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Abstract: This study used a novel machine learning approach to uncover key serve variables that
maximize effectiveness in men’s professional doubles tennis. A large dataset of 14,146 serves from
97 Davis Cup doubles matches played between 2010 and 2019 was analyzed using explainable AI
techniques. The angle and distance from the bounce to the sidelines of the serves were found to best
distinguish the points won with aces from rallies lasting more than three strokes. Optimal serve angle
ranges of 5.7–8.7◦ substantially increased the probability of serving an ace by over 80%, compared
to around 30% when serving used more central angles. Lateral bounce distances of 0–28 cm from
the sidelines also boosted the ace probability by over 50%. The serve speed was shown to have less
influence on serve effectiveness as compared to singles tennis, with velocities above 187 km h−1

only increasing the probability of serving an ace by 10%. These findings have important practical
implications for the tactical decision-making and technical training of serves in men’s professional
doubles tennis. The data highlight that the angle and placement of serves are more important than
velocity for attaining effective serves in doubles. Coaches and players can use this knowledge to pay
special attention to the most important variables in the effectiveness of serves, such as the line distance
and angle, in order to maximize the performance of the doubles serve. The novel methodology used
in this study provides a valid and reliable way to calculate the efficiency of actions in various sport
disciplines using tracking data and machine learning approaches.

Keywords: racquet sports; tactics; performance analysis; sport analytics; tracking technology

1. Introduction

The serve has become the most decisive stroke in modern professional tennis, particu-
larly in the doubles game [1]. It has been shown to be a key shot for controlling the game
and even winning points directly through aces, thus being a critical technical and tactical
skill for success at the professional levels of the game [2,3].

Previous research has established that the serve provides a key advantage in profes-
sional tennis, and this effect is amplified in doubles matches. Servers demonstrate clear
dominance over returners in singles tennis, winning approximately 60% of points lasting
fewer than four strokes [4]. Moreover, serve metrics like the second serve points won
are among the strongest predictors of overall success [5,6]. The positional dynamics and
rules of doubles tennis further accentuate the serve’s impact, with data showing an even
greater serving advantage for doubles compared to singles, especially in short points [1,7,8].
Additional factors related to the surface speed [9] and team experience [10] also influence
professional doubles servers’ effectiveness. Apart from the heightened serve advantage
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in doubles, service tactics are also shaped by contextual information like the score and
the returner position, which influence players’ decision-making [11]. By leveraging such
situational data, servers can increase serve variety, target specific opponent weaknesses,
maintain consistency, and increase unpredictability [12]. Collectively, these findings under-
score the serve as a critically decisive stroke with major tactical and strategic implications
in high-level doubles tennis.

The introduction of tracking technology like Hawk-Eye in tennis has enabled access to
rich datasets, which researchers have utilized to predict game indicators and parameters
especially related to the serve [6,13]. For singles tennis, an analysis of serving patterns
shows accuracy measures are more impactful than speed [11]. For doubles, tracking data
reveals that the serving placement and direction strongly influence the effectiveness of and
anticipation by returners [14,15].

Machine learning techniques have also been applied in recent tennis literature leverag-
ing these large datasets [16]. Broad applications include the stroke classification [17], an au-
tomated recognition of movement patterns [18,19], evaluating player performance [20,21],
and modeling shot variety and effectiveness [22]. Significant attention has focused on
predicting serve characteristics and overall match outcomes. The different modeling ap-
proaches explored include regression, point-based comparisons, neural networks, random
forests, and ensemble methods [23–34].

In summary, ample research has investigated match prediction in tennis using diverse
machine learning techniques on increasing volumes of tracking data. However, doubles
tennis has received less specific focus, representing an open area for deeper investigation,
particularly around service analytics. Therefore, the aim of this study was to uncover
the variables associated with a greater serve effectiveness in men’s professional doubles
matches using a large dataset from Davis Cup doubles matches and machine learning
techniques. The results obtained highlight the angle and the distance of the bounce of the
ball from the line as the most important and decisive variables related to the effectiveness
of serves.

