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Abstract: A superpixel is a group of pixels with similar low-level and mid-level properties, which
can be seen as a basic unit in the pre-processing of remote sensing images. Therefore, superpixel
segmentation can reduce the computation cost largely. However, all the deep-learning-based methods
still suffer from the under-segmentation and low compactness problem of remote sensing images. To
fix the problem, we propose EAGNet, an enhanced atrous extractor and self-dynamic gate network.
The enhanced atrous extractor is used to extract the multi-scale superpixel feature with contextual
information. The multi-scale superpixel feature with contextual information can solve the low com-
pactness effectively. The self-dynamic gate network introduces the gating and dynamic mechanisms
to inject detailed information, which solves the under-segmentation effectively. Massive experi-
ments have shown that our EAGNet can achieve the state-of-the-art performance between k-means
and deep-learning-based methods. Our methods achieved 97.61 in ASA and 18.85 in CO on the
BSDS500. Furthermore, we also conduct the experiment on the remote sensing dataset to show the
generalization of our EAGNet in remote sensing fields.

Keywords: superpixel segmentation; gating mechanism; multi-scale superpixel feature

1. Introduction

A superpixel is a group of pixels with similar color, texture, and low-level and mid-
level properties. Superpixel segmentation aims to divide the image with several superpixels,
which can reduce the basic primitive effectively. Therefore, the computation cost could be
reduced vastly.

Recently, the superpixel segmentation algorithm has been applied in remote sensing
fields, which is used to reduce the dimension of features to speed up the training and
inference time. Therefore, superpixel segmentation can open up some new scenarios
in remote sensing. An example of this is ESCNet [1], which introduces a superpixel to
reduce the latent noise of the pixel-level feature maps while preserving the edges. SG-
waterNet [2] introduces superpixels to produce a superpixel graph, which contains more
powerful context information that can be exploited by the GCN. The MAST [3] model
takes advantage of the adaptive spatial nature of superpixels to achieve better classification
performance with high-resolution remotely sensed images. With these applications of
superpixel segmentation algorithms [4–10], superpixel segmentation has become a key
technology in the remote sensing of the computer vision field.

However, all these applications of superpixel methods introduce the traditional k-
means superpixel segmentation algorithm [11–14], which still suffers from the hand-craft
feature and is non-differentiable. An example of this is SLIC [15], which first initializes
the seed and computes the associate map between the seeds and the surrounding pixels.
SNIC [16] introduces a priority queue to assign the pixels to the correct seeds. LSC [17]
introduces mapping the property to the high-dimension space to obtain the superpixels. All
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these traditional k-means superpixel segmentation algorithms are difficult to incorporate
into the convolutional neural network and can not get the accuracy of the superpixel map.

In order to fix the problems, some deep-learning-based methods are proposed to fix the
superpixel segmentation. An example of this is SSN [18], which computes a differentiable
soft associate map between pixels and seeds. SCN [19] first proposes an end-to-end
superpixel segmentation network. However, all these deep-learning-based methods still
suffer from under-segmentation and low compactness in remote sensing images.

To solve these problems, we propose EAGNet, the enhanced atrous extractor and self-
dynamic gate network. The enhanced atrous extractor introduces our proposed enhanced
atrous convolution and transformer architecture based on a multi-scale pixel feature to
extract a multi-scale superpixel feature with contextual information. In particular, the en-
hanced atrous extractor first introduces the atrous convolution with the SiLU function to
extract the multi-scale superpixel feature and feed it into the MLP. The self-dynamic gate
network introduces the gating and dynamic mechanism to inject the pixel information. Spe-
cially, the self-dynamic gate network introduces the convolution and sigmoid to produce
the gate of the pixel and the superpixel feature by themselves. The multi-scale superpixel
feature with contextual information is useful for solving the low compactness problem. Our
self-dynamic gate can solve the under-segmentation of remote sensing images. We conduct
massive experiments on the BSDS500 dataset [20] and UCM dataset [21] to show that our
EAGNet can not only fix the under-segmentation and low compactness of remote sensing
images but can also achieve state-of-the-art performance among traditional k-means su-
perpixel segmentation and deep-learning-based algorithms. We also conduct numerous
ablation studies to prove the effectiveness of our proposed method.

