
Citation: López, J.L.; Vásquez-

Coronel, J.A. Congestive Heart

Failure Category Classification Using

Neural Networks in Short-Term

Series. Appl. Sci. 2023, 13, 13211.

https://doi.org/10.3390/

app132413211

Academic Editors: Jongweon Kim

and Yongseok Lee

Received: 8 November 2023

Revised: 29 November 2023

Accepted: 6 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Congestive Heart Failure Category Classification Using Neural
Networks in Short-Term Series
Juan L. López 1,2,*,† and José A. Vásquez-Coronel 2,*,†

1 Centro de Innovación en Ingeniería Aplicada, Universidad Católica del Maule, Av. San Miguel 3605,
Talca 3460000, Chile

2 Department of Computer Science and Industries, Universidad Católica del Maule, Av. San Miguel 3605,
Talca 3460000, Chile

* Correspondence: jlopez@ucm.cl (J.L.L.); jvasquez.12.c@gmail.com (J.A.V.-C.)
† These authors contributed equally to this work.

Abstract: Congestive heart failure carries immense importance in the realm of public health. This
significance arises from its substantial influence on the number of lives lost, economic burdens, the
potential for prevention, and the opportunity to enhance the well-being of both individuals and
the broader community through decision-making in healthcare. Several researchers have proposed
neural networks for classification of different congestive heart failure categories. However, there is
little information about the confidence of the prediction on short-term series. Therefore, evaluating
classification models is required for effective decision-making in healthcare. This paper explores the
use of three classical variants of neural networks to classify three groups of patients with congestive
heart failure. The study considered the iterative method Multilayer Perceptron neural network (MLP),
two non-iterative models (Extreme Learning Machine (ELM) and Random Vector Functional Link
Network (RVFL)), and the CNN approach. The results showed that the deep feature learning system
obtained better classification rates than MLP, ELM, and RVFL. Several scenarios designed by coupling
some deep feature maps with the RVFL and MLP models showed very high simulation accuracy. The
overall accuracy rate of CNN–MLP and CNN–RVFL varies between 98% and 99%.

Keywords: cardiovascular time series; congestive heart failure; feature extraction; deep neural
networks

1. Introduction

Without a doubt, due to the COVID-19 pandemic, people have been subjected to
high levels of stress. Likewise, the isolation generated by the health measures to control
the spread of the virus has led to a sedentary lifestyle, tobacco, and a poor diet based on
excess fat, salt, and sugars, among others. All these factors, which lead to diseases such as
hypertension and dyslipidemia (high cholesterol), forecast an increase in the number of
cases of cardiovascular disorders and, consequently, an increase in the number of deaths.

The Heart Rate Variability (HRV) analysis is a non-invasive technique that, in some
cases, allows the diagnosis and prognosis of heart disease and neuropathy. Since the
beginning of electrocardiography, it has been known that the heart rate changes from beat
to beat (also called RR intervals). However, it was not until about 30 years ago that medical
interest in this study was aroused. As HRV is related to various physiological systems,
it began to be analyzed as a non-invasive technique for the diagnosis of heart disease
and/or neuropathy. A common phenomenon in all clinical interpretations is that a small
variability in the heart rate is a symptom of some cardiac or neurological deficiency [1].
Along with the development of applications, various analysis techniques have risen. The
RR signal statistical analysis was historically the first, and today it is very useful. Another
technique for analyzing the RR sequence that is currently very popular and has been
widely used is the spectral analysis of the RR sequence [2]. Although the statistical and
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spectral methods have been the ones that have inspired the most interest during the last
25 years, there are other methods that have gradually gained ground. In this regard, great
interest has awakened in machine learning as a tool for the detection and/or classification
of cardiovascular diseases [3–5].

Fluctuations in RR intervals are one of the main effects of the autonomic nervous
system (sympathetic and parasympathetic) [6,7]. The heart rate is accelerated by the sym-
pathetic system and slowed by the parasympathetic system. The scale invariance can
be a consequence of the power-law dependencies in characteristics of critical states [8],
and the origin of the heart rate complexity can be related to the intrinsic dynamics of this
physiological regulatory system; nevertheless, the complex heart dynamic mechanisms
are still being discussed [9–11]. Spectral analysis was one of the first non-invasive tech-
niques used to study heart rate variability. Likewise, spectral analysis has been used to
study standard power spectral bands to the diurnal and nocturnal range [12–14]. The
activation of the sympathetic nervous system caused by heart disease is only detected
by analysis at low frequency and the transition between diurnal activity and sleep states.
The transition between diurnal activity and sleep states takes place when the analysis
moves from low frequency (LF) (0.04 Hz < f < 0.15 Hz) and very low frequency (VLF)
(0.003 Hz < f < 0.04 Hz) to ultra low frequency (ULF) ( f < 0.003 Hz) [13]. A particular
interest in this study is the evolution during different short time periods in LF, VLF, and
ULF to diurnal and nocturnal activity [15–19]. In particular, [18] reported a clinical analysis
performed with a graphical tool for HRV to study the change in the HRV across different
stages of sleep. In [20], the authors studied the different sleep stages using an electrocar-
diogram (ECG) time series, where four feature sets were identified from HRV signals: (1)
time-domain features, (2) nonlinear dynamics features, (3) time–frequency by Discrete
Wavelet Transform (DWT), and (4) Empirical Mode Decomposition (EMD) methods [21].
Likewise, in [15], studies have shown that the VLF power of HRV is a powerful predictor
of clinical prognosis in patients with congestive heart failure. Studies based on physical
activity show the correlation between changes in the level of physical activity and the
pattern of HRV [17]. Furthermore, they found a reduction in spectral power in changing
from active to rest conditions (ULF band < 0.003 Hz) for both HRV. Usui and Nishida
reported, in [16], changes in HRV after mentally stressful activity. The authors showed that
the HF band and ratio of LF/HF bands returned immediately to baseline.