2. Materials and Methods
2.1. Sample

A total of 14,146 serves were analysed from 97 full men’s doubles matches played
during the Davis Cup (qualifying ties) between 2010 and 2019. Our study featured the
participation of 123 teams and 160 players from 34 different countries, with an average age
of 30.03 ± 4.73 years.

2.2. Instruments

The data utilized in this study were obtained from the Hawk-Eye system [35] deployed
during Davis Cup events. It consists of a group of ten cameras which are placed around the
circumference of the court and capture and record the trajectory of the ball and the players’
movement on the court [14]. The Hawk-Eye System is well-known for its high accuracy
and reliability in tracking and analyzing tennis matches. It is widely used in professional
tennis and has provided data for numerous research papers [6,11,14,15].

2.3. Procedure

A complete E2E AI pipeline was built to experiment with data processing and explain-
able artificial intelligence (XAI):

1. Experimental setup.
2. Data processing.
3. Training the deep learning model.
4. Feature importance algorithms.
5. Probabilistic and statistical analysis. Values selection based on maximizing the desired

effectiveness and minimizing the undesired one.
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6. Synthetic dataset generation, and simulation based on the predictions of this dataset
and an analysis of improvements in effectiveness.

2.3.1. Experimental Setup

The XAI process can be summarized in steps 2 to 6. A pipeline that included all xAI
processes from data processing to training the deep learning model was built to calculate
the feature, to select values, and to test the results on a synthetic dataset. The whole process
is summarized in Figure 1.
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Figure 1. Pipeline workflow architecture.

2.3.2. Data Processing
Dataset

The dataset consisted of the following variables:
Independent variables:

• Court side: Side of the court from where the serve is played. This variable was used to
divide the dataset and perform the analysis for each side of the court.

• Effectiveness:

- Type 1: The point finishes with one shot.
- Type 2: The point finishes with two shots.
- Type 3: The point finishes with three shots.
- Type 4: The point finishes with four shots.

Dependent variables:

• Speed: Mean speed of the serve.
• Position: Position of the server when hitting the serve (A in Figure 2).
• Time: Time between ball impact and ball bounce.
• Speed loss: Loss of speed of the ball after its bounce.
• Impact Z: Height of the ball at impact.
• Net clearance: Height of the ball when passing over the net.
• δ: Serve angle (Figure 2).
• β: Vertical projection angle.
• dL: Distance from ball bounce to the sideline of the service box
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Figure 2. Angle of the serve. δ: Serve angle; A: Position of the server when hitting the serve; B: ball
direction; C: central point of the service box line.

EDA and Data Processing

After some exploratory data analysis (correlation matrices, boxplots, histograms,
kernel density estimation plots (KDE), etc.), the data were prepared to apply machine
learning classification algorithms. Some variables were not informative as their variance
was equal or close to 0. The main data processing steps were the following:

1. Oversample the weak target samples to solve the dataset “class unbalancing” problems.
2. Feature selection was conducted using a combination of tennis knowledge criteria

together with correlation analysis and feature selection algorithms.
3. Outliers were detected based on statistic methods and were filtered afterwards.

Furthermore, some features did not follow a simple normal distribution but a mixture
of gaussians. The collinearity issues between variables, which did not affect the model
performance but affected the interpretability of the results, were also solved. Thus, feature
importance was applied only with uncorrelated features. This process was conducted
separately for δ and dL.

2.3.3. Training the Deep Learning Model

The dataset was divided into train (70%), validation (15%) and test (15%) before apply-
ing any data processing, keeping the test and validation subsets completely independent
from data leaks from the training process. The validation dataset was used to apply call-
backs such as early stopping, the model check pointer, etc. Cross-validation was used to
validate the model. For validation, the balanced accuracy score and the loss of each p were
monitored. For the final evaluation of the model, the accuracy and balanced accuracy (as
well as F1 score, precision and recall) on the test subset were calculated.

AutoGluon v0.5.2 and FastAI v2.5.6 were utilized in this study for this purpose. Auto-
Gluon presents commendable tools for explanation and automated feature enhancement.
However, it exhibited a lack of the flexibility required for this research, as certain outcomes
were inconsistent. Consequently, it was decided to employ FastAI for the analysis of
tabular data.

