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Abstract: This paper proposes an innovative method that exploits a complex deep learning network
architecture, called Hierarchical Deep Neural Network (HDNN), specifically developed for the
eXtreme Multilabel Text Classification (XMTC) task, when the label set is hierarchically organized,
such as the case of the PubMed article labeling task. In detail, the topology of the proposed HDNN
architecture follows the exact hierarchical structure of the label set to integrate this knowledge
directly into the DNN. We assumed that if a label set hierarchy is available, as in the case of the
PubMed Dataset, forcing this information into the network topology could enhance the classification
performances and the interpretability of the results, especially related to the hierarchy. We performed
an experimental assessment of the PubMed article classification task, demonstrating that the proposed
HDNN provides performance improvement for a baseline based on a classic flat Convolution Neural
Network (CNN) deep learning architecture, in particular in terms of hierarchical measures. These
results provide useful hints for integrating previous and innate knowledge in a deep neural network.
The drawback of the HDNN is the high computational time required to train the neural network,
which can be addressed with a parallel implementation planned as a future work.

Keywords: extreme multilabel text classification; hierarchical deep neural network; natural language
processing; BioBERT; PubMed MeSH

1. Introduction

The most recent studies in the field of artificial intelligence, and in particular in
the Natural Language Processing (NLP) area, have proposed innovative deep learning
(DL) network architectures, which were able to sensibly improve the previous state-of-
the-art systems. Examples of these topologies are the Attention and Transformer-based
Deep Neural Network architectures [1,2], which have provided a breakthrough in several
application domains of medicine and healthcare, such as medical imaging or biomedical
information extraction tasks [3–6].

On the other hand, among the various open issues related to DNNs, there is a need to
incorporate prior and external knowledge directly into the neural architectures, allowing
exploitation of predefined rules or knowledge by the neural architecture independently
from its training [7]. Recently, some contributions to address this issue have been provided
by Graph Neural Networks (GNNs) [8,9]. Moreover, it has been demonstrated that incor-
porating innate structures into artificial intelligence (AI) systems could provide substantial
benefits [10].

Following these results, this paper presents a solution for incorporating an external
innate structure into AI systems to integrate this kind of external knowledge within the
DNN architecture. We applied the proposed approach to a specific difficult task: the
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eXtreme Multilabel Text Classification (XMTC) [11,12]. This task consists of the labeling of
textual documents with a variable number of labels belonging to a very large set, formed
by thousands or more elements. In many real-world applications, the labels lie in a
hierarchical tree-like structure, and in this case, the task can be called hierarchical multilabel
text classification.

An example of a hierarchical XMTC task is the automatic assignment of the MeSH
(Medical Subject Headings) terms to the biomedical scientific articles indexed by PubMed
(https://www.ncbi.nlm.nih.gov/pubmed/ (accessed on 5 December 2023)), the official
indexing and search engine for the biomedical scientific literature provided and maintained
by the US National Library of Medicine (NLM). Domain experts manually tag each paper
in PubMed for indexing and searching purposes. The classes used in PubMed belong to a
large set called MeSH, where each label lies in a hierarchical tree structure. The manual
annotation task is very long and difficult, and several methods have been proposed in
the literature to support this process and implement a hierarchical extreme multilabel text
classifier, like the ones described in the more recent BioASQ distributed tasks results [13–16].
The large-scale MeSH indexing task has previously been faced with hybrid DNNs and
classic machine learning techniques [17], BERT-based solutions [18–20], or by adopting
GNN-based approaches [21], improving the obtained performances over the years and
often combining the integration of more approaches to exploit their respective advantages.
Anyway, the complexity of this task and the need for more innovative and performing
architectures is supported by the recent works presented in the literature, as well as by the
distributed task proposed every year by BioASQ.

In this context, this paper proposes an innovative approach for the XMTC problem
based on a Hierarchical Deep Neural Network (HDNN). This network topology internally
reproduces the hierarchy of the labels within its structure. In this way, each node is
specialized for the classification of its children nodes labels, considering both the results
of the parent nodes and a representation of the input text. The network topology is
dynamically and automatically obtained by an algorithm, which implements the network
topology by iterating basic DNN blocks, following the hierarchical graph of the labels. In
addition, to remove the hierarchical inconsistencies of the label set associated with each
training sample, where some labels of the hierarchy could not be included [12], we also
defined a methodology able to overcome this problem, expanding the label set following the
hierarchy and adding the missing labels. We also evaluated the behavior and performances
of the proposed HDNN approach applied to the PubMed MeSH indexing task, extending
previous experiments presented in [22] and further demonstrating its effectiveness. In
particular, this paper extends the previous results, first by including and testing the BioBERT
model [18] as the initial layer of the proposed architecture for text encoding. BioBERT is
a BERT-based architecture pretrained on a large biomedical domain document collection
extracted from PubMed, which has been successfully adopted in many complex biomedical
domain NLP tasks. Moreover, we more deeply analyzed the complexity of the algorithm,
in particular with respect to the distribution of the number of nodes and the corresponding
children nodes. Finally, we extended the number of experiments performed to further
investigate the behavior of the proposed architecture.