Non-invasive methods to analyze HRV are essential, as they provide a safer, sim-
pler, and more cost-effective way to assess autonomic function compared to invasive
techniques that may require medical procedures or devices. Some key advantages of
non-invasive HRV analysis include accessibility, safety, continuous monitoring, and longi-
tudinal studies, which help us track HRV changes over time to gain insights into health
trends. Machine learning, deep learning, Support Vector Machines (SVM), random forests,
and gradient-boosting methods have been widely employed in classifying heart disease
patients into different categories (e.g., healthy, diseased, and various subtypes of heart
conditions) [22,23]. SVM, random forests, and gradient-boosting methods have shown
promising results due to their ability to automatically learn complex patterns from large
datasets and make accurate predictions. SVM, random forests, and gradient boosting
utilize features extracted from ECG signals or other relevant patient data. Such approaches
have been effective in differentiating between healthy individuals and those with various
cardiac conditions [24–26], while the use of machine learning and deep learning algorithms
in cardiac classification tasks has the potential to improve early diagnosis, risk assessment,
and treatment planning [27–29]. In [24], the researchers compared the performance of ran-
dom forest and its variants with a SVM for ECG signal classification. The study focuses on
distinguishing between different arrhythmia classes in ECG signals and demonstrates the
effectiveness of machine learning-based approaches for this task. In addition, the authors
in [27] developed a deep neural network that achieved cardiologist-level performance in
detecting and classifying arrhythmias from ambulatory electrocardiogram (ECG) data. The
model demonstrated excellent accuracy in identifying different arrhythmia types, showcas-
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ing the potential of deep learning for cardiac classification tasks. Other classical models of
intelligent learning are Convolutional Neural Networks (CNN) [30], Multilayer Perceptron
(MLP) [31], and RVFL networks. With the MLP intelligent tool, the researchers in [32,33]
presented a successful clinical analysis for the diagnosis of cardiovascular diseases. As for
RVFL networks of random weights, a diverse range of applications have been discussed
for the prevention of chronic diseases. For instance, an RVFL model optimized with a salp
swarm algorithm is proposed in [34] to predict coronary atherosclerotic heart disease. In
the most recent work [35], the RVFL model is proposed as a support tool in health centers
to discern four types of anemia.

As mentioned earlier, time-series data are a valuable source of information for vari-
ous natural and societal processes. Even time series can exhibit long-range correlations,
uncovering crucial characteristics that may not be evident in longer time series. Utilizing
short time series is beneficial in artificial intelligence applications, as it helps train models
to identify patterns, make predictions, and perform classification tasks. Along the same
lines, deep learning has seen extensive use in time-series analysis, specifically for tasks like
classification, forecasting, and anomaly detection. In general, deep learning models demon-
strate remarkable proficiency in autonomously grasping complex patterns and connections
within time-series data, resulting in enhanced prediction accuracy and valuable knowledge.
Nevertheless, in situations where time series are short and possess long-range correlations,
neural networks might not be at their best for conducting classification tasks optimally.

Usually, when analyzing economic, physiological, climatological, or other data, time
series for forecasting is considered. Traditionally, the time-series analysis is focused on
searching for patterns in a long time period [36,37]. All these analysis methods work
similarly, such that changes in some time lapses cause changes in the parameters. In most
fields of science, short time series have received very little attention. Short time series are
events registered successively and ordered by a specific time [38]. The short time series
has a twofold interest because most of the records for time series are short, and, on the
long series, the dynamics may change with time, requiring the analysis of short pieces to
obtain insight into this process [39,40]. This is mainly because there are several processes in
nature where changes in long-range correlations are expected to occur on short scales of
time or space, and, in many practical problems, the resolution to measure those changes is
limited by the available technology. In particular, in this research project, we are focused
on RR-short time series.

Related to the length of time series, the distinction between long-term and short-term
in cardiovascular time-series analysis depends on the context and the specific characteristics
of the data. In cardiovascular time-series analysis, short-term variations typically refer
to changes that occur over relatively brief time intervals, such as seconds (two beats per
second) to minutes (eighty beats per minute). Short-term variations might be associated
with specific events, such as arrhythmias, while long-term variations could be related to
changes occurring over hours to days or even longer, and they may be associated with
gradual changes in cardiovascular health or responses to treatment [41,42].

The goals of this research were to study how the short length of time series of heart rate
variability affects the performance of different classification models of neural network. For
this purpose, different alternatives were used as classification methods, such as Multilayer
Perceptron neural network (MLP), Extreme Learning Machine (ELM), Random Vector
Functional Link Network (RVFL) models, and the CNN approach). The alternatives used
as classification methods provide different accuracy for different short lengths, while
also delivering explanation about the performance of neural networks on short heart rate
variability records. In light of the concepts discussed earlier, the key contributions of this
paper can be summarized as follows:

• The importance of the classification of cardiovascular time series is linked to informa-
tion that helps decision making. Typically, studies concentrate on analyzing long-term
series (24 h of records) [43–45], giving less attention to the investigation of short time
series. However, in this research, we aim to broaden the study of the application of
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neural networks for classifying congestive heart failure using short records of heart
rate variability (RR intervals);

• We compare three different approaches for congestive heart failure conditions: Multi-
layer MLP network, RVFL network, and ELM;

• We show that, for different congestive heart failure conditions, the output models pro-
vide misclassifications when classical variants of neural networks are used. However,
using coupling, some deep feature maps with the RVFL and MLP models allow us to
obtain a very high simulation accuracy.

The contributions of this article aim to give information that helps decision-making
in relation to the classification of different congestive heart failure categories. A correct
classification of the degree of heart disease for patients with congestive heart failure could
help specialists with medical diagnosis and apply appropriate treatments to the disease
condition. Furthermore, the use of short time series could be useful in the implementation
of devices for real-time monitoring of the patient’s cardiovascular condition.

The paper is organized as follows. Section 2 presents a detailed description of the
methods based on neural networks. The materials and methods used in this work are
presented in Section 3. Section 4 provides a discussion of cardiovascular classification
results and describes the limitations of this study. It concludes the research with the
conclusions in Section 5.

2. Models Based on Neural Networks
2.1. Multilayer Perceptron Neural Network

Let us characterize the N short time series by the set {(xk, tk) : xk ∈ Rd, tk ∈ Rm},
where xk = [xk1, xk2, . . . , xkd]

T is the k-th input vector of size d and tk = [tk1, tk2, . . . , tkm]
T

is the k-th corresponding target vector of size m. The MLP model is a type of feedfor-
ward learning neural network [46,47], whose architecture is composed of multiple neu-
rons grouped in layers. Considering Q hidden layers, the neurons in the hidden layer q
(0 < q ≤ Q) process information through the equation h(q)

k = f (h(q−1)
k W (q) + b(q)),

whence f (·) is an activation function, h(q−1)
k (q = 1, h0 = xk) denotes the output vector of

layer q− 1, W (q) corresponds to the weights matrix between the layers q− 1 and q, and b(q)

is the bias vector in layer q [46,48]. The Softmax activation function is used at the output
layer to compute the probability that the sample xk can belong to the target class, thus
generating the predicted output t̂k of the MLP model.

Finally, it is necessary to estimate the optimal parameters of the model by minimizing
a cost function, defined as follows:

J(θ; tk, t̂k) =
1
N

N

∑
k=1

`(θ; tk, t̂k), (1)

where θ = {(W (1), b(1)), . . . , (W (Q+1), b(Q+1))}. The loss function defines the error be-
tween the actual model output and the expected output, appropriately chosen for a specific
task (e.g., mean squared error, hinge, Huber, and cross-entropy). The classical methods
for estimating the network parameters are gradient descent, variants of this algorithm
(e.g., stochastic gradient descent, stochastic gradient descent with momentum, and Adam’s
method) [49], and the backpropagation learning mechanism [50].

