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Abstract: Carpal tunnel syndrome (CTS) is caused by subsynovial connective tissue fibrosis, resulting
in median nerve (MN) mobility. The standard evaluation method is the measurement of the MN
cross-sectional area using static images, and dynamic images are not widely used. In recent years,
remarkable progress has been made in the field of deep learning (DL) in medical image processing.
The aim of the present study was to evaluate MN dynamics in CTS hands using the YOLOv5 model,
which is one of the object detection models of DL. We included 20 normal hands (control group) and
20 CTS hands (CTS group). We obtained ultrasonographic short-axis images of the carpal tunnel and
the MN and recorded MN motion during finger flexion–extension, and evaluated MN displacement
and velocity. The YOLOv5 model showed a score of 0.953 for precision and 0.956 for recall. The
radial–ulnar displacement of the MN was 3.56 mm in the control group and 2.04 mm in the CTS
group, and the velocity of the MN was 4.22 mm/s in the control group and 3.14 mm/s in the CTS
group. The scores were significantly reduced in the CTS group. This study demonstrates the potential
of DL-based dynamic MN analysis as a powerful diagnostic tool for CTS.

Keywords: carpal tunnel syndrome; ultrasound; YOLO

1. Introduction

Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy [1], occur-
ring in 3.8% of the general population [2]. The condition manifests within the confines of
the carpal tunnel, a narrow space through which the median nerve (MN) and nine flexor
tendons pass. These tendons consist of the flexor pollicis longus (FPL), four flexor digito-
rum superficialis (FDS), and the four flexor digitorum profundus (FDP). Located within
the carpal tunnel, these important anatomical structures are enveloped by a multilayered
structure known as the subsynovial connective tissue (SSCT) [3,4]. While this SSCT plays
an essential role in cushioning and protecting these delicate nerve and tendon structures, it
can become a source of concern in CTS patients. The histologic examination of the SSCT in
patients with CTS reveals a recurrent pattern of non-inflammatory fibrosis of the SSCT in
the carpal tunnel as a result of repetitive shear stress on the SSCT during finger and wrist
movements [5–8]. Over time, this constant mechanical stress leads to the thickening of the
SSCT, which impairs the smooth sliding of the MN during tendon loading. As the SSCT
swells, it exerts increased pressure within the already narrowed carpal tunnel, subsequently
contributing to neuropathic symptoms.

Traditionally, the gold standard for diagnosing CTS has relied on electrophysiologic
testing, specifically including nerve conduction studies (NCS) and electromyography
(EMG). However, in recent decades, ultrasonography (US) has emerged as a diagnostic tool
for CTS. This shift in the diagnostic methodology can be attributed to the inherent advan-
tages of US imaging, including its cost-effectiveness and widespread accessibility [9,10].
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Buchberger et al. highlighted key ultrasonographic features in CTS patients, including an
increased MN cross-sectional area, increased swelling ratio, and the prominent bowing of
the palmer flexor retinaculum [11]. While static US imaging has provided valuable insights,
the quest to understand CTS and its effects on MN dynamics has led to the exploration
of a dynamic US evaluation in CTS patients. Several studies have reported the dynamic
ultrasound evaluation of the MN in CTS patients and suggest that the mobility of MN
is reduced in CTS [12–14]. Some investigators have addressed the dynamic assessment
of the MN, with particular emphasis on longitudinal MN sliding [15–19] and transverse
MN displacement [13,15,17,20–24]. Various methods, such as cross-correlation or speckle
tracking algorithms, have been used to study MN dynamics. However, the results of these
dynamic MN analyses show some variability, which adds to the complexity of CTS diagno-
sis and understanding. Longitudinal MN sliding, for example, has yielded inconsistent
results across studies. While the results of two studies of longitudinal MN sliding found no
significant difference in MN sliding between the CTS group and the control group [15,16],
the other three studies reported that CTS patients had less MN sliding than the control
group [17–19]. Similarly, the investigation of transverse MN displacement yielded mixed
results. Two studies found no statistically significant differences between patients with
CTS and the control group [17,20], whereas the other two studies found that MN motion
was indeed significantly reduced in the dorsal direction and in the radial direction in
CTS patients [21,23]. And another study reported that only the radioulnar axis showed
significant differences [25]. In addition, it is worth noting that many of these dynamic
analyses were performed by comparing static images or manually tracking the MN, which
required considerable time and effort and suffered from poor reproducibility.

