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Abstract: Two-dimensional object detection techniques can detect multiscale objects in images.
However, they lack depth information. Three-dimensional object detection provides the location
of the object in the image along with depth information. To provide depth information, 3D object
detection involves the application of depth-perceiving sensors such as LiDAR, stereo cameras, RGB-D,
RADAR, etc. The existing review articles on 3D object detection techniques are found to be focusing
on either a singular modality (e.g., only LiDAR point cloud-based) or a singular application field (e.g.,
autonomous vehicle navigation). However, to the best of our knowledge, there is no review paper that
discusses the applicability of 3D object detection techniques in other fields such as agriculture, robot
vision or human activity detection. This study analyzes both singular and multimodal techniques of
3D object detection techniques applied in different fields. A critical analysis comprising strengths and
weaknesses of the 3D object detection techniques is presented. The aim of this study is to facilitate
future researchers and practitioners to provide a holistic view of 3D object detection techniques. The
critical analysis of the singular and multimodal techniques is expected to help the practitioners find
the appropriate techniques based on their requirement.

Keywords: 3D object detection; singular technique; multimodal technique

1. Introduction

Object detection includes identifying both object class and location. Object detection
is essential in versatile fields such as medical diagnosis, industrial production inspection,
surveillance, etc. Researchers have gained high precision and real-time speed using deep
learning-based 2D object detection methods [1–8]. Convolutional Neural Network (CNN) is
the backbone of these algorithms. CNN can detect the pattern and shape of different objects.
Although 2D object detection can precisely detect objects, it is deficient in depth and height
information. Depth and height information is vital in obstacle avoidance, autonomous
vehicle navigation, household robots, medical surgery, etc. However, unlike 2D object
detection, 3D object detection is more complex in terms of model training, data availability,
annotation and processing. Figure 1 illustrates the difference between 2D and 3D object
detection of a car. Figure 1 shows that, in 2D object detection, the objects are detected in
two-dimensional form (length and width in the image). On the other hand, in 3D object
detection, a prediction of depth is also perceived along with length and width.

The most popularly used datasets for 3D object detection are KITTI [9], SUN RGB-
D [10], ScanNet [11], nuScenes [12] and the Waymo Open Dataset [13]. Among the un-
manned aerial vehicle (UAV) point of view datasets, Shahbazi et al., 2019, presented a 3D
dataset generated using both a multi-view stereo camera and a LASER scanner. The site it
covers is a gravel mine [14]. Vélez et al. published a high resolution RGB image dataset of
a pistachio orchard in Spain captured from UAV [15]. This dataset is intended to use for
3D Photogrammetric Reconstruction Another large dataset containing human activity is
produced by Li et al., 2021, in RGB-D format that can be used for 3D detection [16]. 3D
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detection is being applied in medical sector for internal organ disease detection. In the
medical sector, 3D CNN is being used on 3D images obtained by Computed Tomography
(CT), Diffusion tensor imaging (DTI), magnetic resonance imaging (MRI), Functional mag-
netic resonance imaging and Ultrasound [17]. But medical imaging differs in terms of data
representation and is difficult to compare with other domains.
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Figure 1. (a) Two-dimensional detection of a car; (b) 3D detection of a car.

Since computers with GPUs are more available now, it has enhanced the scope of 3D
detection with deep learning. Several review papers are found on 3D object detection. For
example, Fernandes et al., 2021, presented a survey paper on 3D object detection [18]. This
paper solely focuses on LiDAR-generated point cloud-based 3D object detection. Moreover,
only self-driving vehicle-related methods are discussed in this paper. Zamanakos et al.,
2021, published another survey paper on current trends in 3D object detection [19]. This
survey exclusively covers LiDAR-based methods and focuses on the self-driving field.
Arnold et al., 2019, published a survey article on 3D object detection techniques obtained
by sensors other than LiDAR. This article discusses some fusion methods as well [20].
This research emphasizes 3D detection techniques relevant to autonomous driving. After
carefully studying the “3D object detection”-related review papers published in Scopus and
Web of Science journals, the contents of the most relevant review papers are noted in Table 1.
This visual presentation has paved the way to existing research gaps and new research
scopes on 3D object detection techniques. Table 1 contains the relevant review papers.

Three-dimensional object detection techniques are recently gaining popularity due
to the necessity of object shape and orientation estimation in real-world space. However,
Table 1 clearly shows that, a comprehensive review paper on 3D object detection is still
lacking which analyses both singular and multimodal techniques in recently popular
application domains. This review article is written with a view to reducing this gap to
some extent.