Our main contributions can be listed as follows:

(1) We propose an enhanced atrous extractor, which introduces enhanced atrous convo-
lution based on a transformer architecture to extract multi-scale superpixel features
with contextual information.

(2) We propose a self-dynamic gate network, which introduces a gating and dynamic
mechanism to inject detailed information.

(3) Our EAGNet can achieve the state-of-the-art performance among traditional k-means
superpixel segmentation and deep-learning-based algorithms.

2. Related Work

Superpixel segmentation: Superpixel segmentation aims to group pixels with similar
low- and mid-level properties. We consider the group of pixels as a superpixel, which
can reduce the computation cost. Traditional superpixel segmentation algorithms mainly
introduce k-means-based methods, which compute the associate map between the seed
and surrounding pixels. SLIC [15] initializes the seeds and computes the associate map of
the pixels and the superpixel. Then, it assigns every pixel a label based on the associate
map. Finally, it computes the average of the pixels labeled to define a new seed. LSC [17]
first maps the RGB image to the 10-dimension feature space and computes the associate
map. SNIC [16] first initializes centroids and uses a priority queue to assign the pixels
to the correct centroid. The manifold SLIC [15] introduces a two-dimension manifold to
compute a content-sensitive superpixel map. However, these k-means-based methods
are non-differentiable and can not be incorporated into the convolutional neural network.
Therefore, to fix the problem, some deep-learning methods are proposed. SSN [18] proposes
a differentiable soft associate map and introduces a convolutional neural network to extract
features. The SCN [19] first proposes an end-to-end Unet architecture to predict the
superpixel map. However, these methods often result in the under-segmentation and low
compactness of the remote sensing image. To fix the problem, we propose EAGNet, an
enhanced atrous extractor and self-dynamic gate network. The enhanced atrous extractor
can extract the multi-scale superpixel feature, and the self-dynamic gate can fuse the feature
dynamic, which can fix the low compactness and under-segmentation, respectively.
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Vision transformer: Superpixel segmentation aims to group pixels with similar low-
and mid-level properties. We consider the group of pixels as a superpixel, which can
reduce the computation cost. A traditional transformer is an effective technology that was
first proposed by the natural language process field. The development of the transformer
raised the attention of the computer vision field rapidly. Vit is the first vision transformer
model in the computer vision field. Vit [22] introduces the convolution to divide the
16× 16 dimension of the patch into an embedding space and compute the self-attention
of these patches. Swin transformer [23] proposes the swift window self-attention and
hierarchy transformer to learn the powerful feature representation. PVT [24] first combines
convolution and self-attention to reduce the dimension of the feature and provide the multi-
scale feature for the downstream task. However, all these methods still suffer from the
huge computation cost. In order to reduce the computation cost, some lightweight methods
are proposed to reduce the computation cost. An example of this is MiniVit [25], which
introduces the distillation and teacher–student model to achieve weight multiplexing,
which reduces the computation cost largely. The Davit [26] introduces spatial-wise self-
attention and channel-wise self-attention to reduce the computation cost. EfficientNet [27]
combines the CNN block and transformer block to reduce the computed number of self-
attention. However, all these methods still suffer from high latency, and it is hard to extract
the multi-scale feature efficiently. To fix these problems, we propose the enhanced atrous
extractor, which is a transformer-based architecture but a pure CNN feature extractor.
Different from previous methods, we introduce the non-local atrous convolution to replace
the self-attention to extract the multi-scale superpixel feature with context information.
The latency of our proposed enhanced atrous extractor can satisfy the requirement of
superpixel segmentation.