In recent years, the field of computer science has witnessed remarkable advances,
most notably the development of deep learning (DL) technologies using convolutional
neural networks (CNN). DL, with its capability for automatic feature extraction, has found
widespread application in medical image processing [26]. In particular, DL has demon-
strated remarkable accuracy, sensitivity, and specificity when applied to US images of
CTS [27–31]. In particular, Smerilli et al. reported that the mean average precision (mAP),
which represents the average of the area under the recall–precision curve, was 0.98, sug-
gesting the high object detection capability of DL [30]. However, despite the promise
shown in CTS image analysis, few studies have investigated MN dynamics using DL. The
integration of DL models into the study of MN dynamics in CTS patients has the potential
to revolutionize the field. In particular, it could lead to a significant reduction in the cost
and effort of musculoskeletal dynamics analysis. In this study, we focused on the You Only
Look Once (YOLO) model for an object detection AI model. As a one-step detector, YOLO
can simultaneously perform object classification and object detection from a single image.
Recently, YOLOv5 was released by Glenn Jocher [32], and several studies applying it to
breast cancer [33] and bone tumors [34] show good accuracy and precision.

Therefore, the purpose of the present study was to investigate how CTS affects MN
dynamics. For this purpose, we used YOLOv5, which is one of the object detection models
of DL. To evaluate the kinematics of the MN, we analyzed the transverse displacement and
velocity of the MN during the flexion and extension of the finger.

2. Materials and Methods

Seventy hands with no clinical signs of CTS and normal NCS results (control group)
and 70 hands affected by CTS who underwent surgery for CTS (CTS group) were included.
Out of a total of 140 hands, 100 hands (50 hands in each group) were used to build the
machine learning model. The videos of the remaining 40 hands (20 hands in each group)
were used to analyze the MN’s dynamics. Patients with a history of traumatic injury or
wrist surgery to the affected wrist, rheumatoid arthritis, or osteoarthritis of the wrist were
excluded. The sample size of MN dynamics analysis was determined based on a careful
power analysis using the results of the overall standardized mean difference (SMD) of MN
transverse displacement from a pilot study [31] using G*Power 3.1. Preliminary sample
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size calculations indicated that a sample of 28 participants (14 in each group) was sufficient
to detect differences in MN displacement between the two groups using a t-test (effect
size = 1.612, α = 0.01, power = 0.95).

The diagnosis of CTS was based on a physical examination and NCS. The severity of
CTS was graded according to the NCS report [35], resulting in five distinct stages. Stage 1
denotes the normal sensory nerve conduction velocity (SNCV) and distal motor latency
(DML). Stage 2 is characterized by a normal SNCV along with a DML greater than 4.5 ms.
Stage 3 includes conditions in which the SNCV is less than 40 m/s; the DML exceeds 4.5 ms.
Stage 4 is identified by the absence of a sensory response accompanied by a DML greater
than 4.5 ms. Finally, stage 5 represents the complete absence of both SNCV and DML
responses. The CTS group included only patients classified as stage 2 or higher. Healthy
volunteers were included in the control group, along with patients with stage 1 NCS results.