2.2. Random Vector Functional Link Network

The RVFL method was proposed in [51], and, since then, the model has been used to
solve problems in various scientific fields due to its learning and generalization characteris-
tics. The structure is as follows: with the random assignment of weights between the input
and hidden layers, the RVFL model avoids the backpropagation algorithm, with the only
network parameters being the output weights (direct links: input layer to output layer and
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hidden layer to output layer). Mathematically, RVFL with L hidden neurons minimizes the
following least squares problem [52]:

min
β∈R(d+L)×m

J(β) :=
1
2
‖Hβ− T‖2, (2)

where ‖ · ‖ is the Frobenius norm, β is the output weights matrix, H = [H1 H2]N×(d+L)
represents the concatenation matrix between the input data and the random output of the
hidden layer, and T is the target matrix, expressed explicitly as follows:

H2 =


f (w1 · x1 + b1) f (w2 · x1 + b2) · · · f (wL · x1 + bL)

...
...

. . .
...

f (w1 · xN + b1) f (w2 · xN + b2)
... f (wL · xN + bL)


N×L

,

H1 =


x11 x12 · · · x1d
...

...
. . .

...
xN1 xN2 · · · xNd


N×d

, β =


β1
...

βd+L


(d+L)×m

, and T =


t1
...

tN


N×m

. (3)

Here, the output weights vector βk = [βk1, βk2, . . . , βkL]
T connects the k-th neuron of the

input and hidden layers to the output neurons, where 1 ≤ k ≤ d + L, and the random
weights vector wj = [wj1, wj2, . . . , wjd]

T links the input neurons with the j-th hidden neuron,
1 ≤ j ≤ L. Also, f (·) is a non-linear activation function, bj is the bias of the j-th hidden
neuron, and xi · xj denotes the standard inner product over the space Rd.

The optimal solution of the standard RVFL model defined in Equation (2) is as follows:

β = H†T , (4)

where H† = (HT H)−1 is the Moore–Penrose inverse of H [53]. In order to design a more
stable RVFL model against the overfitting problem, the `2-norm regularizer is added to the
function J(·), resulting in the following convex formulation [54]:

min
β∈R(d+L)×m

J̃(β) :=
1
2
‖Hβ− T‖2 +

1
2

C‖β‖2, (5)

where C > 0 is a constant that must be adjusted. Applying efficient optimization strategies,
the solution to problem (5) is given as follows:

si (d + L) ≤ N : β =
(

HT H + 1
C I
)−1

HTT

si N < (d + L) : β = HT
(

HHT + 1
C I
)−1

T ,
(6)

where I is an identity matrix of proper order. The matrices
(

HT H + 1
C I
)

and
(

HHT + 1
C I
)

in (6) are non-singular matrices, since both HT H and HHT are positive semidefinite sym-
metric matrices and C > 0. When we remove the direct links from inputs to outputs in
RVFL, the literature often presents this feedforward neural network as an ELM [55,56].

2.3. Convolutional Neural Network

There are numerous variants of CNN architectures in the state-of-the-art [57]. However,
their basic components are three types of layers: convolutional, pooling, and fully connected
layers [57,58]. The convolutional layer learns meaningful representations of the inputs
through a series of filters (or kernels). Each filter generates a feature map that defines
the depth of the output feature cube. Specifically, each node in a feature map receives
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information from a local region of neighborhood nodes in the previous layer. With a learned
kernel and then applying an elementwise non-linear activation function, the activation
value hl

i,j,k of the k-th feature map of the l-th layer can be calculated as follows:

hl
i,j,k = ϕ(zl

i,j,k), (7)

where ϕ(·) denotes the non-linear function and zl
i,j,k = wl

k · x
l
i,j + bl

k is the feature value

(i, j) in the k-th feature map of the l-th layer. The weight vector wl
k and the bias term bl

k of
the k-th filter of the l-th layer are connecting links between the input patch xl

i,j centered

at (i, j) and the corresponding node in the k-th feature map. Note that the filter wl
k that

generates the three-dimensional feature map zl
:,:,k (width, height, and depth) is shared.

In order for the CNN model to learn highly non-linear features, different activation
functions have been incorporated into its architecture, with the typical functions being
sigmoid, tanh, and ReLU. Subsequently, a pooling layer placed between two convolutional
layers reduces the resolution of the feature maps. The pooling operation denoted as pool(·)
applied to each feature map hl

:,:,k is defined as follows:

tl
i,j,k = pool(hl

m,n,k), ∀ (m, n) ∈ Rij (8)

whereRij is a local region centered on location (i, j). The most common pooling operations
are min pooling, max pooling [59], and average pooling [60]. Filters in the first convolu-
tional layer detect low-level features of the inputs, such as edges and curves, while filters
associated with the deeper layers are trained to encode more abstract features [61].

After adding several convolutional and pooling layers, one or more fully connected
layers drive the final model decision through high-level feature learning. For instance,
the feature extraction from the final convolutional layer can be coupled with the MLP ap-
proach. This class of models commonly employs the Softmax function to solve classification
tasks [62]. The optimal parameter estimate can be obtained by minimizing the loss function
defined in Equation (1). On the other hand, a global problem in deep learning is overfitting,
tackled in the literature through regularization techniques. The typical regularizers are the
`p-norm, Dropout, and DropConnect. Note that, for p ≥ 1, the `p-norm regularization is
convex, while, for p < 1, the norm defines a non-convex regularization. The two special
cases are p = 1 (`1-norm) and p = 2 (`2-norm), known as Tikhonov and LASSO regular-
ization, respectively. The `2-norm reduces the negative impact of noisy inputs, while the
`1-norm exploits the sparsity effect of the weights.

3. Materials and Methods

In this section, short time series of congestive heart failure are used to evaluate the
performance of three classical variants of neural networks and some deep feature maps
coupled with the RVFL and MLP models. The goal of this section is to gain insight into the
shortest length of RR-series that can be reliably analyzed with each model. For this purpose,
a short-length pre-processed database with various congestive heart failure categories was
used (see Table 1). The overall workflow is shown in Figure 1.
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Figure 1. Block diagram of the proposed methodology for the classification of heart disease.

3.1. Congestive Heart Failure

The New York Heart Association (NYHA) Classification system is a widely utilized
tool in the medical field. It categorizes patients who have heart failure into one of four
classes based on the extent of their symptoms during rest and physical activity. In the initial
stages of heart failure, the heart typically functions adequately both at rest and during
activity. As the disease progresses, the heart’s capacity to meet the body’s demands during
physical exertion diminishes, leading to the onset of clinical signs and symptoms during
activity. As the disease advances further, patients may experience signs and symptoms of
heart failure even when they are at rest.

Physicians commonly rely on the NYHA Classification system for predicting outcomes
and assessing the effectiveness of treatment interventions for heart failure [63]. The classi-
fication comprises four classes, labeled I to IV, where Class I indicates milder symptoms
and higher-class numbers correspond to more severe symptoms. Patients self-report their
signs and symptoms, and their classification may change, either improving or worsening,
depending on the severity of their condition at a given time. For a detailed breakdown of
the classes, please refer to Table 1.

Table 1. Congestive heart failure categories.

Class Limitation Description

NYHA I Relative Patients that have no limitation to physical activity.