1.1. Paper Motivation

The previous survey papers focus on a single application sector (mostly autonomous
vehicle navigation) or a singular modality of 3D object detection. Table 1 clearly depicts the
scenario. However, 3D object detection is recently growing in other application domains
besides autonomous driving. Precision agriculture, household robots, surveillance services,
etc. can benefit from 3D object detection. As 3D object detection is rapidly gaining popular-
ity with researchers, there have been some new discoveries as well which are not included
in the previously published review papers.
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Table 1. Relevant review articles on 3D object detection.

Ref.

Modality Application Domain

ContentPoint Cloud Camera
RADAR

Multi
Modal

Autonomous
Vehicles

Robot
Vision

Precision
Agriculture

Human
PoseLiDAR RGB-D Mono Stereo

[21] H M H L L L H H L L

This research focuses on point
cloud and monocular
camera-based 3D object detection.
However, the scope is limited to
autonomous vehicle navigation
and robot vision.

[22] H M H H M H H L L L

This research elaborates different
modality (camera, LiDAR,
RADAR) performance, but the
scope is limited to the autonomous
vehicle sector.

[23] H H H M L M H H L L
This paper explores 3D object
detection focusing on autonomous
vehicles and indoor robot vision.

[24] H L M L L M H L L L

This article discusses 3D object
detection techniques with point
cloud methods, especially in the
autonomous vehicle navigation
sector. However, the other
modalities such as stereo sensors
are not discussed.

[25] H H H M L M H H L M

This research focuses on 3D object
detection techniques based on
point cloud and
monocular camera.

[26] L H H M L M L H L L
This research discusses 3D object
detection techniques for room
shape assessment.

[27] H L L L L M L M L H

This article discusses 3D object
detection techniques specifically
with LiDAR sensors. However, the
scope is limited to
human detection.

Symbol: H—Detailed discussion. M—Fundamental information. L—no information or few information
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We have studied and analyzed the trend of 3D object detection techniques used in
diverse fields since 2017. Before 2017, the research related to 3D object detection is observed
to be very scarce. Each technique, whether using LiDAR, monocular camera, stereo camera
or RADAR, possesses individual strengths and some limitations. From our observation,
there is a lack of a thorough study depicting opportunities and obstacles of singular and
multimode 3D object detection techniques in different fields. The motivation of this paper
is to present a holistic study to assist future practitioners and researchers to choose the
suitable method for their application in 3D object detection research.

1.2. Paper Contribution

To the best of our knowledge, this is the first review paper covering diverse sectors of
3D object detection considering different modalities. The key contributions of this review
paper are as follows:

• The fundamental concepts of 3D object detection are illustrated in this paper (Section 2);
• Three-dimensional object detection is booming in different sectors. This paper presents

3D object detection techniques applied in different sectors, benchmark datasets in
various fields and compares sensor types (Section 3);

• The most frequently used evaluation metrics are discussed (Section 4);
• This paper compares the speed and performance of different methods in a popular

benchmark dataset (Section 5);
• A SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis is presented on

the singular and multimodal techniques (Section 5);
• After thorough analysis, future directions and limitations of the existing methods are

provided (Section 6).

2. Three-dimensional Object Detection Techniques

Three-dimensional object detection requires inferring height and depth information
along with object location. To acquire this knowledge about objects, researchers have used
several modalities of data from different kinds of device or sensors. Different benchmark
datasets of 3D object detection techniques incorporate different modalities, and they exhibit
different scopes and constraints. Table 2 briefly discusses the modalities, annotated object
category and constraints of the benchmark datasets.

Table 2. Benchmark datasets of 3D object detection.

Dataset
Modalities

Annotated
Object Category Constraint

LiDAR RGB Camera Stereo
Camera RADAR RGB-D

KITTI [9] 3 3
3
(Greyscale) 7 11 classes

Focuses on road scene.
Not suitable for indoor
robotic vision research.

nuScenes [12] 3 3 7 3 23 classes Focuses on autonomous
driving scenario.

Waymo [13] 3 3 7 3 23 classes Exclusively built for
autonomous driving.

SUN RGB-D [10] 7 3 7 7 3 700 classes Focuses only on
indoor scene.

ScanNet [11] 7 3 7 7 3 20 classes Focused on
indoor scenes.

In singular modality only one type of device is used, whereas multimodal methods
combine more than one device. These modalities are reviewed in this section. Sections 2.1
and 2.2, respectively, describe singular modalities and multimodal methods practiced
by researchers.
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2.1. Singular Modalities
2.1.1. Point Clouds

Numerous 3D object detections are performed from a point cloud. A point cloud can
be generated from Kinect devices (SUN RGB-D dataset), CAD models, mobile scanners
or LiDAR [28]. Point cloud is the illumination value along with the 3D location of points
reflected from the object surface. LiDAR sensors having LASERs can directly produce a
point cloud. From the depth information (usually obtained by infrared or Time of Flight
camera) of RGB-D datasets, the point cloud is inferred by processing. For 3D detection,
point clouds are processed in two ways, i.e., i. Direct point cloud processing; ii. Projection
of the point cloud in Bird’s Eye View (BEV) or 2D plane.