The implementation of AutoGluon was straightforward, as this tool undertakes the
preprocessing of the dataset, trains multiple models, selects the optimal one, assesses
feature importance, and employs various XAI algorithms to deliver global explanations for
the models.

On the other hand, FastAI is a tool that offers functionalities complimentary to those
of PyTorch and AutoGluon. It provides certain data processing functionalities while facili-
tating the fine-tuning training process. Although it demands a greater degree of software
development, it offers advantageous high-level flexibility options. These include the ability
to select the number of hidden layers, determine the loss function, and automate the training
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process, commonly known as “babysitting”, through the application of beneficial callbacks
such as a state-of-the-art learning rate finder, early stopping, and model checkpointing.

The backbone architecture for the deep learning model and the loss function included
in the following steps are the following:

Backbone Network: A tabular model with 5 layers of feature size: 256, 128, 128, 128,
64. The basic layer block (named LinBnDrop) is formed by the following transformations:

• Linear Layer (torch.nn.linear);
• Rectified Linear Unit—ReLU (torch.nn.relu);
• Batch Normalization—BatchNorm1d (torch.nn.BatchNorm1d).

The determination of the optimal number of layers and feature size were driven by
experimentation. A standard backbone for tabular data was initially employed in the
investigation. For the dataset under consideration, it was observed that a shallow deep
neural network (DNN) possessed an adequate capacity to extract relevant patterns. The
introduction of additional layers resulted in overfitting the model, whereas a reduction in
the number of layers led to underfitting. Similar considerations were applied to feature
sizes, commencing with a standard size and subsequently adjusting them iteratively until
the size yielding optimal performance on the dataset was identified.

Loss function: Focal loss flat [36]. The focal loss works especially well with imbalanced
data as it adapts its weights to focus learning on hard misclassified examples. The primary
rationale behind its utilization stems from the presence of imbalanced classes in the dataset.
Additionally, an exploration of the flat cross entropy loss was conducted, revealing a
comparable performance to the focal loss. However, it was observed that the flat cross
entropy loss exhibited a slightly diminished robustness in addressing class imbalances
when compared to the focal loss on our dataset.

Optimization algorithm: The Adam optimization method [37] was employed in this
study. Adam is characterized as an adaptive learning rate optimization algorithm, with
its principal hyperparameters being the learning rate and momentum. The rationale
behind incorporating momentum in conjunction with re-scaling lacks clear theoretical
motivation. Nevertheless, Adam is widely acknowledged for its robustness across a range
of hyperparameter choices.

Callbacks: Several callbacks were implemented to enhance training performance in
this study. Early stopping was employed to halt training when the model ceased to exhibit
improvement over the last epochs. The model checkpoint callback was also utilized to create
copies of the model at specific intervals during training. This allowed for the subsequent
selection of the best-performing model among the saved copies.

2.3.4. Feature Importance Algorithms for Feature Explanation

Feature importance algorithms were used to select the variables that have a higher
impact on the outcome of the models. Feature permutation importance and SHAP summary
plots are the two algorithms commonly accepted in the scientific community [38,39].

Feature permutation importance [39] is based on repeated permutations of the outcome
vector to estimate the distribution of measured importance for each variable in a non-
informative setting.

SHAP assigns each feature an importance value for a particular prediction [40]. SHAP
values attribute to each feature the change in the expected model prediction when condi-
tioning on that feature.

2.3.5. Probabilistic and Statistical Analysis: Values Selection Based on Maximizing the
Desired Effectiveness and Minimizing the Undesired One

Shapley values and its variants are adequate “local model-agnostic methods”, which
provide interesting insights of a single prediction. Global explanation methods can help un-
derstand the model through visualizations and explanations of the final model weights [40].
As the aim of the study was to understand how to maximize the serve effectiveness (how
and why specific values of the selected features affect the predicted target variables), the
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goal was to calculate which values threshold of the selected features maximize the likeli-
hood of effectiveness type 1 and minimize the likelihood of effectiveness type 4. For this
purpose, a novel semiautomated algorithm based on classical statistics was developed. The
first steps of this process were the following:

• First, a smooth probability distribution of the data using the kernel density estimation
algorithm (KDE), together with statistical estimators, was calculated for each selected
feature. The estimators were mainly the mean, the MLE, and percentiles 5 and 95 for
each type of effectiveness.