The main novelty of the proposed approach is the development of a technique specif-
ically devoted to incorporating hierarchical innate knowledge into the neural network
architecture, able to dynamically adapt to any label set and capable of dealing with huge
label numbers, such as the PubMed MeSH.

As mentioned above, the most recent best-performing approaches for large-scale
PubMed indexing integrate more methodologies and techniques. Therefore, the proposed
HDNN, combined with other approaches, can further improve the results obtained in this
complex task. This paper extends and improves the research previously presented in [22],
first integrating the BioBERT model [18] (a BERT model pretrained on a very large scien-
tific biomedical article collection extracted from PubMed) within the HDNN architecture;
moreover, it extends and more deeply investigates the preliminary experiments previously
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presented. Finally, it provides a more accurate analysis of the performances of the proposed
architecture, especially in terms of the depth of the label hierarchy.

This paper is structured as follows: The next Section 2 is devoted to a review of
the most recent related works in the fields of integrating external knowledge into DNNs,
hierarchical text classification, and PubMed large-scale indexing. In Section 3, the details of
the methodology are described, and in Section 4, the experiments and results are illustrated
and then discussed. Section 5 concludes the paper and presents some possible future works.

2. Related Works

Some interesting approaches to integrating prior knowledge have recently been pre-
sented in the literature. The work of [9] proposed a graph convolutional network that fuses
external knowledge related to sentiment lexicon and part-of-speech information, with the
purpose of improving the sentiment classification task. In detail, the authors exploited an
external sentiment lexicon specifically developed for this purpose and used it to calculate
a sentiment score for each word of the sentences of the dataset, building in this way a
sentiment score matrix that weights the most important words for sentiment classification.
The idea is to use this lexicon to compensate for the fact that the syntactic dependency
trees cannot usually capture edge labels. Their experiments confirmed the effectiveness
of the proposed model and also verified that the integration of external knowledge can
support aspect-based sentiment analysis. In [8], the authors proposed a model to capture
and exploit global dependencies among these sentences based on a graph neural network.
Specifically, they first represented the input sentences as a graph, including various rela-
tions (entity–entity, sentence–sentence, and entity–sentence) to increase the information
represented in the graph. After that, they introduced a graph recurrent network, which
learns the semantic representations of the sentences. The experimental assessment showed
significant performance improvements over the existing state-of-the-art models.

The research presented by [23] proposed to leverage preexisting class hierarchies, such
as WordNet, to integrate additional domain knowledge into a DL classifier. They fitted
the hierarchy of the classes into a probabilistic model and then derived a novel encoding
of the labels and a corresponding loss function. Experiments on ImageNet and NABirds
confirmed the effectiveness of this method.

In [24], a model named KHGCN is proposed, which is able to learn the entity rela-
tionship in the knowledge graph, removing the noisy information at the same time. This
model is devoted to a personalized recommendation system. In detail, it extracts node
embeddings in graphs and learns its hierarchical structure, also introducing an attentive
mechanism to strengthen the knowledge graph aggregation. The experiments validated
this on real-world datasets, demonstrating its effectiveness.

The authors of [25] presented a method for incorporating a label hierarchy into a
DNN architecture, reproducing the same hierarchy in the neural network topology, to
improve multiclass text classification tasks. In detail, the authors proposed an architecture
named HDLTex, whose parent and child layers are connected following the exact topology
of the hierarchical set of labels. The authors tested this method on a dataset composed of
papers indexed on Web Of Science, comparing the results obtained by different combina-
tions of neural network architectures (DNN, CNN, RNN) as nodes of the HDLTex model,
demonstrating that this method can outperform baseline systems.

The idea of incorporating hierarchical class relations into a neural network has also
been investigated by [26], where the authors applied a structured learning procedure
incorporating hierarchical information using the labels, in addition to hierarchical distance,
to successfully improve subpopulation shift modeling. The authors of [27] proposed a
Topic-aware Hierarchical Multiple Attention Network for a hierarchical text classification
model based on multihead self-attention integrated with convolutional filters to the end of
capturing long-range dependencies. Moreover, this model also combines topic distributions
generated by (LDA) Latent Dirichlet Allocation with sentence-level and document-level
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inputs in a hierarchical architecture. The experimental results prove that this approach
improves on the current state-of-the-art hierarchical models.

The application of DL to the medical domain can support the analysis of huge doc-
ument collections but must face several problems, such as data acquisition, conservation
and exchanging, imbalanced datasets, the need of explainability of the models, quality
assurance, privacy preservation, respect of local laws, and other ethical issues [28].

The article presented by [29] describes a BiLSTM deep learning model based on a
decision tree combined with a data balancing strategy, with the purpose of supporting
automated diagnosis tasks from the analysis of questionnaires, also ensuring a secure data
exchange between patients and their medical teams. The model also adopts a preliminary
data preprocessing module, based on classic balancing algorithms to prepare the data for
the network training to overcome imbalanced dataset issues. This issue has been also con-
sidered by [30], who proposed a DL method based on CNN combined with SMOTE to the
end of effectively handling imbalanced data related to breast cancer. Their results demon-
strate that this approach sensibly improves the binary classification of imbalanced datasets.