Direct Point Cloud Processing

In direct point cloud processing, the point information (such as intensity, 3D coor-
dinate values, color, etc.) of point clouds are directly processed by neural networks to
extract features and predict 3D object boundaries. The network has to handle higher di-
mension data compared to the 2D plane projection-based method. A visual representation
is shown in Figure 2. Object segmentation can be performed directly on a point cloud
using a neural network [29,30]. In these research works, authors performed semantic
segmentation using the features of points by applying max pooling for the overall skeleton
of the object. They further improved this process by applying this technique in different
layers and detected fine patterns as well. But this process is not demonstrated for instance
level segmentation. Instance segmentation can be required when each object needs to be
identified individually. Semantic segmentation can locate the same class of all objects with
common category names, such as cars, people, bicycles, etc., whereas instance segmentation
is capable of distinguishing one car from the others. This is often essential in object tracking
or surveillance.

Shi et al. illustrated another point cloud-based network called PointRCNN where
points are segmented as foreground and background in the first stage to generate 3D
region proposals. Then, coordinates of the proposed regions are identified for performing
object detection. However, this network showed poor performance on pedestrian detection
compared to vehicles detection. The sparse nature of the point cloud from a small-sized
object (here a pedestrian) may be a reason for the lower precision rate [31].

Qi et al. utilized an interesting geometric concept, Hough voting, to identify the core
of the 3D object. From the point cloud of the surface of the object, the center can be located
using Hough voting. They have successfully demonstrated 3D object detection by locating
household items such as a sofa, chair, table, etc. in the SUN RGB-D and ScanNet datasets.
But the applicability of this method in long-range detection such as on UAV images is
uncertain based on the information of this research [32].

Some researchers have rasterized the information of point clouds, which are called
voxels, and then the feature of every voxel is encoded [33–36]. An improved method of
this network is introduced by Zhou, Y. and Tuzel, O. (2018). Instead of handcrafted feature
encoding, they have incorporated a region proposal network for detection. They have
detected different vehicles and pedestrians in the KITTI dataset, proving this method to be
suitable in autonomous vehicles. Interestingly pedestrians detection required close distance
LiDAR, compared to vehicles detection, It suggests that small objects such as pedestrians
and cyclists generate too sparse point cloud to detect from long distance [37].

Projection of Point Cloud in Bird’s Eye View (BEV) or 2D Plane

Another commonly practiced method for 3D object detection is projecting the 3D
point cloud to a pseudo-2D or Birds Eye View plane. After 2D view projection, a neural
network is applied to extract features and generate object prediction. Some researchers have
applied CNNs after converting the point clouds into 2D planes in their research [38,39]. A
similar conversion technique from 3D point cloud to 2D plane is found in [40,41]. After



Appl. Sci. 2023, 13, 13267 6 of 22

the perspective view conversion, CNN-based feature recognition network is applied in
this research.
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Fang, Jin et al. used a LiDAR point cloud in the form of VoxelNet or PointPillars and
then applied 3D CNN in feature map. A heat map is generated where the local maxima
is the object center. Identifying the center made the object tracking faster. The nuScenes
and Waymo Open Datasets are used in their research to demonstrate the precision [42].
Simon, Martin et al. (2019) created a Birds Eye View projection from a point cloud and then
applied Complex YOLO following the YOLO V2 technique to predict the object class. After
that, Euler Region Proposal was used to detect the orientation of the object [43].
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In research of Lang, Alex H. et al. (2019), the features of point clouds are stacked in
the form of pillars and named PointPillars. A pseudo-2D image is then projected with
the PointPillar features. They claimed that any 2D CNN-based network can be applied at
this stage to detect the object. In this paper, they applied Single Shot Detector (SSD) [44].
Though research on projecting 3D points to 2D planes has successfully detected road scene
objects such as vehicles or pedestrians, the data transformation to another plane may lead
to information loss and cause additional computation loss.

2.1.2. Camera/Vision

Vision-based systems have been successfully applied for both object detection and
tracking [45–48]. Mahayuddin et al. performed vision-based moving object detection
using semantic convolutional features and achieved a greater detection rate than YOLO
V3 and faster than RCNN [46]. Besides single objects, researchers even estimated dynamic
crowds from UAV imagery using a vision-based system [49]. While this research focuses
on 2D object detection, vision-based moving object detection is also possible in three
dimensions [50,51]. Three-dimensional detection using cameras can be performed using
two methods, i.e., i. monocular and ii. stereo images.