The identification of the MN on short-axis US images was performed just proximal
to the carpal tunnel at the wrist crease using an 18 MHz linear probe (Canon APLIO300,
Canon Medical Systems, Tochigi, Japan) (Figure 1). The participants actively moved their
five fingers from full extension to full flexion (until the fingertips touched the palm) at
a metronomic rhythm of 60 cycles per minute in a dorsiflexion neutral position. The
recordings, taken at a rate of 30 frames per second, were then cropped to produce a 4 s
video. An experienced hand surgeon performed both CTS diagnosis and US imaging.
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NVIDIA GeForce RTX 3050 laptop GPU. In particular, a stochastic allocation method al-
located 80% of the US images to serve as our training dataset, with the remaining 20% 
reserved for testing purposes. For the object detection task, the YOLOv5 model (parameter 
size 1.8 M) was used. The hyperparameters were lr0: 0.01, lrf: 0.01, momentum: 0.937, 
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Figure 1. (a) The ultrasound (US) transducer was placed on the palmer side of the wrist crease.
Participants actively moved their fingers from full extension to full flexion. (b) US images of the
median nerve (white triangles) were obtained using the procedure shown in Figure 1a.

We constructed a model to detect normal MN or CTS using YOLOv5, an object detec-
tion algorithm model originally developed by Glenn Jocher [32]. We used 5000 US images
containing MN data extracted from 50 hands without CTS and 50 hands with CTS as our
basic input data, which were different from the 40 hands used for MN analysis. The amount
of data used for training was increased by adding noise to the existing images to compen-
sate for the lack of sample size. This is a common practice in machine learning [36,37].
The CTS detection model was meticulously trained to anticipate and delineate bounding
boxes around the MN while simultaneously determining the precise coordinates of the
MN (Figure 2). The following software and hardware orchestration was used during the
training phase: Ultralytics/YOLOv5, Python-3.7.0, PyTorch-1.7 GPU, and NVIDIA GeForce
RTX 3050 laptop GPU. In particular, a stochastic allocation method allocated 80% of the
US images to serve as our training dataset, with the remaining 20% reserved for testing
purposes. For the object detection task, the YOLOv5 model (parameter size 1.8 M) was
used. The hyperparameters were lr0: 0.01, lrf: 0.01, momentum: 0.937, weight_decay:
0.0005, warmup_epochs: 3.0, warmup_momentum: 0.8, warmup_bias_lr: 0.1, box: 0.05, cls:
0.5, cls_pw: 1.0, obj: 1.0, obj_pw: 1.0, anchor_t: 4.0. Transfer learning was performed using
the pre-trained weights from YOLOv5 with the US images and the label information of the
bounding boxes as the input data. An MN detection task was performed. To evaluate the
detection accuracy of the trained models, we examined the mean average precision (mAP),
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precision, and recall, all of which are recognized as essential evaluation metrics for object
detection models. The term “mAP (0.5)” conveys the mean average precision computed
with a threshold of 0.5 within the intersection over the union (IoU) spectrum. Similarly,
“mAP (0.5–0.95)” represents the average mAP computed over a range of IoU thresholds of
0.5–0.95 with 0.05 steps.
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Figure 2. Images of the CTS detection model showed that it could detect MN by being surrounded
by the bounding box.

To begin a detailed analysis of the transverse displacement and velocity of the MN
during finger flexion and extension, we obtained the center coordinates of the bounding box
(Figure 3a). We then plotted the trajectory of the bounding box to determine the maximum
distance of movement in the X coordinate (radial–ulnar direction) and Y coordinate (dorsal-
palmar direction), referred to as the X distance and Y distance, respectively (Figure 3b). In
addition, we also calculated the average motion velocity in each of the X and Y directions
along with the average magnitude velocity, which served as a composite vector. To evaluate
the motion velocity, we first calculated the X, Y, and magnitude velocity by determining the
motion velocity between successive frames and formulating a composite vector based on
the distance traveled between the successive frames. Finally, we analyzed the mean values
of these calculated velocities.
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Figure 3. (a) The detection of the center coordinate of the bounding box. The X-axis indicates
radial–ulnar direction and the Y-axis indicates dorsal-palmar direction. (b) The trajectory plot. The
maximum distance of MN movement was shown as the X distance on the X-axis and as the Y distance
on the Y-axis.