In [31], the XMTC task is tackled by a hybrid approach, which leverages two stages.
The first one is devoted to the retrieval task and exploits two approaches, a Point Mutual
Information method and a Unified Label-Semantic Embedding method, to the end of ex-
tracting hundreds of candidate labels from a huge label set. Then, the latter stage performs
a ranking task, using a model based on a pretrained Transformer architecture, which is
capable of distinguishing the true labels from the candidate ones and also providing an ex-
plainability mechanism. The experimental assessment showed performance improvements
over the state-of-the-art methods.

The authors of [32] introduced a hierarchical Transformer-based architecture, specif-
ically designed for the automatic diagnosis of eye diseases in textual ophthalmology
electronic medical records. The proposed model includes a hierarchical Transformer archi-
tecture that learns the contextualized representations of each sentence in each document of
the dataset, recognizing through an attention-based predictor the diagnosis parts of the
documents and effectively extracting the required information related to the diseases.

The main difference between the proposed method here and the previously presented
related works is the possibility of reproducing the hierarchical structure directly into the
neural network architecture, dynamically adapting with any label hierarchy and also
introducing prior knowledge into the neural network.

3. Methodology

The proposed HDNN for XMTC task is based on a neural network topology designed
to reproduce the same hierarchical structure of the label set. To this end, we defined a
recursive algorithm that automatically builds the network topology by iterating a basic
DNN block, which corresponds to each node of the label hierarchy. In addition, we also
exploited a methodology to expand the labels of each sample document of the training
set, adding all missing ancestors in the label tree and obtaining a more consistent training
dataset. In this section, the details of both these methods are described.

3.1. Hierarchical Deep Neural Network

The main purpose of the proposed methodology is the automatic creation of a DNN
topology whose structure and interconnections reproduce the label hierarchy. To this
end, a recursive algorithm is defined. This algorithm iterates basic neural network blocks,
connecting them to each other following the label hierarchy, creating, as a result, the schema
depicted in Figure 1. As shown in the figure, the nodes of the HDNN can be classified into
three main groups:
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• Preprocessing node: Where textual data in the input are converted into a word-embeddings-
based representation (the green ones in the upper left part of the figure);

• Internal node: A DNN basic block whose inputs are word-embeddings-based and the
classification result is obtained as the output of its parent node. In the same way, its
output is connected in input to the corresponding children node;

• Root Node: A special internal node that corresponds to the root of the hierarchy. It
differs from the other internal nodes because its input is directly and only connected
to the output of the preprocessing node.

LEVEL M

LEVEL 1

Initial Feature
Processing

Internal 
Node

Internal 
Node

Word 
Embeddings

OUTPUT CLASSES

Internal 
Node

Root
Node

Internal 
Node

LEVEL 2

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Internal 
Node

Figure 1. Schema of the internal architecture of an HDNN: The green blocks represent the mapping
of the text into its own encoded version, provided to the root and all internal nodes (red arrows). The
black arrows represent the outputs of each node, connected to the internal nodes of the next hierarchy
level. The outputs of these nodes are also used to build the final classification output classes (depicted
as colored arrows).

The preprocessing nodes create an encoded-word representation, exploiting static or
dynamic word embedding models [2,33], exploiting in both cases models pretrained on
biomedical document collections, to improve the final results [18,34]. The word vectors
that represent the words of a document in input are extracted and then concatenated
and convoluted in the block named Initial Feature Processing, producing a set of features
extracted from the text representation, and sending it to each node of the HDNNs.

Figure 2a,b shows the details of the latter two aforementioned node types. These nodes
have two main purposes: (i) specializing the features extracted for the corresponding level
of labels in the hierarchy tree and (ii) predicting the classes and providing this information
to their children nodes, in addition to the final complete prediction. The internal blocks
of these nodes include a CNN layer, whose inputs are the results of the preprocessing
block, followed by max-pooling and flattened layers; only in the case of internal nodes, the
flattened output is concatenated with the output coming from its father node. Finally, the
last layer is a dense fully connected layer devoted to label classification. As mentioned, the
prediction is also sent to the children of that node in the topology. In summary, the nodes of
one level specialize and extract the features for the same level of the hierarchy and provide
as output the classifications, which are used as input by their corresponding children nodes.
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The only structural difference between the root node and the internal nodes is that the latter
concatenates the output of other directly connected internal nodes with the output of their
own convolution layer. Furthermore, the convolution layer of the root node has a higher
number of filters in order to capture more information at the top level of the topology.

(a) (b)

Figure 2. In (a), the Root Node Structure is depicted. The node inputs the encoded text (red input),
which is processed using a CNN-dense internal structure. The result is the prediction of the first-level
node children (black output). In (b), the Internal Node Structure is represented. The node takes in
the encoded text (red input) and its parent node prediction (black input). The result is the prediction
related to the subclassification problem corresponding to the node children (black output).

The topology of the HDNN can be fully automatically generated by iterating the
aforementioned basic blocks, reproducing the same exact structure of the hierarchical
graph of the labels. To this end, we specifically defined a recursive algorithm, whose
details are shown in the next pseudocode in Algorithm 1. The pseudocode implements
a recursive function whose input is the representation of the hierarchical label tree; the
algorithm iterates the internal node layers blocks, connecting each node with both input text
representation and all other children nodes, following the same structure of the hierarchy
of the labels, obtaining in this way the architecture represented in Figure 1. The proposed
algorithm can be used in any case where a predefined known hierarchical label structure is
defined, allowing for the automatic network topology generation starting from the basic
internal elements and the representation of the label hierarchy.