Gating mechanism: The gating mechanism is a technology that can control the passing
of information. It was first proposed by LSTM [28], which is the basic block of RNN [29].
In order to reduce the computation complexity, they propose a GRU [30] to control the
passing of information. Recently, some works have introduced the gating mechanism to
filter the feature, such as GateNet [31], which introduces feature embedding and hidden
gates to obtain the high-order interaction information. DepthNet introduces the gating
mechanism to adjust the dimension of the feature adaptively. GFF [32] uses the gating
mechanism to select multi-scale features. GSCNet [33] connects the two-branch information
by using a gating mechanism. However, these methods can only filter the feature or
not fuse the feature. Therefore, we propose the self-dynamic gate, which introduces
the gating mechanism first to filter the feature and introduce the filtered feature to fuse
them dynamically.

3. Methods

First, we introduce the preliminaries of the deep-learning-based method, which is also
the basic theory of our work. The deep-learning-based method assigns the pixel to one of
the surrounding nine pixels by computing the relationship information between the pixel
and the surrounding nine grids. Then, we introduce the details of the model design, which
is an encoder–decoder architecture.

3.1. Preliminaries

As shown in Figure 1, the image F is first divided into several 16× 16 grids. For every
pixel p in image F, our goal is to introduce an associate map M to assign the p to one of the
surrounding nine grids Si, just as is shown in Figure 1. Mathematically, deep-learning-based
methods feed the F to the network and output the associate map M ∈ RH×W×9. The H
and W stand for the height and width. The 9 means the nine surrounding grids S. And we
see the Ms(p) as the probability of the pixel p belonging to the seeds S. However, there is
no label to compute the loss directly. Therefore, we serve the map M as an intermediate
variable to reconstruct the pixel-wise label, i.e., the property label Pg, and the location
label Ig.
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Figure 1. The image is divided into 16 × 16 grids and we compute the associate map between the
pixel and surrounding nine grids.

First, we need to compute the center of the superpixel Sc = (Ps, Is), where Ps is the
property vector and Is is the location vector. The calculation can be written as:

Ps =
∑p:S∈N ·Pg ·Ms(p)

∑p:S∈N Ms(p)
(1)

Is =
∑p:S∈N ·Ig ·Ms(p)

∑p:S∈N Ms(p)
(2)

where Pg and Ig are the property vector and location vector of the image F, which is also
the property vector that we want to preserve. The Ms(p) is the probability that the pixel
p belongs to the seed S. After, we compute the property vector and location vector of the
center of the superpixel Sc. We can reconstruct the property vector Pr and location vector Ir
because the pixels in the superpixel have the same low- and mid-level properties. And we
can compute the Pr and Ir as follows:

Pr = ∑
S∈N

Ps ·Ms(p) (3)

Ir = ∑
S∈N

Is ·Ms(p) (4)

where N is the surrounding nine superpixels. Pr and Ir are the reconstructed property and
location vectors, respectively. We can obtain the loss by computing the distance between
the groundtruth property vector Pg and location vector Ig and the reconstructed property
vector Pr and location vector Ir. The calculation of the loss can be written as:

L = dist(Pg, Ig) +
m
s

dist(Ig, Ir) (5)

where L is the loss that we want to obtain. The dist(.) is the loss function, and we introduce
the CrossEntropy loss function. The m and s are the balance weight and superpixel sampling
interval, respectively. The first part of Equation (5) can encourage the model to group the
pixels with the same property. The second can help the model produce a more compact
superpixel map.

3.2. Overall Architecture

To fix the problems of under-segmentation and low compactness, we design EAGNet,
an enhanced atrous extractor and self-dynamic gate network. This is shown in Figure 1.
First, the original input I is fed into several CNN blocks to extract the pixel feature. Then,
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we concatenate them to obtain the multi-scale pixel feature. And we introduce the en-
hanced atrous extractor to extract the multi-scale superpixel feature. After that, we split
the multi-scale superpixel feature in the channel dim to obtain the superpixel feature of
different scales. Finally, we concatenate the pixel and superpixel feature to obtain the
pixel–superpixel relationship information of different scales and concatenate them for
the final prediction. The whole feedforward process of the overall architecture can be
written as:

p1, p2, p3, p4 = Backbone(I) (6)

pm = concat(p1, p2, p3, p4) (7)

where p1, p2, p3, p4 is the pixel feature of different scales. Backbone(.) is the CNN back-
bone and I is the input. pm is the multi-scale pixel feature and concat(.) stands for the
concatenate operation.