NYHA II Relative
Patients with cardiac disease that results in slight limitation to
physical activity, with symptoms such as fatigue, palpations,
dyspnea, or angina pain.

NYHA III Absolute
Patients with cardiac disease who are comfortable at rest;
however, less-than-ordinary activity causes fatigue, palpation,
dyspnea, or angina pain.

NYHA IV Absolute Patients with cardiac disease that results in the inability to carry
out any physical activity.

3.2. Selection and Preprocessing of RR Intervals

As mentioned earlier, the study of RR interval short time series has a twofold interest
because most of the records for RR time series are short, and, on the long serie,s the
dynamics may change with time, requiring the analysis of short pieces to obtain insight
into this process. We worked with information extracted from the Physionet.org [64], a
web-based resource designed to support current research and stimulate new investigations
in studying complex physiologic and clinical data.

In this research, we have selected three groups corresponding to congestive heart
failure (CHF), which were freely accessed on 1 August 2023 from https://physionet.org/
content/chf2db/1.0.0/ (see Table 2 for more details). Each time series is a 24 h record with
a sampled frequency of 128 Hz, which was cleaned as follows:

https://physionet.org/content/chf2db/1.0.0/
https://physionet.org/content/chf2db/1.0.0/
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1. Consider a finite time series y(j) of length N, where j = 1, . . . , N;
2. Progressing from j = 3 to j = N − 2, the s value is calculated as

s =
y(j− 2) + y(j− 1) + y(j + 1) + y(j + 2)

4
; (9)

3. If y(j) satisfies the following condition:

s ∗ (1 + w) > y(j) > s ∗ (1− w) (10)

the y(j) value is accepted; otherwise, it is deleted (w = 0.2);
4. Finally, compute the new time series x(i) as

x(i) =
y(j) − < y >

σy(j)
(11)

Following from each 24 h record, short time series of lengths 512, 1024, and 2048 were
extracted. These short series were grouped into two databases with 3663 and 10,494 records
for each respective length. Subsequently, the records were grouped into classes according
to the NYHA classification system (see Table 1). To train our neural network and be able to
know if it is working well, let us separate the data set (see Table 2) into a training set (train)
and test set (test) in a ratio of “80-20”. For this, we took random samples not in sequence
(if not mixed). Also adopted was the five-fold cross-validation scheme for training and
testing, a classical generalization tool in machine learning. Figure 2 shows some signals
corresponding to CHF for each class in the database.

Table 2. Databases for cardiovascular diseases.

Database Name Description Number of
Subjects Studied

Number of Short
Time Series

Length of Short
Time Series

Congestive Heart
Failure RR Interval

Beat annotation files (about 24 h each)
from 29 subjects with congestive heart
failure (NYHA classes I, II, and III)

29 3663, 10,494 512, 1024, 2048

Heart-beat number

T
im

e
 (

s
e
c
o
n
d
s
)

Class I

NYHA class I

Heart-beat number

T
im

e
(s

e
c
o
n
d
s
)

Class II

NYHA class II

Heart-beat number

T
im

e
(s

e
c
o
n
d
s
)

Class III

NYHA class III

Figure 2. Examples of heart time series for three different classes: each plot illustrates the first 7680
heartbeats with their corresponding RR interval for the three classes considered.

3.3. Environment

The experiments were run on a LAPTOP—CK96L4FB with Windows 11 Home Single
Language 64-bit operating system, Intel(R) Core(TM) i5-10300H CPU @ 2.50 GHz 2.50 GHz,
4 cores, 8 logical processors, and 8 GB RAM. The implementation of all models was carried
out in MATLAB R2020a programming language using custom scripts.
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3.4. Performance Metrics

To evaluate the performance of the proposed approach in the classification of cardio-
vascular diseases on the test set, we applied some performance criteria that are commonly
used in machine learning, namely, Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), and
Positive Predictive Value (PPV). These metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Sensitivity =
TP

TP + FN
(13)

Specificity =
TN

FP + TN
(14)

PPV =
TP

TP + FP
(15)

where the acronyms in the above equations denote the true positive (TP), false positive
(FP), true negative (TN), and false negative rates (FN).

3.5. Fuzzy Activation Function

In automatic learning, the shape of the fuzzy activation function plays a fundamental
role in the accuracy of the model. This function is defined as follows [65]:

ϕ(x) =


0 , x ≤ a

2α−1
(

x−a
b−a

)α
, a ≤ x ≤ a+b

2

1− 2α−1
(

x−a
b−a

)α
, a+b

2 ≤ x ≤ b
1 , x ≥ b

(16)

Through a basic analysis, the α parameter controls the gradient of the fuzzy function.
Following the experimental results discussed in [65], the neural network obtained better
error rates when α = 2. For this reason, α = 2 was the optimal value considered in the
experiments in our study. More details of the fuzzy function can be found in [65].

4. Results and Discussion

In this section, we use congestive heart failure signals to conduct a series of experi-
ments to evaluate the performance of the proposed neural network-based models. Initially,
the tests were performed with a simple architecture: MLP, ELM, or RVFL. Then, the classical
CNN architecture was adapted to our cardiovascular disease classification problem. The
efficiency of deep feature learning for image classification [58] motivated the use of the
CNN method.

4.1. Selection of Learning Models Based on Neural Networks

• ELM and RVFL networks: These two non-iterative architectures learned nonlinear fea-
tures thanks to the sigmoid function ϕ(z) = 1/(1− exp(z)), chosen for its efficiency
in this class of algorithms [56,66]. The random weights and biases in the hidden layer
followed a uniform distribution in the [−1, 1] range [55]. In the training phase, the
{10−10, 10−9, . . . , 109, 1010} and {500, 700, 900, . . . , 10,000} grids were considered to
estimate the optimal values of C (regularization constant) and L (hidden neurons),
respectively. Table 3 shows the optimal value of the hyperparameters after an ex-
haustive search. It is worth mentioning that the same idea was configured for each
database designed in this study;

• MLP Network: Table 3 also includes the best MLP model for each database, choosing
hyperparameters through an empirical or manual setup. We adopted this fast training
phase because some experiments showed non-significant differences between a fine
and empirical fit. The over-fitting problem was controlled by adding the `2-norm to
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the cost function in Equation (1). The Adam optimizer was the training algorithm,
and the ReLU function produced the non-linear feature learning;

Table 3. Estimated hyperparameters: ELM, RVFL, and MLP.

Scenarios Signal
Length

Hyperparameter

MLP ELM RVFL

First scenario:
databases with
3663 samples

512

Cross-entropy loss, ReLU activation, 64
mini-batches, a learning rate of 5× 10−4,
`2-regularization of 10−8, Adam optimizer, 50
epochs, and three hidden layers (50, 100, and
40 neurons).

sigmoid activation,
C = 0.1, L = 8700.

sigmoid activation,
C = 1, L = 4900.