All data are presented as the mean ± standard deviation (SD). The differences between
the two groups were statistically tested using a t-test, with p < 0.05 indicating statistical
significance. Statistical analyses were facilitated using an Excel add-in statistical software
package (Ekuseru-Toukei 2015, Tokyo, Japan).

3. Results

The detection accuracy of the trained models, which involved a careful comparison
between the bounding boxes identified by the trained model and the labeled bounding
boxes annotated by expert physicians, was a robust 0.969 for mAP (50) and 0.573 for mAP
(50–95). The best score for precision was 0.953, and for recall was 0.956. These analyses were
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performed using 20% of our basic input data of 5000 US images derived from 100 hands as
test data.

The characteristics of the MN dynamics analysis participants from the remaining
40 hands are shown in Table 1. The control group consisted of twelve males and eight
females with a mean age of 55.2 ± 4.52 years, ranging from 32 to 75 years. The CTS group
consisted of eight males and twelve females. The mean age was 67.9 ± 2.82 years, ranging
from 28 to 80 years. There was no significant age difference between the two groups.

Table 1. The participant’s characteristics.

Control Group
(n = 20)

CTS Group
(n = 20)

Age 55.2 (4.52) 67.9 (2.82)
Sex

Male 12 8
Female 8 12

NCS
Healthy volunteer 11 -

Stage 1 9 -
Stage 2 - 5
Stage 3 - 7
Stage 4 - 7
Stage 5 - 1

Data were presented as the mean value (standard deviation). Abbreviations: CTS, carpal tunnel syndrome; NCS,
nerve conduction study.

The X distance was 3.56 ± 0.39 mm in the control group and 2.04 ± 0.21 mm in the
CTS group. The Y distance was 1.06 ± 0.14 mm in the control group and 0.96 ± 0.29 mm in
the CTS group (Figure 4). The X distance was significantly shorter in the CTS group than
in the control group (p = 0.0002), and the Y distance was shorter in the CTS group (not
significant). The X distance for each stage of CTS was 2.03 mm (Stage 2), 2.22 mm (Stage 3),
2.08 mm (Stage 4, 5); the Y distance was 1.11 mm (Stage 2), 0.82 mm (Stage 3), 0.80 mm
(Stage 4, 5); and there were no significant differences between CTS stage.
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Figure 4. The X distance and Y distance in each group. The X distance in the CTS group was
significantly shorter than that of the control group.

When analyzing the MN velocity, the X velocity was 3.74 ± 0.71 mm/s in the control
group and 2.71 ± 0.18 mm/s in the CTS group. The Y velocity was 1.39 ± 0.33 mm/s
in the control group and 1.02 ± 0.10 mm/s in the CTS group. The magnitude velocity
was 4.22 ± 0.81 mm/s in the control group and 3.14 ± 0.22 mm/s in the CTS group. The
velocity of Y did not show significant differences between the two groups, and both the
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X velocity (p = 0.03) and magnitude velocity (p = 0.03) showed statistically significant
differences (Figure 5). The X velocity for each stage of CTS was 2.46 mm/s (Stage 2),
2.40 mm/s (Stage 3), 2.83 mm/s (Stage 4, 5); the Y velocity was 1.05 mm/s (Stage 2),
0.94 mm/s (Stage 3), 0.96 mm/s (Stage 4, 5); the magnitude velocity was 2.68 mm/s (Stage
2), 2.59 mm/s (Stage 3), 3.01 mm/s (Stage 4, 5); and there were no significant differences
between the CTS stages.
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4. Discussion

In this study, a significant reduction in the radial–ulnar translation distance of the MN
during finger movement was observed in patients diagnosed with CTS. This observation is
further supported by the notable findings that both radial–ulnar velocity and magnitude
velocity were significantly reduced in the CTS group. These findings provide robust
support for the hypothesis that fibrosis and adhesions within the SSCT significantly limit
the mobility of the MN within the confines of the carpal tunnel, thereby impeding the
smooth motion of this important neural structure [3,18]. In particular, this study represents
a pioneering effort as it marks the first attempt to meticulously measure both the transverse
displacement and velocity of the MN through the use of a state-of-the-art DL model,
specifically the CTS detection model. This approach introduces a new dimension to the
study of CTS and its impact on MN dynamics.