sm = EAE(pm) (8)

s1, s2, s3, s4 = split(sm) (9)

where EAE(.) is the enhanced atrous extractor, and pm is the multi-scale pixel feature.
The sm is the multi-scale superpixel feature. s1, s2, s3, s4 is the superpixel feature of different
scales. The split(.) stands for the operation of splitting in the channel dim.

f i
sp = G(pi, si){i = 1, 2, 3, 4} (10)

Fm = concat( f 1
sp, f 2

sp, f 3
sp, f 4

sp) (11)

Q = Predict(Fm) (12)

where i is the number of different scales. f i
sp means the fused feature. pi and sp stand for

the pixel and superpixel features of different scales. G means our proposed self-dynamic
gate. The Concat() means the concatenate operation. Fm is the multi-scale pixel–superpixel
relationship information. Q is the associate map that reconstructs the property vector.
The Predict() means our segmentation head. Then, we introduce the detail information of
the different parts of EAGNet.

3.3. CNN Backbone

The CNN backbone is used to extract the pixel features of different scales. As shown
in Figure 2, our CNN backbone is a four-stage pure CNN backbone due to the requirement
of the low computation cost. We only introduce one CNN block as a stage. Every CNN
block consists of three convolution layers. The first layer is a stride-2 3× 3 convolution,
which is used to downsample and expand the receptive field. The remaining two layers are
normal 3× 3 convolution. The feedforward process of the one stage can be written as:

fp = fp + Conv3(Conv2(Conv1s=2( fp))) (13)

where Conv1s=2 means the stride-2 3× 3 convolution, and Conv2 and Conv3 are the normal
3× 3 convolution. Note that we introduce a residual connection at every stage.

The whole process of the backbone can be written as:

pi = Block(pi−1){i = 1, 2, 3, 4} (14)

where i is the stage number, pi is the pixel feature of a different stage i, and block is our
CNN block.

After that, we need to concatenate them to obtain the multi-scale pixel feature. First,
we need to introduce the global average pooling on pi to adjust the dimension of pi to the
same dimension. And we concatenate them for the next step.
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Figure 2. The overall architecture of EAGNet. The EAGNet consists of a CNN backbone, an enhanced
atrous extractor, and a self-dynamic gate. The CNN backbone and the enhanced atrous extractor can
extract the pixel feature and multi-scale superpixel feature. The self-dynamic gate can filter the pixel
feature and superpixel feature and fuse them to obtain the pixel–superpixel relationship information
for the final prediction.

3.4. Enhanced Atrous Extractor

To extract the multi-scale superpixel feature with contextual information, we design
an enhanced atrous extractor (EAE). As shown in Figure 3, our proposed EAE consists of
an Enhanced Atrous Module and an MLP head. The EAE Module introduces the Atrous
convolution and SiLU function to produce the weight and sum the features to add the
multi-scale superpixel feature with contextual information. And the MLP can add the
non-linear complexity. The input feeds to the Enhanced Atrous Module and an MLP to
extract the multi-scale superpixel feature and add the contextual information under the
specific receptive field.

Figure 3. The overall architecture of EAE. The EAE consists of the Enhanced Atrous Module and
MLP head. The Enhanced Atrous Module can extract the different superpixel features under different
receptive fields.

For the Enhanced Atrous Module, as shown in Figure 4, we introduce five atrous
convolutions with different dilation rates on the input to produce five superpixel features
with contextual information under the specific receptive field. Then, we introduce the SiLU
function on it to produce weights and multiply these by weighted features. Finally, we sum
them up to obtain the final output. Formally, the whole process can be written as:

fi = AConvr=i(pm), {i = 1, 2, 3, 4, 5} (15)
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where AConvr=1 means the atrous convolution with a dilation rate equal to i, and i is the
dilation rate. The fi means the superpixel feature of dilation rate i. The Pm is the multi-scale
pixel feature, which is the input of the Enhanced Atrous Module.

fi = fi × sigmoid( fi), {i = 1, 2, 3, 4, 5} (16)

where sigmoid(.) is the sigmoid non-linear activation function. And Equation (16) is also
the process of the SiLU activation function.