Monocular (RGB)

Monocular camera is a single camera that is used to generate 2D images. From single
2D images, 2D object detection task i.e., object classification and localization can be done.
For 3D object detection, additional depth information is inferred from geometric cues,
contrast or prior shape information of the known object.

Several researchers performed 3D object detection only from a single image [52–54].
Monocular image-based 3D reconstruction is proposed by Shapii et al., 2020, where mul-
tiple images are used for generating a 3D view of a human activity pose [55]. This is
the cheapest method for 3D object detection. But the accuracy is lower than stereo and
LiDAR-based detection. However, monocular images can be combined with other 3D
detection techniques to achieve better precision. This is discussed in Section 2.2, entitled
“Multimodal methods”.

Stereo

Stereo cameras utilize two cameras, one capturing the left and another the right image.
Its working principle follows that of human vision. By comparing the disparity between
the same pixels of two camera images, it is possible to perceive the depth information of
the object. Stereo images are proved to be usable for 3D object detection, with a slight
compromise in precision compared to LiDAR [56–58]. Their research proves that stereo
images can be used for 3D object detection precisely and economically.

Zhang et al. applied the CNN-based network TrackleNet for detecting and tracking
pedestrians [50]. Stereo R-CNN [59], Pseudo-LiDAR from Visual Depth [56] and Triangu-
lation Learning Network [60] are 3D deep learning networks developed and successfully
applied for autonomous vehicle navigation. You et al. utilized stereo images guided by an
economical few point laser for improving precision [57].

2.2. Multimodal Methods

Three-dimensional object detection can be performed by applying multiple sensors or
devices. Based on the application and requirements, researchers have combined different
sensors having different strengths. Recent research works on multimodal methods are
briefly discussed in this section.

2.2.1. Two-dimensional Image and Point Cloud

Qi et al., 2018, used both RGB images and depth information for 3D object detection.
In this research, CNN is used on an RGB image to generate region proposals, and then in
the proposed regions depth information is merged to create a 3D frustum. After that, 3D
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instance segmentation and “amodal 3D box estimation” is performed to view the object
behind an obstacle. This method works at real-time speed and exhibits high recall, even for
detecting small objects. But this method relies heavily on the region proposed by the 2D
object detector at the beginning. Therefore, an appropriate algorithm for region proposal in
the 2D plane is essential for the overall success of the entire process [61]. Similar methods
are observed in [62–65].

LiDAR-only methods (i.e., point cloud-based) are improved by incorporating RGB
images in Point-RCNN [31], VoxelNet [37,66] and PointPillars [44]. These methods are
similar to PointPainting [67–70].

Another blended method between a point cloud and an RGB image fuses features of
point louds and features of images [71–90]. From collective features, the region of interest is
identified. In these regions, 3D object detection is performed afterwards. Although combin-
ing RGB and LiDAR point cloud information is complex, it exhibited better performance in
outdoor scene 3D object detection than the standalone LiDAR voxel method [91].

2.2.2. RADAR and 2D Image

Radio Detecting and Ranging (RADAR) senses distance using radio signals. As
RADAR cannot anticipate color information, it can only assume the shape or size rather
than classify. A big advantage of RADAR is being less prone to harsh weather compared to
LiDAR or camera images. But combining RADAR with images has successfully improved
precision of 3D object detection [92–94]. In [92], the object center is detected from a 2D
image. Then, targeting that object center, a RADAR point cloud is used for obtaining depth
information in frustrum shape. It improved image-based detection in the nuScenes dataset.
Nabati et al. (2020) used RADAR-generated point clouds for region proposal for objects.
Then this region is imposed on 2D image to perform 3D detection [93].

2.2.3. Other 3D Object Detection Methods

Wang et al., 2020, proposed a multimodal system for leveraging the advantages of
images, LiDAR and RADAR. In this method, the first image is used to obtain the regions
of interest. Then, in these regions, point clouds from LiDAR are used to obtain depth
information along with orientation of the object. RADAR is used for further refinement of
3D detection [95].

Apart from the above-mentioned methods, simultaneous localization and mapping
(SLAM) is applied for constructing 3D views. Chen et al. (2022) applied SLAM for waste
sorting [96]. They used both image and LiDAR data for the SLAM application. They created
their own dataset. Zhang et al. (2019) used SLAM on Multiview stereo images for 3D
detection of humans from a UAV [50]. Structure-from-motion (SFM) is another 3D detection
and localization approach recently being applied from UAVs. Gené-Mola et al. (2020)
applied SFM for 3D detection of fruits [97]. This approach involves capturing multiple
2D images and then constructing a 3D view by combining these images by matching the
key features. As this method is time-consuming, instance segmentation is performed to
reduce the regions of interest before generating the 3D view. Teng et al. (2023) compared
both LiDAR-based SLAM and SFM. In their research, they found SLAM to be faster and
more accurate than SFM [98]. For better visualization, an illustration of 3D object detection
technique stages is presented in Figure 2 in a very simplified manner.