Typically, the diagnosis of obstructive neuropathies such as CTS has relied primar-
ily on dynamic US imaging, a technique in which the entrapped nerve exhibits atypical
spatiotemporal changes due to the motion of adjacent tissues. A meta-analysis dedicated
to the evaluation of MN mobility in CTS patients using US imaging revealed interesting
findings. In particular, it was shown that CTS patients had consistently reduced MN dis-
placement compared to the healthy controls. The aggregate results of this analysis showed
that the standardized mean difference (SMD) was −1.612 (95% confidence interval [CI]:
−3.173 to −0.051) during finger flexion or hand grip [31]. Although the reductions in MN
displacement in the dorsopalmar and radioulnar axes did not reach statistical significance
within the CTS group, the SMD values were −0.795 (95% CI: −1.886 to 0.295) and −0.855
(95% CI: −2.068 to 0.358), respectively [31]. There are 12 previous studies that investi-
gated transverse MN displacement using US imaging, and they showed heterogeneous
methodologies. Eight of them compared static images during finger extension and flex-
ion [14,20–23,25,38,39], two used particle tracking via the speckle tracking method [17,40],
and one of them introduced a novel algorithm to measure the MN motion area [41]. How-
ever, these methods often require the labor-intensive manual tracing of the trapped nerves,
and most studies evaluate MN motion only at the initial and final frames, which might
not have adequately captured the real-time displacement and dynamics of the MN during
finger motion. Only one study used a DL model to quantify the centroid offset of the
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MN during finger movement [27]. Various previous studies have reported the transverse
MN displacement at the radioulnar axis and the dorsopalmar axis (Tables 2 and 3). In
the present study, as in many other studies, MN displacement in the radioulnar axis was
significantly lower in the CTS group than in the control group. On the other hand, in the
present study, the displacement in the dorsopalmar axis showed no significant difference
between the groups in the present study. As described by Nanno et al., the MN is pulled
to the radial side by the flexor tendons during finger flexion [22], so the movement on
the radioulnar axis might be more susceptible to adhesions with the SSCT and the flexor
tendons. In the present study, we successfully assessed not only MN displacement but also
MN velocity and demonstrated its reduction in the CTS group, especially in the radioulnar
axis. This analysis serves to provide a more nuanced understanding of MN dynamics
in the context of CTS and offers the tantalizing prospects of real-time US assessments.
Importantly, the results of this study fit seamlessly with previous studies of MN mobility,
further validating the robustness of these findings.

Table 2. The results of MN displacement at the radioulnar axis.

Control Group CTS Group p-Value

Yoshii et al. [25] 2.45 (1.76) mm 2.05 (2.82) mm <0.01
Erel et al. [15] 1.55 (1.04) mm 0.89 (1.15) mm >0.08
Kang et al. [23] 0.84 (0.18) mm 0.40 (0.13) mm 0.021
The present study 3.56 (0.39) mm 2.04 (0.21) mm 0.0002

Data were expressed as the mean value (standard deviation). Abbreviation: CTS, carpal tunnel syndrome.

Table 3. The results of MN displacement at the dorsopalmer axis.

Control Group CTS Group p-Value

Yoshii et al. [25] 0.377 (0.399) mm 0.069 (0.438) mm 0.06
Kang et al. [23] 0.64 (0.11) mm 0.29 (0.08) mm 0.015
The present study 1.06 (0.14) mm 0.96 (0.29) mm >0.05

Data were expressed as the mean value (standard deviation). Abbreviation: CTS, carpal tunnel syndrome.