1024
MLP model within 512 with a learning rate of
5× 10−3 and three hidden layers (100, 100, and
40 neurons).

sigmoid activation,
C = 0.01, L = 7300.

sigmoid activation,
C = 0.1, L = 9300.

2048
MLP model within 512 with 60 epochs,
`2-regularizer of 10−20 and three hidden layers
(50, 20, and 100 neurons).

sigmoid activation,
C = 103, L = 9700.

sigmoid activation,
C = 1, L = 3300.

Second scenario:
10,494 short
time series

512
MLP model within 512 with 75 epochs,
`2-regularizer of 10−20 and two hidden layers
(50 and 20 neurons).

sigmoid activation,
L = 7500, C = 103.

sigmoid activation,
L = 6700, C = 10.

1024
MLP model within 512 with 75 epochs,
`2-regularizer of 10−20 and two hidden layers
(50 and 20 neurons).

sigmoid activation,
L = 6900, C = 0.01.

sigmoid activation,
L = 6900, C = 0.01.

2048

MLP model within 512 with 37 epochs,
`2-regularizer of 10−10, a learning rate of
5× 10−3 and two hidden layers (70 and
40 neurons).

sigmoid activation,
L = 4900, C = 0.1.

sigmoid activation,
L = 4900, C = 0.1.

• CNN approach: To achieve more stable results in the classification phase of cardio-
vascular disease, we focused on a CNN model for high-level feature extraction. The
optimal feature representation can be obtained by adding convolutional layers to the
CNN. Our research proposes a CNN model with seven convolutional layers, each
followed by a pooling layer. The output of each of the convolutional layers was
batch-normalized, and then the method learned non-linear features through the ReLU
function. Finally, we concatenated a fully connected MLP with an additional convo-
lutional layer for the final classification of the model. In the fully connected layer,
the loss function considered was the crossentropyex function for the three mutually
exclusive classes of congestive heart failure. The CNN network was trained with the
SGDM (Stochastic Gradient Descent with Momentum) algorithm. Table 4 presents
the optimal hyperparameters considered, while Table 5 shows the topology of the
proposed CNN model. In this deep learning approach, both topology and hyperpa-
rameters were hand-picked to speed up the training stage. The term “padding same”
in the convolutional layer indicates that the output dimension does not change with
respect to the input after applying a filter or kernel.

Table 4. Hyperparameters of the proposed CNN approach.

Scenarios Signal
Length

Hyperparameter

CNN–MLP CNN–RVFL

First scenario
and second
scenario

512, 1024,
and 2048

crossentropyex loss, ReLU activation, 64
mini-batches, a learning rate of 0.022, 0.099 as
momentum, `2-regularizer of 0.03,
SGDM optimizer.

Hyperparameters of the feature map and RVFL
(fuzzy activation, L = 5, and C = 0.1).
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To explore the extraction of deep features, experimental tests were conducted by
linking some feature maps with an RVFL architecture. Specifically, the inputs of
the RVFL network were the outputs of the layers: pooling 3, pooling 4, pooling 5,
pooling 6, and pooling 7. We named these models according to the pooling layer, such
as CNN-,RVFL3, CNN-,RVFL4, CNN-,RVFL5, CNN-,RVFL6, and CNN-,RVFL7. In
addition, we decided to run several training stages by assigning the epochs a number.
In this experimental breakdown, the fuzzy function replaces the sigmoid function for
the non-linear feature mapping, with C and L estimated manually in Table 4;

Table 5. Topology of the proposed CNN approach for classifying congestive heart disease.

Layer Type Filter Size Stride Padding Activation

Convolutional 7× 7× 32 1 same ReLU
Max Pooling 2× 2 2 — —

Convolutional 5× 5× 64 1 same ReLU
Max Pooling 2× 2 2 — —

Convolutional 5× 5× 64 1 same ReLU
Max Pooling 2× 2 2 — —

Convolutional 5× 5× 64 1 same ReLU
Max Pooling 2× 2 2 — —

Convolutional 3× 3× 32 1 same ReLU
Max Pooling 2× 2 2 — —

Convolutional 3× 3× 32 1 same ReLU
Max Pooling 2× 2 2 — —

Convolutional 3× 3× 16 1 same ReLU
Max Pooling 2× 2 2 — —

Convolutional 3× 3× 32 1 same ReLU
Fully connected 3 — — Softmax

• Five-fold cross-validation scheme: In order to corroborate the performance of the
models discussed above, some experiments were repeated using the five-fold cross-
validation technique of machine learning. This training and testing strategy does not
consider fixed parts of the dataset, an important condition to achieve unbiased and
precise evaluation metrics. In fact, the short time series were distributed over five folds
(each fold with 20% of the database). Each fold was used as a test set, while the four
folds remaining were used for training. For each designed database, the overall results
were the average of the five runs. In view of the poor learning of the non-iterative and
MLP models in cardiovascular classification, the next section includes some results of
the CNN approach. To compare the performance of the CNN learning system without
cross-validation, the experiments inherited the setup included in Tables 4 and 5.

4.2. Accuracy Analysis for the Classification of Cardiovascular Diseases

With the length and number of short time series introduced in Table 2, we organized
the experimental results on cardiovascular disease into two scenarios. The first corresponds
to the 3663 short time series, while the second is within the 10,494 signals; each scenario is
classified according to the length or size of the time series (512, 1024, and 2048). Table 6
presents the classification results for the MLP network and the non-iterative schemes—ELM
and RVFL. As can be observed, all classical models considered do not achieve good testing
accuracy in the classification of patients with congestive heart failure. Both ELM and RVFL
achieved better accuracy rates than MLP, with a maximum value of 54%.
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Table 6. Overall accuracy of MLP, ELM, and RVFL approaches within cardiovascular diseases.

Scenarios Signal
Length

Overall Accuracy (%)

MLP ELM RVFL

First scenario: databases
with 3663 samples

512 51.64 53.55 54.23
1024 50.27 54.51 54.10
2048 49.18 54.64 53.83

Second scenario: databases
with 10,494 samples

512 50.52 51.91 50.29
1024 50.05 50.57 50.00
2048 50.09 50.62 49.71

In search of the model that best identifies the patient’s diagnosis, we present below the
expected performance of the proposed CNN approach in the classification of cardiovascular
diseases (review the CNN topology and estimated optimal values in Tables 3 and 5). Table 7
shows the overall classification performance of the deep learning models: CNN–MLP,
CNN–RVFL3, CNN–RVFL4, CNN–RVFL5, CNN–RVFL6, and CNN–RVFL7. CNN–MLP
is the coupled model between the convolutional layer 8 and the MLP algorithm, and
the others are the ones introduced above. Clearly, deep feature extraction improves the
robustness of the congestive heart failure classification process. Experimental testing results
achieve a maximum accuracy of around 98% to 99%. In both scenarios considered, the
models predict higher diagnostic accuracy for longer time series. The learning approaches
converge (Maximum Accuracy Rate) with 64 epochs in the first scenario and 32 epochs in
the second scenario. As for CCN–RVFL models, it can be seen that all the accuracy results
in the configured databases improve according to the depth of the feature map, which is
an important analysis for the final decision of the number of convolutional layers in deep
feature learning. Comparing the performance with MLP, ELM, and RVFL (see Table 6), the
proposed CNN approach clearly improves the diagnosis of cardiovascular diseases.