Algorithm 1 Pseudocode for HDDN generation

1: function MAKEMODEL(TREE, X1, X2)
2: while tree : do
3: children = tree.getChildren()
4: if len(children)! = 0 then
5: x2 = node(x1, x2, len(children))
6: out = concatenate(out, x2)
7: for child in children do
8: makeModel(child, x1, x2)
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3.2. Hierarchical Label Set Expansion

In real-world applications, it often happens that domain experts manually tag docu-
ments with labels belonging to a hierarchy without considering all the labels along a full
path. In other words, a label set consistent with the hierarchy should be formed with all
ancestors of each label in the corresponding tree, starting from the root. Manual tagging
has mainly summary and indexing purposes and, thus, a more compact label set that does
not consider all the labels along a whole path of the tree can better synthesize the document
content. On the other hand, a machine learning (ML) system trained with a dataset with
incomplete labeling in the perspective of the hierarchy can lead to unpredictable results.
PubMed is an example of such a document collection: each manually assigned label belongs
to a hierarchically organized set (MeSH), and the documents are not labeled with all the
classes lying along the tree path formed by all the ancestors of the classes used as labels.

To improve the performances of machine learning systems trained on datasets like the
ones described above, we proposed a methodology for the automatic expansion of the label
set of each sample document of the training set, which adds any missing class along the
hierarchy path for each label. We called this methodology Hierarchical Label Set Expansion
(HLSE) [12]. Several experiments performed in previous studies confirmed the utility of
the HLSE for the classification task, improving the final results. Moreover, considering
the hierarchical network topology of the HDNN, it is necessary to include all the labels
to reproduce a standard topology for each possible depth without missing some classes
along the label set path. Therefore, it is necessary to apply the HLSE to all documents of
the training set and test set before creating the corresponding HDNN when the data miss,
in some cases, some labels along the hierarchy.

To better explain the HLSE, it is also important to describe more in detail the MeSH
hierarchical tree. As mentioned above, the MeSH is a thesaurus provided and constantly
updated by the NLM (National Library of Medicine), whose terms are hierarchically
organized and controlled, as well as encoded with an alphanumeric code. The MeSH
vocabulary is specifically designed to support the indexing of the biomedical scientific
literature in PubMed, MEDLINE, and in the other NLM databases, as well as of any
document belonging to the same area.

The MeSH terms are structured as 16 hierarchical trees, each one identified by a letter.
These hierarchical trees have different levels, which include one or more subheadings,
identified with their name and a numerical code, which starts with the same letter as
their root node. Each deeper level in the same branch adds another numerical code to
the higher-level code, separated by a period. Figure 3 shows an example of a part of
this tree structure (the MeSH hierarchy is available and can be interactively browsed at
https://meshb.nlm.nih.gov/treeView (accessed on 5 December 2023)) starting from the
tree Diseases [C], with the corresponding class names and codes.

The colors of the blocks in Figure 3 can help us better clarify the issue that HLSE
addresses, as well as better illustrate how it works. The right part of Figure 3 shows the full
path from the root to the leaf Edema, Cardiac, also including both class names and MeSH
codes (the code of the leaf is [C14.280.434.482]).

Usually, the MeSH tagging of the documents in PubMed does not include the full path,
as shown in the Figure, but only some parts of it. For example, a human expert could tag a
paper whose main topic is cardiac edema with the leaf Edema, Cardiac [C14.280.434.482]
and another more generic label from a higher level, such as Cardiovascular Diseases [C.14]
(in light blue in the figure). The expert could omit the other labels depicted in orange in
the figure, namely Diseases [C], Heart Diseases [C.14.280], and Heart Failure [C.14.280.434],
considering them unnecessary. While these missing labels might not be very useful for a
human user, conversely, they could be very important in the training phase of a supervised
machine learning model. If other papers on cardiac edema are tagged with the leaf Edema,
Cardiac [C14.280.434.482] but with different labels along the hierarchy path, there will be
high variability in the labels of documents with a very similar topic, making the correct
training of an ML classifier very difficult.

https://meshb.nlm.nih.gov/treeView
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Root

Diseases [C]

Cardiovascular 
Diseases [C.14]

Heart Diseases 
[C.14.280]

Heart Failure 
[C.14.280.434]

Edema, Cardiac 
[C.14.280.434.482]

Figure 3. Example of a part of the MeSH label tree hierarchy that shows the full path from the root to
the leaf Edema, Cardiac.

The HLSE has the purpose of removing this kind of noise from the training set,
adding any missing label along the path from the root to each lower-level leaf in the
labels of each document. Therefore, in the example in Figure 3, the labels in orange are
added to the classes of that document. In this way, all the samples of the training set
will have more uniform labeling. The drawback is an increase in the number of labels
per document, but it was already demonstrated in [22] that this additional information
improves hierarchical classification.

4. Experimental Assessment and Discussion

In this Section, we first describe the details and the features of the datasets used in the
experimental assessment. Then, we illustrate the tools required to implement the proposed
methods and the hardware used in the experiments. Then, an overview of the multilabel
measures is provided, distinguishing flat and hierarchical measures. Finally, the obtained
results are shown and discussed to try to investigate the behavior of the proposed HDNN
in improving hierarchical classification when applied to the PubMed large-scale indexing
XMTC problem.