Output = SUM( fi), {i = 1, 2, 3, 4, 5} (17)

where Output is the output of the Enhanced Atrous Module. The SUM(.) is the sum operation.

Figure 4. The overall architecture of the Enhanced Atrous Module. The Enhanced Atrous Mod-
ule introduces the atrous convolution and silu function to extract the superpixel feature and
strengthen them.

The Atrous convolution can extract the contextual information under the specific
receptive field. The SiLU function can weight the feature to strengthen the representation
ability of the feature. And we can add all the features to obtain the multi-scale superpixel
feature with contextual information under different receptive fields with a powerful repre-
sentation ability. And we also conduct experiments to show that contextual information
can improve compactness.

For the MLP part, as shown in Figure 5, it consists of two fully connected layers
and a 3× 3 depth-wise convolution. And every fully connected layer consists of a 1× 1
convolution, a batchnorm, and a LeakReLU layer. We set the expand ratio of the MLP to 2.
The whole process of the MLP can be written as:

f1 = f ullyconnectedlayer(x) f2 = DWConv( f1) (18)

f2 = DWConv( f1) (19)

output = f ullyconnectedlayer( f2) (20)

where f ullyconnectedlayer(.) is the fully connected layer. The DWConv is the 3× 3 depth-
wise convolution layer.
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Figure 5. The overall architecture of the MLP. The MLP is the Vaillant MLP head in the transformer.

3.5. Self-Dynamic Gate

To fix the under-segmentation and inject the detail information, we design the self-
dynamic gate. As shown in Figure 6, considering the requirement of the computation cost,
the self-dynamic gate only has two embeddings. The embedding is a convolution layer,
and we introduce the sigmoid on the pixel and superpixel features themselves to produce
the weight, which is the gate. And we multiply the gate with the feature to filter the feature.
Finally, we sum them to obtain the final output. The whole process can be written as:

fp = embedding(p) fs = embedding(s) (21)

fp = fp × sigmoid( fp) fs = fs × sigmoid( fs) (22)

Output = fp + fs (23)

where embedding is the embedding layer. The fp and fs are the pixel feature and superpixel
feature, respectively. The sigmoid() is the sigmoid activation function.

The self-dynamic gate can filter and fuse the pixel and superpixel feature. And we
introduce a convolution after we fuse them. And we can inject the detail information and
obtain the pixel–superpixel relationship information by using the self-dynamic gate.

Figure 6. The overall architecture of self-dynamic gate. The embedding is the convolution layer and
the sigmoid function can produce the gate by the pixel and superpixel features themselves.

4. Experiments

First, we introduce the dataset and the setting of the experiments. Then, we introduce
the qualitative and quantitative results of EAGNet to prove the effectiveness and efficiency
of EAGNet.

4.1. Dataset

We conducted our experiment on the Berkeley Segmentation dataset (BSDS500)
[34]. BSDS500 includes 500 images, groundtruth human annotations, and benchmark-
ing code. And we introduced 200 images for training, 100 for validation, and 200 for testing.
We followed the same strategy as [19], which treats each annotation as a sample. Therefore,
the training set contains 1087 images, and the test set contains 1063 images.
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4.2. Implementation Detail

We implemented our method on Pytorch 1.11.0 and introduced Adam with B1 = 0.9
and B2 = 0.999 to train 3000 epochs. We randomly cropped the image to 208× 208 as input.
We set the batchsize as 16 and the learning rate as 0.00003. Moreover, the learning rate was
discounted by 0.5 after 2000 epochs.

4.3. Evaluation Metrics

We chose three popular metrics to evaluate our method, which are the achievable
segmentation accuracy (ASA), boundary recall (BR), and compactness (CO). ASA stands for
the upper bound of the achievable segmentation accuracy. BR-BP can assess the superpixel
segmentation method’s ability to identify semantic boundaries. The higher scores of these
metrics stand for better performance. And all the x-axes are the number of superpixels.