3. Branches of 3D Object Detection Techniques

Three-dimensional object detection is gaining popularity in various domains. Recent
research works on 3D object detection in different application sectors are shown in Figure 3.
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The application of 3D object detection is expanding day by day. Figure 3 depicts
the commonly practiced sectors of 3D object detection. Among all the four sectors, most
research work is conducted in the autonomous vehicle navigation domain. The benchmark
datasets are most versatile in this sector as well. Research works in these domains are
tabularized in Tables 3 and 4.

Apart from the above-discussed applications, 3D object detection is also performed
in some recent medical research, such as augmented assistance in surgery or diagnosis.
The input data format and acquisition process of 3D object detection in the medical field is
different than other sectors. Computed Tomography (CT), Diffusion tensor imaging (DTI),
magnetic resonance imaging (MRI), Functional magnetic resonance imaging and Ultra-
sound are three-dimensional. Three-dimensional convolutional networks can be applied to
these images for 3D detection of organs for better disease detection. Three-dimensional
CNN is successfully applied for disease severity prediction and classification [99–101].

However, 3D datasets are very few in number in the medical field. Patient confiden-
tiality may be a reason behind it. Image augmentation is sometimes applied to increase
the dataset size [102,103]. In Table 3, we have summarized singular modality 3D object
detection methods practiced since 2017.

Multimodal techniques involve multiple sensors for 3D object detection. In Table 4, re-
cent multimodal techniques are mentioned. This table indicates that multimodal techniques
usually involve LiDAR or RGB images accompanied by some other modality.

Tables 3 and 4 exhibit singular and multimodal techniques of 3D object detection in
different fields. Observing the trends, the following insights are found.

• Autonomous Vehicle navigation: LiDAR is a very popular modality in this field. It
can be used both in singular and multimodal methods. LiDAR exhibits long-range
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LASER scanning, making it capable of designing a standalone end-to-end 3D object
detection system. RGB-D sensors have low range (usually lower than 10 m). Due to
this constraint, autonomous vehicle navigation-related research works are not found
to use this modality.

Among the vision-based technologies, a monocular RGB camera was used as a singular
modality by few researchers, but it could not exhibit as much accuracy as the LiDAR sensor.
Moreover, detectability range was lower than LiDAR. Some researchers have mentioned
stereo cameras as a modality with high potential in autonomous vehicle navigation. Even
the automotive company Tesla is focusing on stereoscopic vision rather than LiDAR,
considering it more nature-inspired, economical, and similar to human vision. However,
stereoscopic camera ranges are far less than that of LiDAR.

RADAR is not found to be used as a singular modality system for 3D object detection
since, it cannot perceive color information of the objects. But in some research works,
RADAR was implemented along with other modalities.

• Robot Vision: RGB-D sensor is the most popular sensor, serving both in singular and
multimodal techniques of robot vision. Most of these research works are conducted in
indoor environments. For this reason, the long-range detection requirement is absent
in this field. This makes RGB-D a wonderful option for perceiving both color and
depth information of objects in indoor environments. RGB-D cameras are constructed
with an RGB camera (for color perception) and infrared sensors (for depth perception).

• Precision Agriculture: In agriculture, LiDAR is found to be used for long-range
3D detection. Specially, precision agriculture involving UAVs from high altitude is
benefitted by LiDAR. LiDAR has been applied as singular modality or multimodal
technique with other sensors such as RGB cameras or narrow beam SONAR (Sound
Navigation and Ranging). However, monocular cameras are being used as a singular
modality in the Multiview 3D detection technique. In this method, 2D images captured
from different angles around the object contribute to 3D detection. In the case of
multimodal detection, RGB cameras can be used with RGB-D sensors. Monocular
cameras, having lower range than LiDAR can serve for 3D object detection from a
closer range.

• Human activity/pose detection: Monocular RGB cameras are widely used for human
pose detection using the Multiview 3D object detection technique. For long-range
detection, LiDAR has been used by researchers. To enhance the detectability of
LiDAR-based detection, some other modalities such as inertial measurement unit
(IMU) are also used in existing research works. However, in indoor robot vision,
human activity detection and precision agriculture, RADAR is not usually preferred
for 3D object detection technique. The reason may be the low spatial resolution of
RADAR (compared to LiDAR or camera) which makes detection of thin objects or
close-proximity objects difficult and ambiguous.