Table 7. Overall accuracy of CNN for the classification of cardiovascular disease.

Scenarios Signal
Length Epochs

Overall Accuracy (%)

CNN–MLP CNN–RVFL3 CNN–RVFL4 CNN–RVFL5 CNN–RVFL6 CNN–RVFL7

First scenario:
databases with
3663 samples

512 8 62.30 53.69 56.83 56.69 63.52 62.30
16 69.81 56.97 60.79 68.99 71.99 70.90
32 79.78 57.79 65.98 76.78 81.28 85.66
64 81.69 62.84 70.49 75.00 82.92 83.74

1024 8 70.77 62.30 70.63 70.77 71.99 68.03
16 75.27 57.24 62.02 78.28 84.02 80.87
32 96.99 63.80 66.94 86.07 96.72 97.13
64 98.91 64.89 73.50 87.02 98.63 98.91

2048 8 80.74 61.07 62.98 60.66 71.17 80.60
16 93.58 64.48 70.08 67.35 82.51 92.21
32 97.68 67.35 75.55 77.46 89.89 96.45
64 99.04 65.57 81.01 88.66 97.54 99.18

Second scenario:
databases with
10,494 samples

512 8 89.04 64.25 75.83 84.08 88.70 88.51
16 93.99 65.30 73.45 86.32 94.71 95.00
32 97.52 66.63 75.31 86.27 97.04 97.09

1024 8 89.13 59.77 69.54 79.36 80.03 81.27
16 92.09 67.54 74.88 83.94 90.85 91.13
32 97.14 71.45 82.55 91.99 97.33 97.71

2048 8 97.09 64.87 68.73 84.60 91.28 95.76
16 97.28 66.83 78.12 83.94 94.23 96.19
32 98.62 70.97 77.36 85.99 97.90 98.43

The confusion matrix for the CNN–MLP model within the three categories of conges-
tive heart failure is shown in Figures 3 and 4. In these experimental results, the number
of epochs in the two scenarios designed was 64 and 30, respectively. With the TP, FP, TN,
and FN rates for each confusion matrix, the performance metrics for every scenario and
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class are reflected in Table 8. In the case of signals with length 2048 in the first scenario, for
class I signals, it can be noted that 0.39% of signals are misclassified as class II. In addition,
0.42% of class II signals are misclassified as class I signals. Further, approximately 2.08% of
class III signals are wrongly labeled as class I signals. The confusion matrices with lower
performance over signals with lengths 512 and 1024 can be interpreted similarly. Focusing
now on the second scenario, similar to the first scenario, the CNN–MLP model achieved
better results for the series with length 2048. In this case, 0.70% of the class I signals are
wrongly labeled as class II, and 0.84% are wrongly classified as class III. For class II, 0.42%
and 0.28% are wrongly labeled as class I and class III, respectively. Furthermore, for class
III signals, it can be seen that 3.46% of signals are wrongly labeled as class I. Additionally,
98.14% of the signals of length 2048 are correctly classified.

From a clinical viewpoint, patients in class I who are misclassified will attract un-
necessary attention since the cardiovascular disease is mild or moderate. However, time
series incorrectly labeled in classes II and III may cause more serious consequences, such as
delayed treatment. In this experiment, associated with the confusion matrices discussed
in the previous paragraph, 0.42% and 2.08% of the time series in classes II and III are
wrongly classified as another, respectively. In the second scenario, 0.42% of class II series
are misclassified, and 2.08% of class III series or signals are mislabeled. The Acc PPV, Sen,
and Spe performance metrics for all confusion matrices can be reviewed in Table 8.

Table 8. Evaluation metrics of CNN–MLP for each of the confusion matrices included in
Figures 3 and 4.

Scenarios Signal
Length

Class I (%) Class II (%) Class III (%)

Acc PPV Sen Spe Acc PPV Sen Spe Acc PPV Sen Spe

First scenario:
databases with
3663 samples

512 82.92 65.23 82.27 83.18 86.47 89.41 74.04 94.41 94.26 92.08 90.57 96.11
1024 98.36 97.66 97.66 98.74 99.73 100 99.16 100 98.63 97.50 98.31 98.78
2048 99.04 97.66 99.60 98.75 99.73 99.58 99.58 99.80 99.32 100 97.96 100

Second scenario:
databases with
10,494 samples

512 97.99 95.37 98.69 97.66 99.76 99.72 99.58 99.86 98.05 98.65 95.35 99.36
1024 97.47 98.04 94.72 98.97 98.90 96.81 100 98.36 98.38 97.44 97.74 98.82
2048 98.23 96.35 98.42 98.14 99.48 99.31 99.31 99.64 98.52 98.80 96.62 99.44
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Figure 3. Confusion matrices of three classes for cardiovascular diseases within the first scenario and
performance of CNN–MLP.
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Figure 4. Confusion matrices of three classes for cardiovascular diseases within the second scenario
and performance of CNN–MLP.

• Performance of CNN for five-fold cross-validation: Here, the paper details the general-
ization ability of CNN in Tables 9 and 10 under the five-fold cross-validation criterion.
As before, 64 and 32 were the number of epochs considered for the first and second
scenario databases, respectively. The classification of cardiovascular disease with this
training and testing rule was comparable with the scheme without cross-validation
(see Tables 7 and 8). The random initialization of parameters (weights and biases)
and the average value of the five runs explain the bounded variation between eval-
uation metrics. This proves the performance of the proposed CNN method and the
importance of deep feature extraction in the final model decision.

Table 9. Overall accuracy of CNN for five-fold cross-validation.

Scenarios Signal
Length

Overall Accuracy (%)

CNN–MLP CNN–RVFL3 CNN–RVFL4 CNN–RVFL5 CNN–RVFL6 CNN–RVFL7

First scenario:
databases with
3663 samples

512 81.96 63.09 69.53 78.52 82.56 83.01
1024 97.51 64.01 72.87 86.21 96.10 97.58
2048 96.00 65.66 74.01 85.68 95.10 96.58

Second scenario:
databases with
10,494 samples

512 96.38 65.44 76.45 86.09 96.78 97.00
1024 97.10 71.73 83.27 90.00 96.72 97.60
2048 97.90 72.87 84.04 89.69 98.31 98.40

Table 10. Evaluation metrics of CCN–MLP for five-fold cross-validation.