• Then, the values were mostly identified by selecting the area of the plot which com-
bined a higher density of the points with the desired result (type 1) and a lower density
of the undesired result (type 4). The statistical estimators also helped to understand
the probability distribution.

2.3.6. Synthetic Dataset Generation and Simulation Based on the Predictions on the Dataset
and Analysis of Improvements in Effectiveness

In the final step, a synthetic dataset using the selected values was generated, and the
prediction was simulated. Since the model reached 93% f1-score, the predictions were
reliable, at least for this specific dataset. By doing this, the approach was validated, and
values could be adjusted to improve the rate of effectiveness. The next steps in the process
were the following:

• The values outside the desired selected threshold were substituted by random values
inside it and, therefore, a synthetic dataset was generated.

• Then, predictions on the whole dataset were performed using the deep learning model
previously trained. Then, the final rates of Ef1 and Ef4 were calculated.

It is important to comment that the synthetic dataset assumes a role in the validation
of the explanatory algorithm. Following the application of “feature importance” algorithms
to identify the most significant variables, an assessment is conducted to determine values
that contribute to increased efficiency, relying on insights derived from probability density
plots. The values selected are oriented towards maximizing the probability of efficiency 1
within the confines of the real dataset.

To validate this optimization, the original dataset undergoes modification, wherein
the values of each variable are adjusted in accordance with the proposed recommendations.
Specifically, the dataset is ‘clipped’, entailing the substitution of values outside the estab-
lished range limits with randomly generated values falling within the recommended limits.
Subsequently, the trained model is employed to generate new predictions on this adjusted
dataset. This methodology serves to validate the potential impact on efficiency, providing
insights into how the metric might evolve when utilizing the recommended values for the
selected variables.

Also, it should be noted that the most relevant part is the one described in step 2,
where the threshold values for each variable were selected. Steps 3 and 4 also helped with
the validation and fine-tuning of the selection but were mainly an evaluation of the final
results to quantify the success of the process.

To efficiently perform multiple experimentation scenarios, all the processes were
automated, except one aspect of the second step, in which the areas that maximize and
minimize the target variable in the desired way were selected.

3. Results
3.1. Training of a Deep Neural Network

Table 1 displays the testing data metrics of the dataset for different types of effec-
tiveness. As it can be observed, the model achieved high performance metrics for the
dataset of type 1 and of type 4, which were f1-score 0.95 and 0.94 for each class. The overall
classification accuracy of the evaluation test set was 0.94. Therefore, this model, which
serves as the basis for the other algorithms, has been shown to be reliable for defining the
characteristics of the serve when points end in an ace and those that last four or more shots.
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Table 1. Sklearn classification report type 1 vs. type 4—deuce and advantage.

Effectiveness Precision Recall F1-Score Macro Average Weighted Average

Type 1 0.91 0.99 0.95 0.95 0.94

Type 4 0.99 0.89 0.94 0.95 0.94

3.2. Calculation of the Most Relevant Variables

Once the reliability of the model in distinguishing between points that end with an ace
and points that last for four or more strokes was established, the next step was to calculate
the serve variables that had the greatest relevance for each type of effectiveness. Figures 3–5
depict the mean SHAP values, which indicate the average impact on the model outputs
for each variable on the deuce and advantage sides, respectively. As it can be observed,
the results of the most important variables were very similar for both sides. Regardless
of the serving side, the variables that had the most relevance in the model were δ and
dL. Additionally, “Speed” was the other variable that had significant importance in the
developed model.
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The mean SHAP values show the average impact on the model outputs for each
variable. The results of the most important variables were very similar for the deuce and
advantage sides. After separating highly correlated variables (δ and dL) the SHAP values
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summary, it was shown that in both cases, δ and dL were the most important variables.
The algorithm showed that the Speed is the next most important variable for the model.
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3.3. Values That Maximize the Effectiveness of Type 1 (and Minimize the Effectiveness of Type 4):
That Is, Recommended Values

