still active while the grid size decreased during the iteration,
resulting in the processing of a large number of small tiles and thus longer evaluation times.



Appl. Sci. 2023, 13, 13301 15 of 20

The evaluation time of the R-HHT is dependent on several factors, including the CRLB,
the size of the search area, and the required accuracy, i.e., how close the required error is
to the CRLB. Note that R-HHT takes random picks from the search area: the larger the
search area, the more picks are needed to obtain a hit close to the optimum (the target area).
The smaller the CRLB and the closer we try to get to the theoretical optimum, the smaller
the target area, necessitating a higher number of trials. The results illustrate these effects.
In scenarios #5 and #6, the CRLB and the required accuracy were the same, resulting in
the same number of trials. In scenario #4, the CRLB was smaller, thus the trial number
increased. In scenarios #1, #2, and #3, the effect of accuracy is also visible. The CRLB is
smaller in #1 and larger in #2 and #3. As a result, the trial numbers in #2 and #3 are smaller
than in the case of #1. In scenario #2, higher accuracy was required than in scenario #3
(while having the same CRLB), thus the trial number in #2 was higher. The impact of
the search space can also be observed: e.g., in #4, the CRLB is smaller than in #1, but the
increase in the search space compensates for this effect, resulting in both scenarios having
approximately the same number of trials.

The evaluation time of H-HHT is closely related to that of R-HHT, but it greatly
depends on the final grid size, too. The grid search, performed in the second stage, can
be considered as an augmentation of the target area for the R-HHT: if the R-HHT in the
first phase provides a position so that the grid search area around this position contains the
optimal position, then the H-HHT will find a solution close to the optimum. Increasing
the grid size results in a larger search area, which leads to faster evaluation. However, the
accuracy decreases with larger grid sizes, thus the grid size cannot be set arbitrarily high.
The effect is very apparent in scenarios #5 and #6: here, only the final grid size changed,
and the larger grid size resulted in shorter run times. Both grid sizes were below the CRLB,
thus both solutions provided good accuracy. In the experiments, the H-HHT demonstrated
a 10–100-fold improvement over the R-HHT.

In most cases, the F-HHT significantly overperformed R-HHT and H-HHT in the
experiments. Additionally, in the near-field scenarios, the F-HHT was faster than the LS,
while in the far-field cases, the LS solution was more efficient.

4.5. Fault Tolerance

In this subsection, the fault tolerance of F-HHT is illustrated. For this purpose, a short-
range scenario (#1) and a long-range scenario (#4) were utilized. In the experiments, various
numbers of faulty sensors were used; the faulty sensors provided outlier measurements
with a standard deviation 100 times larger than that of the correct sensors. The faulty
sensors were selected randomly, but the reference sensor S1 was never faulty.

The measured RMSE values for the LS and F-HHT algorithms, as a function of the
number Noulier of outliers, measured using 1000 independent experiments, are shown
in Table 6. In the tests, the LS algorithm was found to be highly sensitive to outliers:
the presence of even a single outlier significantly increased the error level. The F-HHT,
however, proved to be much more robust: in the near-range scenario, the error did not
significantly increase when up to two faulty sensors were present. In the far-range scenario,
one faulty sensor was tolerated well (the error level increased from 2.1 m to 2.8 m), while
two faulty sensors increased the error to 7.5 m. Notice that in the near-range case the LS
solver behaved reasonably well in the presence of outliers, while in the far-range case its
results were practically useless. The higher sensitivity to outliers in the far-range case was
caused by the high GDOP.

In another experiment, a large number of sensors was utilized, as shown in Figure 9.
The setup, containing N = 57 sensors, was used in a real shooter localization system [33]. In
the current simulation, the exact measurements were generated for source position (25, 20),
shown by a green x in Figure 9, then white noise with σi,t = 2 ms (approximately equivalent
to σi,1 = 1 m) was added to each measurement. Then, a random set of Noulier measurements
was selected and a large noise with σi,t = 200 ms was added to them to create the outlier
measurements. The measurement sets, including both correct measurements and outliers,
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were used as inputs for the LS and F-HHT algorithms. The number of outliers, Noulier, was
varied between 0 and 55, and for each value of Noulier 1000 independent experiments were
conducted. Figure 10 shows the theoretical error level

√
CRLB and the measured RMSE

values for the LS and F-HHT algorithms on a logarithmic scale as a function of Noulier.
Notice that the LS solver diverged in many cases, thus a constrained version (fmincon in
MATLAB) was utilized during testing, which ensured that the solution remained within
the search area depicted in Figure 9.