Scenarios Signal
Length

Class I (%) Class II (%) Class III (%)

Acc PPV Sen Spe Acc PPV Sen Spe Acc PPV Sen Spe

First scenario:
databases with
3663 samples

512 84.22 79.49 71.86 90.51 87.63 78.82 86.10 88.40 92.06 88.22 88.40 94.12
1024 97.78 96.65 96.91 98.23 99.11 99.13 98.13 99.59 98.12 96.79 97.51 98.43
2048 98.16 96.71 98.09 98.23 99.86 98.75 99.59 99.21 98.29 97.85 96.82 99.00

Second scenario:
databases with
10,494 samples

512 96.74 96.43 93.74 98.20 98.70 97.90 98.19 98.96 97.32 95.06 97.15 97.40
1024 97.32 96.61 95.31 98.33 98.89 97.91 98.80 98.85 97.99 96.94 97.21 98.38
2048 97.00 96.00 98.07 97.94 99.56 99.69 98.99 99.84 98.26 98.12 96.64 99.07

In conclusion, the current study tackles a classification problem for cardiovascular
diseases using neural networks. The methods with vector inputs—MLP, ELM, and RVFL—
did not satisfactorily classify the three classes of congestive heart failure; ELM and RVFL
achieved a higher accuracy rate of 54%. Adapting tensor inputs in a CNN structure with
eight convolutional layers significantly improved the learning of features for medical
diagnosis. The accuracy of the model was evaluated according to the depth of the feature
map, coupled separately with the RVFL network for the final classification. The analysis
showed that the CNN framework successfully classified the three classes of cardiovascular
disease with an accuracy of 98% and 99%. As expected, the classification of the model is
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more robust in terms of the length of the short time series. The CNN model repeated a
similar behavior with the cross-validation scheme.

The extraction of deep abstract features through convolutional filters is a possible
explanation for the better performance of the proposed CNN approach. Without human
intervention, the learning system captures important information from the input time series
and forms a meaningful representation of the data by combining low-level features. The
system could be installed in a low-cost medical electronic device and serve as a preliminary
diagnostic tool in health centers where access to a cardiologist is difficult. The results could
be sent to a cardiology expert in a clinic or hospital through the internet to minimize the
diagnostic time and reduce the number of misdiagnoses.

4.3. Limitations and Recommendations for Further Research

The cases of cardiovascular disease reported every year are numerous, and the use of
neural networks to diagnose this disease can ease this burden. It could also improve the
efficiency of healthcare systems. Even laypeople can understand their physical situation
and detect this disease at an early stage. It may be seen as a preventive method to stop the
disease from becoming worse. Nevertheless, there are also some limitations to this paper,
discussed below:

• The diagnosis of complex cardiac diseases may require more features to achieve
acceptable results. Considering the CNN classifier and the other conventional methods
employed, the processing time increases with the length of the time series;

• The performance of the CNN approach is affected by the number of features used
in the short time series, addressed in the literature as an additional hyperparameter
by trial and error. This may introduce a certain degree of arbitrariness in the final
classification of the model;

• The samples classified according to the length of the time series used in the experi-
ments come from a single institution. It could be desirable to validate the model with
other open-access databases.

In a future study, we aim to explore RR-interval time series in other applications that
may be of interest to humankind, that is, through learning models, to detect types of heart
disease and categorize their level of disease (mild or major). Another proposal will be to
carefully investigate and discuss the impact of some parameters on the performance of the
proposed approach. The approach presented here will facilitate the implementation of more
complex models to improve performance as well as test the results with larger databases.

5. Conclusions

Cardiovascular disease leads to a high mortality rate worldwide, and the use of
machine learning tools can help prevent this disease by identifying people with high
cardiovascular risk. Thus, this research explores the use of three classical variants of neural
networks to classify three groups of patients with CHF. Precisely, the study considered the
iterative method MLP, two non-iterative models (ELM and RVFL), and the CNN approach.
Through a series of experiments, the results showed that the deep feature learning system
obtained better classification rates than MLP, ELM, and RVFL. Several scenarios designed
by coupling some deep feature maps with the RVFL model showed very high simulation
accuracy. The overall accuracy rate of CNN–MLP and CNN–RVFL varies between 98% and
99%, relevant models with very good sensitivity and specificity. On the other hand, the
MLP, ELM, and RVFL methods did not learn relevant features from the data, leading to
unreliable classification rates.
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MLP Multilayer Perceptron
ELM Extreme Learning Machine
RVFL Random Vector Functional Link
CNN Convolutional Neural Network
ReLU Rectified Linear Unit
PPV Positive Predictive Value
TP True Positive
FP False Positive
TN True Negative
FN False Negative
SGDM Stochastic Gradient Descent with Momentum
CHF Congestive Heart Failure
NYHA New York Heart Association
HRV Heart Rate Variability
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DWT Discrete Wavelet Transform
MFDFA Multifractal Detrended Fluctuation Analysis
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21. Nayak, S.K.; Jarzębski, M.; Gramza-Michałowska, A.; Pal, K. Automated Detection of Cannabis-Induced Alteration in Cardiac
Autonomic Regulation of the Indian Paddy-Field Workers Using Empirical Mode Decomposition, Discrete Wavelet Transform
and Wavelet Packet Decomposition Techniques with HRV Signals. Appl. Sci. 2022, 12, 10371. [CrossRef]

22. Lee, K.H.; Byun, S. Age Prediction in Healthy Subjects Using RR Intervals and Heart Rate Variability: A Pilot Study Based on
Deep Learning. Appl. Sci. 2023, 13, 2932. [CrossRef]

23. Eltahir, M.M.; Hussain, L.; Malibari, A.A.; K. Nour, M.; Obayya, M.; Mohsen, H.; Yousif, A.; Ahmed Hamza, M. A Bayesian
dynamic inference approach based on extracted gray level co-occurrence (GLCM) features for the dynamical analysis of congestive
heart failure. Appl. Sci. 2022, 12, 6350. [CrossRef]

24. Zhang, Y.; Wei, S.; Zhang, L.; Liu, C. Comparing the Performance of Random Forest, SVM and Their Variants for ECG Quality
Assessment Combined with Nonlinear Features. J. Med. Biol. Eng. 2018, 39, 381–392. [CrossRef]

25. Karpagachelvi, S.; Arthanari, M.; Sivakumar, M. Classification of electrocardiogram signals with support vector machines and
extreme learning machine. Neural Comput. Appl. 2012, 21, 1331–1339. [CrossRef]

26. Zhou, X.; Zhu, X.; Nakamura, K.; Noro, M. Electrocardiogram quality assessment with a generalized deep learning model
assisted by conditional generative adversarial networks. Life 2021, 11, 1013. [CrossRef]

27. Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia
detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [CrossRef]

28. Brisk, R.; Bond, R.; Banks, E.; Piadlo, A.; Finlay, D.; McLaughlin, J.; McEneaney, D. Deep learning to automatically interpret
images of the electrocardiogram: Do we need the raw samples? J. Electrocardiol. 2019, 57, S65–S69. [CrossRef]

29. Sinnecker, D. A deep neural network trained to interpret results from electrocardiograms: Better than physicians? Lancet Digit.
Health 2020, 2, e332–e333. [CrossRef]

30. Ihsanto, E.; Ramli, K.; Sudiana, D.; Gunawan, T.S. Fast and accurate algorithm for ECG authentication using residual depthwise
separable convolutional neural networks. Appl. Sci. 2020, 10, 3304. [CrossRef]

31. Naeem, S.; Ali, A.; Qadri, S.; Khan Mashwani, W.; Tairan, N.; Shah, H.; Fayaz, M.; Jamal, F.; Chesneau, C.; Anam, S. Machine-
learning based hybrid-feature analysis for liver cancer classification using fused (MR and CT) images. Appl. Sci. 2020, 10, 3134.
[CrossRef]

32. Yan, H.; Jiang, Y.; Zheng, J.; Peng, C.; Li, Q. A multilayer perceptron-based medical decision support system for heart disease
diagnosis. Expert Syst. Appl. 2006, 30, 272–281. [CrossRef]

33. Gupta, P.; Seth, D. Early Detection of Heart Disease Using Multilayer Perceptron. In Micro-Electronics and Telecommunication
Engineering: Proceedings of 6th ICMETE 2022; Springer Nature: Singapore, 2023; pp. 309–315.