Table 2 shows the distributions of the variables dL, δ, and Speed of the serves for points
ending with an ace or with more than three shots for both sides of the court. Regarding
dL, aces showed a similar distribution on both sides of the court. However, the serves for
points with four or more shots showed significant differences in the distribution of their
population. It can be observed that on the advantage side, a greater number of serves with
higher values of dL were found.

Table 2. Descriptive values of the variables.

dL Serve Angle Speed

Effectiveness Population
(%)

MaxLike
(m)

Percentils
(m) Mean SD MaxLike

(deg)
Percentils

(deg) Mean SD MaxLike
(km h−1)

Percentils
(deg) Mean SD

Type 1 9.68 0.19 0.04–1.41 0.41 0.41 5.78 2.04–7.78 5.76 1.52 179.86 159.01–210.86 185.72 16.85
DEUCE Type 2 25.15 0.63 0.21–1.93 0.95 0.54 4.92 0.87–6.31 3.71 1.76 186.24 160.89–205.72 184.20 14.15

SIDE Type 3 19.58 0.59 0.22–1.97 1.02 0.57 4.37 0.76–6.19 3.44 1.77 184.82 159.01–204.54 183.13 14.31
Type 4 35.54 0.77 0.28–1.93 1.05 0.52 4.67 0.86–6.13 3.45 1.70 180.57 156.56–202.56 180.39 14.32

Type 1 9.17 0.18 0.03–1.4 0.40 0.42 5.85 2.11–7.51 5.62 1.43 193.91 162.58–211.39 189.23 16.44
ADVANTAGE Type 2 24.34 0.52 0.18–1.95 0.99 0.57 5.06 0.84–6.32 3.66 1.78 189.45 155.56–206.65 185.25 14.67

SIDE Type 3 19.03 0.49 0.19–1.97 1.00 0.59 4.79 0.77–6.42 3.69 1.85 186.48 155.56–204.71 183.03 15.26
Type 4 37.33 0.78 0.27–1.95 1.07 0.54 4.56 0.86–6.04 3.46 1.67 187.22 153.23–203.38 181.26 15.37

Type 1 9.46 0.18 0.03–1.41 0.40 0.41 5.79 2.08–7.69 5.70 1.47 193.91 160.65–211.20 187.32 16.75
BOTH Type 2 24.78 0.61 0.19–1.94 0.97 0.58 5.05 0.84–6.32 3.69 1.77 187.22 160.26–206.36 184.68 14.40
SIDES Type 3 19.34 0.52 0.2–1.97 1.01 0.58 4.59 0.77–6.25 3.56 1.81 185.73 157.61–204.66 183.08 14.76

Type 4 36.38 0.76 0.28–1.95 1.06 0.53 4.63 0.86–6.08 3.46 1.69 187.22 155.33–202.94 180.81 14.76

Regarding δ, the distribution of serves where the point lasted more than three strokes
was similar on both sides of the court. However, it can be observed that aces have a wider
range on the deuce side compared to the advantage side which indicates that, on the deuce
side, larger angles would maximize the probability of achieving an ace to a greater extent
than on the advantage side.

Regarding Speed, again, the distribution of serves where the point lasted more than
three strokes was similar on both sides of the court. However, the recommended values to
maximize the probability of serving an ace were slightly lower on the deuce side than on
the advantage side.