4.1. Dataset

The experimental assessments have been performed on a subset of PubMed abstracts.
We exploited the big data architecture described in [35] to download and extract from
PubMed a collection of 11, 075, 577 abstracts, including the corresponding titles and their
MeSH labels. Each document is tagged with a variable number of MeSHs, which currently
counts more than 30,000 different labels. We also processed the labels of each document
before applying HLSE (see Section 3.2) to complete the hierarchical label set of each docu-
ment. It is important to underline that the same MeSH could be located in more branches
of the tree, making the number of nodes of the tree higher than the total MeSH number, as
shown in Table 1, obtaining 57,859 nodes after the use of the HLSE on the dataset. The au-
tomatic classification of a text collection with the above-described features is a hierarchical
multiclass multilabel problem, as defined in Section 1. The dataset has been divided into a
training set and a test set, respectively, randomly selecting 99% and 1% of the documents.

To simplify this complex problem, we decided to consider a maximum tree depth equal
to five, substituting all the MeSHs that belong to a deeper level of the original hierarchy
with the corresponding ancestor of the fifth level. In this way, we obtained 23,255 different
tree nodes, distributed as shown in Figure 4, where it is possible to observe that a very high
number of nodes have few children and very few nodes have more than 90 children. We
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evaluated the average number of children per node to be 5.18, with a standard deviation
of 7.30.

Figure 4. Distribution of the number of nodes per children node.

Table 1 summarizes the details of the datasets, showing the number of nodes, the
average number of labels per document, and the average number of documents per label,
and it compares these parameters considering a tree depth reduction to five and the original
dataset with all levels, applying in both cases the HLSE.

Table 1. Dataset statistics: L is the number of tree nodes, L* is the average labels count per document,
and Lo is the average documents count per label.

MeSHDepth L L* Lo

5 23,255 39.18 18,740.05

All 57,859 50.57 19,614.76

The automatic classification of PubMed articles is included in the tasks of BioASQ (http:
//bioasq.org/ (accessed on 5 December 2023)), a research challenge on biomedical semantic
indexing and question answering. A discussion of the experimental results can provide
further details for improving the BioAsq results [13] and solving large XMTC problems.

4.2. Word Embedding Models

We tested two different embedding models to represent the input text. The first
one is a classical static word embedding model [33] pretrained on a large biomedical-
domain corpus formed by abstracts from PubMed articles, which is also provided as an
additional resource for the BioASQ challenge (the model is publicly available at http:
//bioasq.org/news/bioasq-releases-continuous-space-word-vectors-obtained-applying-
word2vec-pubmed-abstracts (accessed on 5 December 2023)). The latter model, namely
the BioBERT model [18], leverages the dynamic word embedding representation extracted
from a biomedical BERT model pretrained on a corpus formed by PubMed abstracts and
PMC full-text articles, in addition to general-domain English Wikipedia and BooksCorpus
data. The features of these models and the corresponding pretraining corpora details are
reported in Tables 2 and 3.

http://bioasq.org/
http://bioasq.org/
http://bioasq.org/news/bioasq-releases-continuous-space-word-vectors-obtained-applying-word2vec-pubmed-abstracts
http://bioasq.org/news/bioasq-releases-continuous-space-word-vectors-obtained-applying-word2vec-pubmed-abstracts
http://bioasq.org/news/bioasq-releases-continuous-space-word-vectors-obtained-applying-word2vec-pubmed-abstracts
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Table 2. BioASQ word embedding features.

Vector Size Training
Algorithm Window Size Training Set

Size Vocabulary Size

200 CBOW 5 10,876,004 1,701,632

Table 3. BioBERT features.

BERT Model Training Corpus Word Count Biomedical Domain Corpus Word Count

BERT-large-cased ≈21.3 Billion words ≈18 Billion words

4.3. Tools and Hardware

Focusing on the tools used for the implementation and execution of the experimental
assessment, the preprocessing phase (tokenization and sentence splitting) was performed
using Apache Spark and Stanford CoreNLP wrappers for Spark (https://github.com/dat
abricks/spark-corenlp (accessed on 5 December 2023)). The obtained NLP preprocessed
text is the input of the word embedding layers, which converts the words into a vectorial
representation. For this purpose, we used the Gensim Python library [36] version 4.2 in
the case of static word embeddings, while we adopted the Hugging Face Python library
(https://huggingface.co/ (accessed on 5 December 2023)) to obtain dynamic embeddings
from the BioBERT model, providing a whole sentence as input.

The proposed HLSE and HDNN algorithms were also implemented in Python. In
detail, we exploited Keras (https://keras.io (accessed on 5 December 2023)) version
2.11, with Tensorflow 2 backend for the definition, training, and testing of the HDNN.
Moreover, the implementation requires the pyTree library, which provides a list-derived
tree structure for Python, which is exploited to represent the label hierarchy. Finally, the
Numpy, Pandas, and Pickle libraries were required to run the code. We underline that
the code is publicly available on SoBigData research infrastructure (the code is publicly
available at https://data.d4science.net/RgXa (accessed on 5 December 2023)).