Multimodal techniques have evolved for utilizing the benefits of multiple sensors. For
example, structural information of objects is well perceived using LiDAR for long range,
whereas cameras are good at perceiving fine texture information. However, multimodal
techniques come with the additional cost and complexity of synchronizing different formats
of data from different sensors.
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Table 3. Singular modality techniques of 3D object detection methods from 2017 to 2022.

Domain Ref.

Sensor Data Type Dataset
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R
A

D
A

R
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K
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T
I

[9
]
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Sc

en
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[1
2]

W
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m
o

[1
3]

SU
N

R
G

B
-D

[1
0]

Sc
an

N
et

[1
1]

O
th
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s

Autonomous
Vehicle
navigation
(Detecting
vehicles and
people in
road scene)

[37] 3 3

[31] 3 3

[43] 3 3

[44] 3 3

[56] 3 3

[59] 3 3

[60] 3 3

[53] 3 3

[42] 3 3 3

[54] 3 3

[104] 3

[105] 3 3 3

Indoor objects
(Robotic Vision)

[104] 3 3 3

[105] 3 3 3

[29] 3 [106,107]

[30] 3 3 [107,108]

[32] 3 3 3

[109] 3 [110]

[111] 3 Self-made

[112] 3
TUM
RGB-D

Precision
Agriculture

[113] Multi
spectral Self-made

[97] 3 Self-made

[114]
3
(Multi
View)

Self-made

Human Pose/
Activity
Detection

[115]
3
(Multi
View)

[116–118]

[119]
3
(Multi
View)

[116–118]
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Table 4. Multimodal modality techniques of 3D object detection methods from 2017 to 2022.

Domain Ref.

Sensor Data Type Dataset

Li
D

A
R

R
G

B
-D

M
on

oc
ul

ar
(R

G
B

)i
m

ag
e

St
er

eo
Im

ag
e

R
A

D
A

R

O
th

er

K
IT

T
I

[9
]

nu
Sc

en
es

[1
2]

W
ay

m
o

[1
3]

SU
N

R
G

B
-D

[1
0]

Sc
an

N
et

[1
1]

O
th

er
s

Autonomous
Vehicle
navigation

[61] 3 3 3

[120] 3 3 3

[90] 3 3 3 [121]

[67] 3 3 3 3

[92] 3 3 3

[94] 3 3 3 [122]

[95] 3 3 3 3

Indoor objects
(Robotic Vision) [61] 3 3 3

Precision
Agriculture

[123] 3 3 Self-made

[124] 3 3 Self-made

[125] 3 3
narrow beam
SONAR Self-made

Human
Pose/
Activity
Detection

[126] 3
inertial mea-
surement
unit (IMU)

[127]

4. Evaluation Metrics

A commonly used metric for measuring the performance of object detection is Average
Precision [103]. Precision, average precision and mean average precision are widely utilized
metrics for evaluating performance of 2D object detection. For 3D object detection, different
benchmark competitions use average precision (AP) as well. AP is used for performance
comparison in [37,61,128,129]. Average Orientation Estimation is also used as 3D object
detection evaluation metric which shows the angle of the object [44,129]. A slightly different
version of AP is Mean Average Precision, used by [32,42,44,129].

Wang et al. used Average Precision at different IoU (Intersection over Union) values,
i.e., 0.5 or 0.7, for evaluation [56]. IoU is used to measure the amount of matched area
between ground truth and the detected object. If there is a perfect match, i.e., the object is
perfectly predicted, then the IoU value will be 1.

If TP indicates True Positive (correctly detected object), FP means False Positive
(mistakenly detected as object), TN means True Negative (correct mentioning of absence
of object) and FN means False Negative (could not predict the presence of object), then,
from [130,131], the simplified equations of precision and recall are as follows:

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

The parameters of precision and recall are explained in Figure 4. The figure illustrates
the meaning of TP, FP, TN and FN.
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In Figure 4a, when the object (in this case the bicycle) is present in the image and
it is detected, this scenario is called true positive. In Figure 4b, there was no bicycle in
the image, but it was falsely detected. This scenario is called false positive. In Figure 4c,
there was no bicycle and there was no detection of bicycles either. It is classed as a true
negative. In Figure 4d, there was a bicycle, but it was not detected by the model. This is
called false negative.

If the precision and recall curve is p(r), then the formula to compute average precision is:

AP =
∫ 1

0
p(r) (3)

Mean Average Precision (mAP) is computed by computing the average value of all
the AP corresponding to an entire dataset. If a dataset has 10 categories, then after finding
the AP for each category the mean is computed for these 20 categories to obtain mAP.