The recommended values to maximize the probability of serving an ace would be
somewhat lower for the deuce than for the advance side. For the other efficiencies, no
significant differences were found.
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3.4. Generation of a Dataset Substituting Original Values for Recommended Values of the Variable in
Question and Prediction of Efficiencies (the Model Trained in Point 1 Was Used to Make the Predictions)

Using the variables associated with the population density graphs, a statistical estima-
tion was performed on the values that would, a priori, maximize the probability of serving
an ace and minimize the probability of the point lasting four or more strokes. Table 3 shows
the results of the predictions using the trained model described earlier and the synthetic
dataset, which resulted from replacing values that fell outside the recommended range with
random values within the recommended range. As can be observed, dL values between 0
and 0.28 m increase the probability of achieving an ace to values close to 90%. Similarly, δ
values between 5.7◦ and 8.7◦ increase the possibility of achieving an ace to values above
80%. On the other hand, Speed values between 187 and 220 km h−1 only increase the
probability of achieving an ace by approximately 40–45%.

Table 3. Results of the predictions using the trained model.

Variable Side Values (Min–Max) Effectiveness before (%) Effectiveness after (%)

dL (m)
DEUCE 33.05 83.40

AD 0–0.28 30.64 81.26
BOTH 33.49 88.48

Serve angle (deg)
DEUCE 33.70 88.68

AD 5.7–8.7 29.77 88.21
BOTH 33.25 89.04

Speed (km h−1)
DEUCE 35.17 45.75

AD 187–220 34.36 44.13
BOTH 30.38 39.91

4. Discussion

Using a novel methodological proposal, this study sought to identify which character-
istics of serves determine their efficiency in men’s professional doubles tennis. The results
showed that the characteristics of the serves in which the point ended in two, three or more
shots were very similar. However, it was possible to identify different characteristics for
the aces, compared to those in which the point lasted more than three shots. Therefore,
these results allow us to establish the variables and values which are associated with a
higher probability of serving an ace in men’s professional doubles tennis. In addition,
the methodology used has been shown to be a novel, valid and reliable way that can be
replicated for the calculation of the efficiency of actions in different sports disciplines.

The results have shown that the service angle is one of the variables that best deter-
mines the probability of serving an ace in men’s professional doubles tennis. These results
are consistent with a previous study of the serve in singles tennis, which indicated that if the
serve angle was less than 5.88◦, the serve will be returned with a probability of 92.52% [11].
In doubles tennis, according to the data obtained in the present study, an angle of between
5.7◦ and 8.7◦ theoretically increases the probability of serving an ace from 29.77% to 88.21%
on the advantage side and from 33.70% to 88.68% on the deuce side. These results support
those obtained by previous studies, where Whiteside and Reid [11] reported that there is
a higher probability of getting an ace when the serve is played wide than to the T zone,
with probabilities of 42% on the advantage side and 52% on the deuce side. Wide serves
generate a greater angle than those played to the T, so it is logical, according to the data
obtained, that they are also more effective. Furthermore, from a technical point of view,
and specifically related to the different types of serve spin used, it has been shown that
players use the slice serve to generate a greater serve angle on the deuce side, whereas they
opt for flat or topspin serves for a greater angle when serving to the T on the advantage
side [6,19,41].

Another of the variables found to have a greater relevance in determining the prob-
ability of serving an ace has been the distance from the bounce of the ball to the sideline
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of the service box. This reinforces the idea that one of the main objectives of the server is
to gain an advantage over the receiver, trying to get the ball as far away from the receiver
as possible [6,14,15]. Whiteside and Reid [11] determined that in 77.53% of cases, if the
distance to the line was less than 15.27 cm and, in addition, the serve angle was greater
than or equal to 5.88◦, the serve would be an ace. In the case of men’s professional doubles
tennis, in this study, it has been shown that, if the serve distance is between 0 and 28 cm, the
probability of a serve being an ace would increase from 30.64% to 81.26% on the advantage
side and from 33.05% to 83.40% on the deuce side.

The results on the importance of the angle of the serve and the distance of the bounce of
the ball to the line also support what has been found in previous studies on the professional
doubles game. According to Vives et al. [14], players try to take the initiative of the point
by moving the receiver out of the court, both on the advantage and deuce sides. This study
reported a high efficiency of the serve when players serve wide on both sides of the court,
with values of 40.71% on the deuce side and 37.54% on the advantage side. Similarly, the
percentages of the effectiveness of serves to the T were considerably high, with values of
38.45% and 39.28%, respectively. The information provided in this study regarding the
most important variables and the values that maximize the probabilities of direct serves
could be very valuable for coaches and players in order to further increase the effectiveness
of this type of service.