All the experiments were performed on a deep learning cluster based on an IBM
Power9 architecture, where each node was equipped with 2 Power9 CPUs at 3.7 GHz,
512 GB of RAM and 4 Nvidia Tesla V100 GPUs with 16 GB of dedicated VRAM. The oper-
ating system is Red Hat Enterprise Linux Server release 7.6. The current implementation of
the HDNN runs on a single node and on a single GPU (the parallel implementation is not
ready yet).

4.4. Evaluation Metrics

Different evaluation measures for multilabel text classification were proposed in the
literature. These measures can be grouped into two classes: flat and hierarchical [37]. The
flat measures base evaluates each single result obtained for each label in terms of Precision
Pi, Recall Ri, and F1 score Fi for each class ci, which equals

Pi =
tpci

tpci + f pci

; (1)

Ri =
tpci

tpci + f nci

(2)

Fi =
2 · Pi · Ri
Pi + Ri

(3)

where tpci , f pci , and f nci are, respectively, the true positives, false positives, and false
negatives of the class ci. These values are then averaged, obtaining the measures for the
text classification task. The microaverage, which gives equal weight to each per-document
classification result [38], is obtained by averaging over all labels each member of the fraction

https://github.com/databricks/spark-corenlp
https://github.com/databricks/spark-corenlp
https://huggingface.co/
https://keras.io
https://data.d4science.net/RgXa
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of the previous equations, respectively, obtaining the micro-Precision MiP, micro-Recall
MiR, and micro-F1 MiF, defined as

MiP =
∑L

i=1 tpci

∑L
i=1(tpci + f pci )

(4)

MiR =
∑L

i=1 tpci

∑L
i=1(tpci + f nci )

(5)

MiF =
2 ·MiP ·MiR
MiP + MiR

(6)

with L equal to the total class number.
To complete the flat-measure-based evaluation, Accuracy Acc must be considered,

which is calculated as

Acc =

M
∑
i=i

tpi+tni
tpi+t fi

+ fpi+ fni

M
(7)

where tni are the true negatives for the class ci.
Another flat measure is the example-based metrics, which evaluate bipartitions cal-

culated on the average differences in the true label and the predicted label sets over all
examples of the evaluation dataset. If we have a dataset with M multilabel examples and if
Yi, i = 1 . . . M is the set of true labels for each example and Zi is the set of predicted labels
for ith example, the example-based Precision, Recall, and F1 score, respectively, indicated
as EBP, EBR, and EBF, are defined as

EBP =
1
M

M

∑
i=i

|Yi ∩ Zi|
|Zi|

(8)

EBR =
1
M

M

∑
i=i

|Yi ∩ Zi|
|Yi|

(9)

EBF =
1
M

M

∑
i=i

|Yi ∩ Zi|
|Yi|+ |Zi|

(10)

The EBP metric estimates how many predicted labels for the ith example are correct,
while the EBR estimates the number of assigned labels correctly retrieved; EBF combines
both measures for a global evaluation.

Furthermore, when the classification problem has a hierarchically organized label set,
it is also possible to adopt the hierarchical measures that consider the label hierarchy in
the classification results, taking into account the full path of the exact concepts in the class
hierarchy and measuring whether parts of the path have been correctly classified. The
definition of hierarchical measures is based on the augmented set of the true and predicted
classes, respectively, Yaug and Ŷaug, which are equal to

Yaug = Y ∪ An(y1) ∪ · · · ∪ An(yN) (11)

Ŷaug = Ŷ ∪ An(ŷ1) ∪ · · · ∪ An(ŷM) (12)

where An(yn) and An(ŷm) are the ancestors of the true and predicted classes.
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Starting from them, it is possible to define the hierarchical Precision, Recall, and F1
score (called HiP, HiR, and HiF). These measures consider the classifications result of a
single document as a subtree path in the hierarchy as

HiP =
|Ŷaug ∩Yaug|
|Ŷaug|

(13)

HiR =
|Ŷaug ∩Yaug|
|Yaug|

(14)

HiF =
2 · HiP · HiR
HiP + HiR

(15)

The Yaug and Ŷaug identify two subtrees, respectively, representing the path of the
true classifications and the path of the predicted classifications. The intersection of these
two subtree paths is their similarity. Therefore, the HiP is the ratio between the subtree
intersection and the predicted classifications paths, and the HiR is the ratio between the
intersection and true classifications paths.

Adding all the ancestors in the sets, as in the previous case, overestimates the error
if the hierarchy tree has nodes with many ancestors. To account for this behavior, the
LCA-based measures [13] were defined. These kinds of measures are based on the Lowest
Common Ancestor (LCA) concept from the graph theory [39]. The LCA(n1, n2) of two nodes,
n1 and n2, of a tree T is the node in T the furthest from the root that is an ancestor of both
n1 and n2. To obtain LCA-based measures, the LCA concerning the set of predicted classes
Ŷ for each class y in the set of true classes Y, called LCA(y, Ŷ), and LCA for the set of
true classes Y for each class ŷ in the set of predicted classes Ŷ, named LCA(ŷ, Y), must be
calculated as

LCA(y, Ŷ) = argmin
m
· γ(m, y) (16)