Table 6. Localization error of LS and F-HHT in the presence of outlier measurements.

Scenario Noulier
RMSE (m)

LS F-HHT

#1

0 0.07 0.07
1 2.0 0.08
2 2.9 0.10
3 3.5 1.4
4 4.1 11.8

#4

0 2.1 2.1
1 80 2.8
2 120 7.5
3 143 41
4 181 193
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According to Figure 10, the LS solver did not tolerate any outliers, whereas the F-
HHT method performed very well up to 30–40 outliers out of 57 measurements, which is
remarkably robust behavior.

Note that in the experiments, the reference sensor was never faulty. If this cannot be
guaranteed in practice, the role of the reference sensor must be rotated, and the solution
with the highest HHT value must be selected. This process will be illustrated in the next
subsection.
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4.6. Real Measurements

In this subsection, real measurements will be used to validate the proposed method.
The setup is identical to the one used in the simulations, as shown in Figure 9. In this
real-world experiment, a gun was fired at positions listed in Table 7 and marked with
red + symbols in Figure 9. Based on the sensor measurements, the location estimates were
computed using the proposed F-HHT algorithm and the LS solver.

Table 7. Localization errors of LS and F-HHT, using real measurements.

True Position
Estimated Position Estimation Error (m)

LS F-HHT LS F-HHT

(33.37, 48.24) (35.93, 41.94) (33.44, 47.81) 6.80 0.43
(31.94, 57.34) (39.92, 45.81) (32.19, 57.81) 14.03 0.53
(34.61, 73.91) (44.83, 52.51) (34.69, 73.44) 23.71 0.48
(28.61, 75.62) (34.18, 38.85) (29.06, 75.31) 37.19 0.55

The measurements included several outliers and it was not possible to ensure the
correctness of one specific reference sensor. Thus, in the tests, each sensor was selected
as the reference sensor in a rotating fashion, and the F-HHT algorithm was run for each
selection. The position estimate was determined based on the highest HHT value. The
process is demonstrated by the measurement position (33.37, 48.24). In this experiment,
30 sensors provided measurements, and as a result, 30 independent F-HHTs were run,
each using a different reference sensor. Figure 11 shows the highest values of the HHT
as a function of the reference sensor index. For better visibility, the sensor indices were
rearranged to display the HHT results in decreasing order: the best experiments are on the
left-hand side and the worst are on the right-hand side. The corresponding positioning
errors are also shown in Figure 11. Clearly, the highest HHT values correspond to small
positioning errors, while small HHT indicates bad reference sensor measurement and large
positioning error. In this experiment, the best HHT value obtained was 22.6, with an error
of 0.43 m.
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The position estimation errors are listed in Table 7 for the F-HHT and the LS solutions.
The F-HHT performed well in all cases, producing errors around 0.5 m. The LS solution,
due to the outlier measurements, had estimation errors in the range of 6–37 m.

Notice that in the real experiment, the exact measurement errors were not known but
were estimated to be in the range of σi,1 ≈ 0.3 m. The obtained error values correspond
well with the error levels of the simulation tests.

5. Conclusions

A Hough-transform-based localization method was proposed to evaluate TDOA
measurements for emitter localization purposes, where the target is located on a plane,
with sensors deployed in the three-dimensional space. A new variant of the HHT was
proposed along with a fast, branch, and bound-type calculation. The proposed F-HHT was
proven to find the global maximum of the HHT on a predefined grid. The performance of
the F-HHT was studied and compared to that of the LS solution, and earlier variants of fast
HHT methods, using simulation examples.

The results showed that the error of the F-HHT is close to the theoretical limit (CRLB),
similar to the LS solution and the other HHT methods. It was found that the F-HHT
was faster in good GDOP situations, where the HT had a narrow peak around the global
maximum. In such cases, the speed of the F-HHT was higher than that of the LS solution,
and much higher than that of other HHT solutions. In cases when the GDOP was lower
(i.e., the HT has wide peak around the global maximum), the F-HHT was slower than
the LS solution but faster than the other HHT solutions. It is important to note that the
F-HHT guarantees to find the global optimum, a property that neither the LS nor other
HHT solutions can provide. The construction of further acceleration techniques, which
maintain the global convergence property, is the topic of future research.

Another attractive property of F-HHT (and other HHT-based solutions) is that they
are robust against outlier measurements. It was demonstrated that the F-HHT can tolerate
faulty sensors (other than the reference sensor) well. In a large sensor system, F-HHT was
shown to tolerate extreme situations, such as more than half of the sensors providing outlier
measurements. The performance of the proposed method was also illustrated using real
measurements.
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