In singles, the serve speed has been shown to be one of the most important variables
when serving an ace. Previous studies have reported that the probability of serving an ace
if the serve speed is greater than 198 km h−1 is 58.68% [11]. However, the data obtained in
our study show that the serve speed is less important in doubles tennis. Thus, it was found
that once 187 km h−1 is exceeded, the probability of serving an ace would only increase by
about 10%, regardless of the side of the serve.

Therefore, considering the results from this study and the values found for the most
important variables that determine the execution of serving an ace, it can be stated that,
although speed is an important variable, very high speeds do not considerably increase the
probability of winning the point directly with the serve. However, the angle of the serve
and the bounce of the ball close to the sidelines do significantly increase the probability of
serving an ace.

The primary advantages of this method lie in its capacity for variable explainability.
Feature importance scores are computed not only to discern the most pivotal variables,
but also to propose optimal value ranges for these variables to maximize efficiency. It
is crucial to note, however, that this process is not readily automated and necessitates
human intervention for analysis. A future direction is proposed, aiming to establish
mathematical foundations to formulate the selection of value ranges for selected variables
that maximize the probability of the desired variable. Furthermore, noteworthy correlations
between variables, indicative of collinearity, were identified in the study. Although these
correlations did not adversely impact model prediction performance, they significantly
influenced feature importance algorithms. Moving forward, addressing such collinearity
could be pivotal for more refined analyses.

On the other hand, the exclusivity of the dataset to Davis Cup hard court matches
introduces a limitation to the generalizability of the findings, precluding straightforward
extrapolations for all tennis surfaces, levels and genders. While augmenting the dataset
with diverse surfaces, levels and genders could enhance the dataset variance, it concurrently
poses challenges in deriving specific and universally applicable conclusions. Furthermore,
the study underscores the prominence of a player’s playing style over physical attributes
concerning the maximization of serve efficiency. For future endeavors, an exploration of
player grouping based on similar characteristics, facilitated by clustering algorithms, could
be pursued to train distinct models for each group.

These results have very relevant practical implications related to the training regime
for serve practices in men’s professional doubles. From a tactical perspective, the insights
found in this study can assist tennis players in their decision-making to maximize their
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serve advantage. In addition, technically, physically, and mentally, it is also important to
prepare doubles tennis players for efficient serve executions with respect to the values of
the indicated variables. Therefore, the effective application of the values found for variables
such as the serve angle, distance to the line, or speed will determine the design of specific
training tasks and help define specific patterns of play [11,14].

5. Conclusions

In this study, key characteristics for a direct serve in men’s professional doubles
tennis were identified. The angle of the serve was found to be a crucial variable, while
the distance from the ball bounce to the sideline was also relevant. These findings are
consistent with previous research on doubles tennis. It was observed that an optimal serve
angle between 5.7◦ and 8.7◦ significantly increased the probability of a direct serve. In
addition, maintaining a distance from the ball bounce to the sideline between 0 and 28 cm
increased the probability of success. The speed of the serve in doubles tennis showed less
influence compared to singles tennis.

The novel methodology employed here utilizing tracking data and explainable AI
techniques provides a valid and reliable way to model service efficiency in tennis. The
major contribution of this work is the extraction of specific parameter values to optimize
the doubles serve through data-driven analytics. From a practical perspective, the serve
angle and placement recommendations offer directly implementable guidelines for players
and coaches. Technically, physically and mentally targeting these service metrics should
become integral in training programs and match tactics.

This research focused exclusively on elite men’s hard court doubles matches, so an
area for future investigation is expanding dataset diversity to include different surfaces,
levels and genders. Furthermore, grouping players by style and developing individualized
models could provide more tailored strategic recommendations. The advanced analysis
framework presented can be extended to other facets of tennis performance or different
sports relying on spatiotemporal tracking data. As machine learning approaches, wearable
sensors and tracking tools continue to proliferate in sports, ample opportunities exist to
generate actionable intelligence maximizing success.
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