5. Observation and Analysis

Since 2017, most of the 3D object detection methods have been implemented for
autonomous vehicle navigation. Numerous competitions have been organized on differ-
ent open benchmarks, especially on road scenes. Three-dimensional object detection is
gradually becoming popular in other domains as well, with the availability of GPU-based
computers allowing high computation capabilities.

A comparison of the common devices for 3D detection is presented in Table 5. Infor-
mation in this table is collected from the research work of Chen et al. (2021) [132].

Table 5. Performance comparison of 3D object detection sensors and devices.

Performance Criterion RADAR LiDAR RGB Camera

Object detection Good Good Fair
Object classification Poor Fair Good
Distance inference Good Good Fair
Detecting edge Poor Good Good
Visibility range Good Fair Fair
Adverse weather performance Good Fair Poor
Performance in low light condition Good Good Fair

The performance of 3D object detection methods depending on the type of sensor
can be seen from Table 6. Table 6 contains the top average precision methods exhibited by
different modalities in the KITTI vision benchmark leaderboard.
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Table 6. Comparison of networks in KITTI Vision benchmark Suite.

Modality Method Reference Category Easy Moderate Hard Run Time

LiDAR+ RGB VirConv-S [133] Car 92.48% 87.20% 82.45% 0.09 s
LiDAR+ RGB LoGoNet [134] Car 91.80% 85.06% 80.74% 0.1 s
LiDAR+ RGB LoGoNet [134] Pedestrian 54.04% 47.43% 44.56% 0.1 s
LiDAR CasA++ [135] Car 90.68% 84.04% 79.69% 0.1 s
LiDAR CasA++ [135] Pedestrian 56.33% 49.29% 46.70% 0.1 s
Stereo DSGN++ [58] Car 83.21% 67.37% 59.91% 0.2 s
Stereo DSGN++ [58] Pedestrian 43.05% 32.74% 29.54% 0.2 s
Stereo DMF [136] Car 77.55% 67.33% 62.44% 0.2 s
Stereo DMF [136] Pedestrian 37.21% 29.77% 27.62% 0.2 s
Monocular
(RGB) CIE + DM3D [137] Car 35.96% 25.02% 21.47% 0.1 s

Monocular
(RGB)

QD-3DT
[LSTM on RGB] [138] Car 12.81% 9.33% 7.86% 0.03 s

Monocular
(RGB)

QD-3DT
[LSTM on RGB] [138] Pedestrian 5.53% 3.37% 3.02% 0.03 s

Table 6 shows that LiDAR-based methods exhibited maximum average precision.
Multimodal techniques are a recent addition; in particular, LiDAR with camera techniques
is showing good potential in terms of precision value. Thin surface objects (such as
pedestrians) detection achieved average precision than wide surface cars. The monocular
techniques captured only RGB image frames and then the images were trained in sequential
network (e.g., LSTM). For dealing with only RGB, the speed was found to be fast, but the
average precision was very much less than stereo or LiDAR.

Analyzing the practiced modalities of 3D object detections, following SWOT (Strengths,
Weaknesses, Opportunities and Threats) analysis, Tables 7–9 are developed.

Table 7. SWOT analysis on LiDAR (point cloud)-based 3D object detection.

Strengths

• LiDAR produces a direct point cloud, conveying the
three-dimensional information (position and depth) and
corresponding illumination value from the object surface.

• Up to now, LiDAR-based 3D object detection has been
proved to have the highest precision.

Weaknesses
• LiDAR-generated point clouds are sparse. For thin surface

objects, the sparsity is greater, which makes the detection
process less precise.

• Thin objects can be detected only at a closer distance from
the LiDAR position. Hence, average precision in detecting
pedestrians or cyclists is always lower than vehicles.

Opportunities

• It can be applied for real-time applications.
• Waymo and some other vehicle companies are using

LiDAR-based 3D object detection in self-driving cars.

Threats
• LiDARs are not commonly available. Researchers rely on

open datasets if they cannot use LiDARs of their own.
• High price of LiDARs is not economic for numerous

appli-cations.
• Majority of open datasets of LiDAR point clouds are

fo-cused on road scenes, making it difficult for other
sectors to grow.

Table 8. SWOT analysis on camera/vision-based 3D object detection.

Strengths
• It is the most inexpensive method, making it readily

available to researchers even for developing new da-tasets
for deep learning.

• Camera-based methods can classify object types with less
processing compared to LiDAR or RGB-D.

• Unlike LiDAR, thin object detection does not suffer from
lower precision.

Weaknesses
• Fog or dusty weather can easily hinder object detection.
• Depth information in single 2D images is less precise than

any other method.
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Table 8. Cont.

Opportunities

• While integrating with other modalities, the vi-sion-based
method is proved to be very precise.

Threats
• Using multi-view 2D images for 3D detection (e.g., in the

Structure-from-motion technique) is time-consuming,
making it difficult for real-time applications.