34. He, W.; Xie, Y.; Lu, H.; Wang, M.; Chen, H. Predicting coronary atherosclerotic heart disease: An extreme learning machine with
improved salp swarm algorithm. Symmetry 2020, 12, 1651. [CrossRef]

35. Saputra, D.C.E.; Sunat, K.; Ratnaningsih, T. A new artificial intelligence approach using extreme learning machine as the
potentially effective model to predict and analyze the diagnosis of anemia. Healthcare 2023, 11, 697. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevLett.93.178103
http://dx.doi.org/10.1103/PhysRevE.72.041904
http://dx.doi.org/10.1016/j.physa.2006.02.038
http://dx.doi.org/10.1016/j.physa.2009.05.005
http://dx.doi.org/10.1209/0295-5075/94/68005
http://dx.doi.org/10.1253/circj.68.343
http://dx.doi.org/10.1371/journal.pone.0182611
http://dx.doi.org/10.1136/hrt.82.6.e9
http://dx.doi.org/10.1016/j.cmpb.2014.04.007
http://dx.doi.org/10.1007/s11325-014-1029-2
http://dx.doi.org/10.1016/j.cmpb.2013.06.007
http://dx.doi.org/10.3390/app122010371
http://dx.doi.org/10.3390/app13052932
http://dx.doi.org/10.3390/app12136350
http://dx.doi.org/10.1007/s40846-018-0411-0
http://dx.doi.org/10.1007/s00521-011-0572-z
http://dx.doi.org/10.3390/life11101013
http://dx.doi.org/10.1038/s41591-018-0268-3
http://dx.doi.org/10.1016/j.jelectrocard.2019.09.018
http://dx.doi.org/10.1016/S2589-7500(20)30136-9
http://dx.doi.org/10.3390/app10093304
http://dx.doi.org/10.3390/app10093134
http://dx.doi.org/10.1016/j.eswa.2005.07.022
http://dx.doi.org/10.3390/sym12101651
http://dx.doi.org/10.3390/healthcare11050697
http://www.ncbi.nlm.nih.gov/pubmed/36900702


Appl. Sci. 2023, 13, 13211 18 of 19

36. Flores, J.; Loaeza, R.; Rodriguez Rangel, H.; González-santoyo, F.; Romero, B.; Gómez, A. Financial Time Series Forecasting
Using a Hybrid Neural Evolutive Approach. In Proceedings of the the XV SIGEF International Conference, Lugo, Spain, 3–8
October 2009.

37. Alba, E.; Mendoza, M. Bayesian Forecasting Methods for Short Time Series. Foresight Int. J. Appl. Forecast. 2007, 8, 41–44.
38. Ernst, J.; Nau, G.; Bar-Joseph, Z. Clustering Short Time Series Gene Expression Data. Bioinformatics 2005, 21 (Suppl. S1), i159–i168.

[CrossRef]
39. López, J.L.; Contreras, J.G. Performance of multifractal detrended fluctuation analysis on short time series. Phys. Rev. E 2013,

87, 022918. [CrossRef]
40. López, J.; Hernández, S.; Urrutia, A.; López-Cortés, X.; Araya, H.; Morales-Salinas, L. Effect of missing data on short time series

and their application in the characterization of surface temperature by detrended fluctuation analysis. Comput. Geosci. 2021,
153, 104794. [CrossRef]

41. Kleiger, R.E.; Stein, P.K.; Bosner, M.S.; Rottman, J.N. Time domain measurements of heart rate variability. Cardiol. Clin. 1992,
10, 487–498. [CrossRef]

42. The Look AHEAD Research Group. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in
individuals with type 2 diabetes mellitus: Four-year results of the Look AHEAD trial. Arch. Intern. Med. 2010, 170, 1566–1575.

43. Wang, T.; Lu, C.; Sun, Y.; Yang, M.; Liu, C.; Ou, C. Automatic ECG classification using continuous wavelet transform and
convolutional neural network. Entropy 2021, 23, 119. [CrossRef]

44. Rahul, J.; Sora, M.; Sharma, L.D.; Bohat, V.K. An improved cardiac arrhythmia classification using an RR interval-based approach.
Biocybern. Biomed. Eng. 2021, 41, 656–666. [CrossRef]

45. Faust, O.; Kareem, M.; Ali, A.; Ciaccio, E.J.; Acharya, U.R. Automated arrhythmia detection based on RR intervals. Diagnostics
2021, 11, 1446. [CrossRef] [PubMed]

46. Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M. Ant lion optimizer: Theory, literature review, and application in
multi-layer perceptron neural networks. Nat.-Inspired Optim. Theor. Lit. Rev. Appl. 2020, 811, 23–46.

47. Afzal, S.; Ziapour, B.M.; Shokri, A.; Shakibi, H.; Sobhani, B. Building energy consumption prediction using multilayer perceptron
neural network-assisted models; comparison of different optimization algorithms. Energy 2023, 282, 128446. [CrossRef]

48. Lima-Junior, F.R.; Carpinetti, L.C.R. Predicting supply chain performance based on SCOR® metrics and multilayer perceptron
neural networks. Int. J. Prod. Econ. 2019, 212, 19–38. [CrossRef]

49. Wijnhoven, R.G.; de With, P. Fast training of object detection using stochastic gradient descent. In Proceedings of the 2010 20th
International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 424–427.

50. Übeyli, E.D. Combined neural network model employing wavelet coefficients for EEG signals classification. Digit. Signal Process.
2009, 19, 297–308. [CrossRef]

51. Pao, Y.H.; Phillips, S.M.; Sobajic, D.J. Neural-net computing and the intelligent control of systems. Int. J. Control. 1992, 56, 263–289.
[CrossRef]

52. Zhang, L.; Suganthan, P.N. A comprehensive evaluation of random vector functional link networks. Inf. Sci. 2016, 367, 1094–1105.
[CrossRef]

53. Rao, C.R.; Mitra, S.K. Further contributions to the theory of generalized inverse of matrices and its applications. Sankhyā Indian J.
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