LCA(ŷ, Y) = argmin
m
· γ(m, ŷ) (17)

where γ(u, v) is the distance between the nodes u and v in the tree. Now, it is possible to
define two graphs Gt and Gp, respectively, formed by the shortest paths from each y ∈ Y to
LCA(y, Ŷ) and the shortest path from each ŷ ∈ Ŷ to LCA(ŷ, Y). Then, the set YaugL formed
by all the nodes in the graph Gt and the set ˆYaugL , which contains all the nodes in the graph
Gp, must be constructed. Finally, LCA Precision LCaP, LCA Recall LCaR, and LCA F1
score LCaF are defined as

LCaP =
|ŶaugL ∩YaugL |
|ŶaugL |

; (18)

LCaR =
|ŶaugL ∩YaugL |
|YaugL |

(19)

LCaF =
2 · LCaP · LCaR
LCaP + LCaR

(20)

In our experiments, whose main purpose is the contribution of the proposed HDNN
to the incorporation of the label hierarchy knowledge directly into the neural network, the
information provided by the hierarchical measures is very important.

4.5. Results and Discussion

In order to investigate the capability of the HDNN in incorporating the hierarchical
label knowledge into the neural network, we compared it with a classic CNN architec-
ture, such as the one described in [40], where the same CNN layers of the HDNN are
implemented but organized in a flat topology. In detail, considering that we simplified the
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problem using at least the fifth level of the MeSH tree in our experimental assessment, as
described in Section 4.1, each internal node corresponding to an element of the hierarchy is
formed by a cascade of two DNN layers (CNN and dense layers) for the two preprocessing
CNN layers in the Initial Feature Processing block (see Figure 1). In this case, it is possible to
estimate 17 layers for the deepest tree branch and 4 layers for the flat CNN architecture.

Tables 4 and 5, respectively, show the flat and hierarchical measures obtained with
a simple CNN architecture and the proposed HDNN approach, using static (WE) or
dynamic word embeddings (BioBERT). As expected, it is possible to note a performance
improvement in the case of the HDNN, in both terms of flat and hierarchical measures.
Moreover, the use of dynamic BioBERT-based embedding provides further improvement
compared with the classic static word embedding approach in the first layer of the neural
network. In more detail, the MiF and the EBF scores obtained by HDNN are, respectively,
improved by 24.7% and 30.8% in the case of static WE and by 23.7% and 35.8% using
BioBERT embeddings. Moreover, the increment in the HiF score is equal to 19.8% for
HDNN WE and 35.9% for HDNN BioBERT. The higher impact of the HDNN is obtained in
terms of LCA-based hierarchical measures: the LCa-F improves by 58.6% when static WEs
are used and by 65.2% when exploiting the BioBERT model to encode input text.

In summary, the HDNN obtains improvements in overall performances in terms of
all the considered measures (with the slight exception of HiP for HDNN WE, probably
caused by the overestimation of the error provided by this measure in the case of nodes
with many ancestors). More importantly, the results show a significant increment in the
case of LCA-based hierarchical measures. The information related to this score considers
the correct classification of the label hierarchy, giving a higher weight in the case of the
assignment of a label that lies in the same hierarchy path. This behavior demonstrates that
the HDNN is able to assign more correct labels with respect to a flat CNN architecture, but
in many cases, other labels, although not originally included in the manual annotation,
could be a reasonable assignment. The next examples can better clarify this result.

Referring to Figure 3, if a document related to cardiac edema is tagged with the label
Heart Failure (the higher-level label in the hierarchy path), a flat measure will consider this
result completely wrong, while the hierarchical measure will suggest that the result is not
perfect but a good result. For our purposes, this information is very important because an
improvement in the hierarchical measures shows that the neural network has improved
the correct classification of the labels along the hierarchy path, demonstrating that some
information about the hierarchy has been embedded within the HDNN.

More in detail, considering as an example a paper from the dataset, the article Myocar-
dial Edema: A Translational View has been manually tagged with several MeSHs by NLM
human experts (for simplicity, we focus on a single example). Among them, there is the
label Cell Enlargement [G07.345.249.410.500]. The flat DNN architectures were not able
to correctly predict it. On the other hand, the HDNN BioBERT, although it also did not
find this label, identified a set of ancestors of this MeSH, namely Physiological Phenomena
[G07], Growth and Development [G07.345], Growth [G07.345.249], and Cell Growth Processes
[G07.345.249.410], which is the father node of the correct label. Analyzing the content
of the paper, all these labels would not be considered wrong by a human annotator, as
they are related to the topics of the scientific article. More importantly, the Cell Growth
Processes [G07.345.249.410] MeSH is semantically very similar to its child Cell Enlargement
[G07.345.249.410.500]. In summary, the HDNN approach suggested a set of possible correct
candidate labels, and, moreover, these labels lie in the same tree of the correct MeSH,
providing, as expected, an increment in hierarchical scores.

The obtained results demonstrate that the HDNN can support the integration of innate
information and prior knowledge into a DNN and can be used to improve the performance
in complicated tasks like XMTC.
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Table 4. Performances of HDNN and CNN with static and dynamic embeddings in terms of
flat measures.