Table 9. SWOT analysis on Multimodal 3D object detection.

Strengths
• In combined methods, one device or sensor can over-come

the individual weakness of another. Hence, it provides
better precision than single modality.

Weaknesses

• Integrating different modality data is challenging.
• It often requires more time to integrate the stages.

Opportunities

• With greater availability of sensors and datasets, combined
methods are gaining popularity among re-searchers
and practitioners.

Threats
• Failure of one modality can affect the overall success of the

entire process.
• Unavailability of datasets in different sectors can ham-per

combined modality research.

6. Advancement, Challenges and Future Directions

Analyzing the strengths and weaknesses of existing research works, some valuable
insights are learnt. These are listed as follows:

• Point cloud-based 3D object detection can be performed in both indoor and outdoor
environments. However, LiDAR can generate point clouds at longer range in variable
weather conditions, whereas RGB-D or Kinect-based point clouds face limitations
in terms of range and weather conditions. For this reason, point cloud-based 3D
object detection is performed with the help of LiDAR sensors in autonomous vehicle
navigation research. However, RGB-D sensors are less expensive, and the generated
point clouds are successfully implemented in close-range research works on precision
agriculture or indoor robotic vision;

• Three-dimensional object detection technology is significantly supported by deep
learning. Deep learning networks are comprised of multilayer neural networks which
can learn the patterns of data. In significant 3D object detection networks, such
as PointNet, PointNet++, VoxelNet, CenterNet, etc., deep learning is used to learn
object information from points or group of points. Also, in the two-stage networks
where initially RGB images are used for region proposals, deep learning is applied
for predicting the regions of objects. Future research work may include deep learning
for leveraging more opportunities such as transfer learning in 3D object detection-
related research;

• Development of end-to-end 3D object detection networks is becoming popular for
their ease of application. End-to-end networks directly need to collect raw sensor
data and provide 3D bounding-box output predictions. To develop such networks,
it is essential to choose the necessary type of sensor (LiDAR, camera or RADAR),
pre-process the data, design a neural network to learn the features of the data and
train, validate and evaluate the model. Both hardware and software knowledge are
required for the developers of end-to-end networks;

• Data collection and annotation for 3D object detection is more complex compared to
2D object detection. Three-dimensional object detection data collection involves fusing
the data from different types of sensors, such as LiDAR, monocular or stereo cameras,
RADAR, etc. This process requires calibration of different devices and synchronization
of the data. The data annotation for 3D object detection needs to describe not only
the object location, but also its dimensions in space, position and orientation. The
data description involves parameters such as object length, width, height, yaw, pitch,
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roll, occlusion amount, etc. More expertise in terms of 3D geometry is necessary to
annotate data in the case of 3D object detection;

• The limitation of point cloud-based object detection, especially in outdoor environ-
ments, is sparsity. Hence, thin object detection is an open research question in this
field. Comparing the average precision values of cars and pedestrians in Table 6, it
is clearly visible that detection of the thin surface of pedestrians achieved far less
precision. Hence, how to increase precision for thin object detection with point cloud
methods is open research question;

• Data scarcity is one of the main constraints in 3D object detection-related research. Due
to the support and sponsorship of automobile companies in their pursuit of building
self-driving cars, some enriched benchmark datasets such as KITTI, Waymo, nuScenes,
etc. are widely available. A few indoor benchmark datasets are also available for
robot vision research, such as SUN RGB-D and ScanNet. But there is scarcity of open
benchmark datasets for other fields. Specially, 3D object detection is becoming popular
in precision agriculture, but the conducted research works are found to be using
self-collected datasets. However, these datasets are not publicly available. This is a
constraint on conducting 3D object detection research in agriculture.

To reduce the issue of data scarcity, the 2D object detection sector is getting benefit
from the new technology Generative Adversarial Networks (GAN). GAN is a type of
augmentation technique that can generate new synthetic data. In the near future, 3D object
detection techniques can be benefitted by GAN as well. To enhance 3D datasets, more 3D
CAD model datasets (e.g., ShapeNet) can emerge in the near future.

7. Conclusions

Three-dimensional object detection is rapidly gaining popularity among researchers
and practitioners. As the real world is 3D, hence depth and height information are vital too.
Previously the low computational power of computers, unavailability of sensors and lower
number of datasets hindered research on 3D object detection. With time, these obstacles are
being reduced, and 3D object detection is being performed in numerous sectors. This review
paper is aimed to assist researchers and practitioners to be informed about the recent trends
in the 3D object detection sector. This study has carefully analyzed the advantages and
disadvantages of different modalities so that future researchers can benefit while selecting
suitable methods and sensors for their application.
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