The results of the meta-analysis reported the acceptable precision and accuracy demon-
strated by DL models in terms of MN localization and segmentation within the CTS [42].
In an effort to advance the state of knowledge, this study developed a CTS detection model
using YOLOv5 as the base model. Using DL object detection models such as U-Net, R-CNN,
and their derivatives, several studies have documented the automatic evaluation of the
MN within the CTS with US imaging [27–30,43]. While two-step detectors such as R-CNN
involve sequential processes, including the identification of candidate regions within an
image where objects may reside, followed by classification, one-step detectors such as
YOLO offer an alternative paradigm. YOLO directly predicts the bounding box around
the target object and its class, allowing for real-time processing capabilities and increased
computational efficiency [44]. The effectiveness of these DL models is typically measured
by precision and recall, which are widely accepted evaluation metrics that measure the
accuracy and robustness of the model. Previous studies have shown commendable results
in terms of precision and recall. They showed a precision of 0.890 [41], 0.891 [43], 0.903 [29],
0.960 [30], and a recall of 0.960 [43], 0.912 [45], 0.903 [29], 0.980 [30]. In a previous study us-
ing the YOLO model for osteochondritis dissecans (OCD) of the elbow, the YOLOv2 model
successfully detected OCD in the object detection task with an average precision of 0.83 [46].
The mAP (50) was 0.998 for the YOLOv5n model and 0.993 for the YOLOv5m model in
another study that applied the YOLOv5 to OCD [47]. It is noteworthy that our developed
model showed remarkably high values of both precision and recall. Therefore, it can be
concluded that YOLO’s object detection model performed creditably in the present study,
confirming its effectiveness and relevance in the field of CTS diagnosis and evaluation.
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Among the reports on the potential of DL in relation to MN, only Wu et al. reported
on the morphological characteristics of MN during finger movement. Their investigation
yielded an IoU of 0.83 using R-CNN [27], which showed the centroid offset, cross-sectional
area, perimeter, and circularity of the MN. In the present study, by assessing MN velocity
in addition to displacement during finger movement and comparing this with healthy
subjects, we demonstrated that the application of a pre-trained DL model provides a novel
way of assessing MN mobility reduction in CTS patients. This study builds on and extends
previous studies by demonstrating the possibility of clinical applications of DL models in
the diagnosis of CTS through the analysis of US imaging videos.

Several limitations of this study should be acknowledged. First, Nanno et al. reported
variations in the MN dynamics, including specifically that the dorsal-palmar deviation of
the MN during finger flexion was higher in the wrist positions of dorsal, palmar, radial,
and ulnar flexion compared to the neutral position [22]. Although this variance exists, our
evaluation was limited to assessing MN dynamics only in the neutral wrist position. This
limitation was due to the difficulty of US evaluation in different wrist positions. Therefore,
the effect of the wrist position on MN dynamics remains an avenue for future investigation.
Second, the sample size of this study, despite careful power analysis using pilot data, was
not large. In particular, stage 1 hands without abnormal NCS findings consisted primarily
of the contralateral hands of CTS patients and were included in the control group. Although
this approach was pragmatic, it may have been necessary to separate this subgroup from
the healthy volunteers if the sample size had allowed this. In addition, the limited sample
size precluded a detailed examination of the potential correlations between MN mobility
and disease severity, which represents another potential avenue for future research.

5. Conclusions

In summary, we conducted a dynamic US analysis of the MN during finger flexion
and extension using the YOLOv5 object detection model in the area of DL. The YOLOv5
model demonstrated high accuracy and precision as a CTS detection model. Importantly,
our results revealed a significant reduction in the radial–ulnar translation distance and
velocity of the MN within the CTS group, providing robust evidence of the limitations
imposed by fibrosis and adhesions within SSCT. This study, the first of its kind to quantify
both transverse displacement and the velocity of the MN using DL’s CTS detection model,
opens new avenues for research and clinical applications in the field of CTS diagnosis and
treatment.
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