Test
FLAT Measures

Acc EBP EBR EBF MiP MiR MiF

CNN WE 0.1353 0.7528 0.1398 0.2324 0.7522 0.1336 0.2268

CNN BioBERT 0.2344 0.7828 0.1619 0.2684 0.7810 0.1592 0.2644

HDNN WE 0.1719 0.7578 0.1828 0.2894 0.7578 0.1739 0.2829

HDNN BioBERT 0.3015 0.8213 0.2187 0.3453 0.8191 0.2041 0.3270

Table 5. Performances of HDNN and CNN with static and dynamic embeddings in terms of hierar-
chical measures.

Test
Hierarchical Measures

HiP HiR HiF LCa-P LCa-R LCa-F

CNN WE 0.7839 0.1635 0.2665 0.5530 0.0738 0.1273

CNN BioBERT 0.8117 0.1775 0.2899 0.5824 0.1113 0.1819

HDNN WE 0.7820 0.2052 0.3194 0.6350 0.1239 0.2020

HDNN BioBERT 0.8229 0.2573 0.3941 0.7177 0.1944 0.3005

On the other hand, a limitation of the proposed approach is related to its high compu-
tational time. The training time required in our experiments is approximately three days
for each model, while the prediction on the test set and the calculation of the evaluation
measure need approximately 15 min. The flat CNN model requires approximately 1 h to be
trained on the same dataset and a few minutes for the prediction task. More in detail, we
measured the training times of both flat CNN and HdNN approaches, observing in the case
of HDNN 15,000 s for each epoch formed by 100,000 document samples, whereas the CNN
training time for the same epoch is about 100 s, using the hardware described in Section 4.1.
The HDNN training time is very high, especially if compared with the other flat CNN
architecture, although both network topologies are characterized by a comparable number
of parameters: 40,079,550 in the case of CNN and 45,194,480 in the case of HDNN. The very
high training time of the HDDN is caused by the complexity of the graph topology, where
a large number of interconnections among all the nodes are involved in reproducing the
label tree structure. Moreover, each internal node of the HDNN has to wait for the outputs
of its ancestor nodes before proceeding to execute forward and backward passes during
the Stochastic Gradient Descent of the training of the model.

We compared the training time of a CNN and an HDNN with an increasing depth of
labels in the training set for a deeper analysis of this behavior. We observed a comparable
training time for CNN and HDNN in the case of labels belonging only to the first layer of
the hierarchy. On the other hand, the training time of the HDNN increases in an exponential
way at each deeper level of the hierarchy we included in the training set, while the CNN
does not show substantial increases in training time.

5. Conclusions

This paper presented an innovative deep learning network architecture based on
a hierarchical structure, named Hierarchical Deep Neural Network (HDNN), specifically
devoted to the hierarchical XMTC problem. The topology of the HDNN reproduces
the same hierarchical structure of the labels. This general concept can be applied in all
multilabel classification problems where the labels are organized in a hierarchical structure.

After an introduction to the problem and a related works section, we described
the details of the HDNN and a methodology for the automatic creation of this DNN,
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starting from the label hierarchy structure, based on a recursive algorithm that iterates
basic DNN blocks. We also defined a method for the regularization of the training set,
named Hierarchical Label Set Expansion (HLSE), which adds to each document label set
the corresponding ancestors if they are not present, obtaining a training set consistent with
the predefined hierarchy.

The experimental assessment focused on the automatic labeling of the biomedical sci-
entific literature indexed in PubMed, which adopts the MeSHs (Medical Subjects Headings)
hierarchical label set. The obtained results can be useful for the improvement of the large
biomedical indexing task, integrating it in more complex methodologies, as proposed by
the most recent methodologies in the BioASQ distributed challenges [13–16], which usually
integrate more methodologies to obtain state-of-the-art performances.

A limit of the proposed methodology is its high computation time, mainly required
to update the network weights, caused by the need to wait for the complete update of
the upper layers’ weights before the calculation of the corresponding children nodes’ new
neural network weights. This issue can be addressed by adopting more powerful GPU
architecture, such as the newer Nvidia H100 architecture, as well as implementing a parallel
version of the HDNN training routine, capable of distributing the computational complexity
among different nodes and GPUs. We envisage the development of a parallel version of the
HDNN code as a future work. A possible strategy for the parallel implementation includes
the development of a multi-GPU code, which runs each internal node of the same level
of the HDNN on separate GPUs in parallel. Another possibility is to adapt some GNN
parallel approaches, such as the ones proposed in [41–43], allowing better exploitation of
the features of modern multi-GPU hardware architectures.

On the other hand, the results obtained in our experiments show performance im-
provements, especially in the cases of hierarchical measures. These results confirm that
the HDNN is capable of improving the correct classification of the hierarchy of the
assigned labels.

In future work, in addition to the parallel implementation of the code, we are planning
to perform more complex experiments with more depth classification cases. We also
want to formalize the network complexity correlated to the number of connections and
parameters and the network depth to better define the problem and analyze its complexity.
We are also studying methods to reduce the complexity of the network by changing the
interconnections of the layers and adopting alternative training strategies. We are also
planning new experiments considering different kinds of internal nodes of the HDNN, such
as attention-based networks and other DNN architectures. Finally, given the complexity
involved, we are also considering evaluating how this methodology can fit the newest
context of quantum computing [44].
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