4.4. Comparison with State of the Arts

As shown in Figure 7, compared with the other state-of-the-art methods (e.g., ers, etps,
LSC, and SLIC), the ers and etps are the methods to let the superpixel act as a differentiable,
and the LSC and SLIC are the best methods of the k-means-based methods. Compared with
the SLIC, SEEDs, and LSC, we can see that the ASA, BR-BP, and CO for them is marginally
lower than ours. And compared with the ERS and ETPS, our method also achieves the best
ASA, CO, and BR-BP. We also compare with the deep-learning-based method SCN, and we
can see that our ASA and CO is higher than the SCN. The BR-BP is similar with the SCN.
Therefore, our method achieves the state-of-the-art performance in the ASA, BR-BP, and CO,
which means that our method can achieve the state-of-the-art performance. Our methods
can segment the boundary and the part with the same color or other mid-level properties.

Figure 7. Comparsion with other state-of-the-art methods. The (a) is the ASA, (b) is the BR-BP, and
(c) is the compactness.

4.5. The Visual Comparisons Results of BSDS500

As shown in Figure 8, for the first row, we can see that our methods can segment the
red box of the aircraft tail accurately. The ERS and ETPS can not segment the red box of the
aircraft tail accurately, which means that our method can better segment the low-level and
mid-level properties. And we can see that the compactness of our method is also the best
between these methods. In the second row, we can see that our method can segment the
logo of the car. Other methods can not segment the logo of the car, which means that our
method can segment the small object better. For the third and fourth rows, we can see that
only our method can segment the hand of the child and the small window of the boat, which
also proves that our method can segment the low-level and mid-level properties and small
objects accurately. It proves that our method can solve the under-segmentation problem.
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Figure 8. The visual results of our methods and the other state-of-the-art methods.

4.6. Ablation Study

To prove the effectiveness of every part of our proposed methods, we also conduct
experiments on BSDS500. As shown in Figure 9, to prove the effectiveness of our proposed
enhanced atrous extractor and self-dynamic gate, the baseline means we remove all our
proposed parts. The enhanced atrous extractor and the only add gate stand for only adding
the enhanced atrous extractor and the self-dynamic gate, respectively. We can see that
if we add the enhanced atrous extractor, the ASA has a large increase, which proves the
effectiveness of the enhanced atrous extractor. It stands for the multi-scale superpixel
feature with contextual information that is necessary for the superpixel segmentation.
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And we can see that if we only add the self-dynamic gate, the performance still has an
increase. It means that our proposed filtered pixel and superpixel feature is good for
superpixel segmentation, which proves the effectiveness of our proposed self-dynamic gate.

Figure 9. The ablation study of our proposed enhanced atrous extractor and self-dynamic gate.

To prove the superiority and influence of different parameters, we replace the enhanced
atrous extractor with other feature extraction methods, such as the Vaillant transformer
and AINet. The Vaillant transformer is the basic classic transformer without any additional
modifications. The transformer of AINet can extract the superpixel feature explicitly.
As shown in Figure 10a, we can see that our enhanced atrous extractor achieves the best
performance. Compared with the Vaillant transformer and the transformer of AINet, we
can see that our feature without contextual information results in performance degradation.
And we replace the self-dynamic gate with the other feature fusion module. As shown in
Figure 10c, we can see that our proposed self-dynamic gate achieves the best performance,
which proves the superiority of the self-dynamic gate. And we can see if we introduce the
add and multiply to fuse the feature that the performance has a large decrease, which means
that our self-dynamic gate can fuse the feature better. We replace the activation function
of our proposed self-dynamic gate to probe the effectiveness of different combinations
of activation. As shown in Figure 10b, we can see that if we replace the sigmoid with
Tanh or ReLU, the performance is similar to ours. But if we replace the sigmoid with
Softmax, the performance has a large decrease, which means Softmax is harmful to the
filtering features.

Figure 10. The ablation study of different settings.

4.7. More Discussion

With the development of remote sensing and deep-learning technology [35–39],
the characteristics of remote sensing images, such as the large dimension and number
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of objects, which often result in the huge computational cost, make it hard to meet the
needs of real-world application. Typical feature analysis [40–42], road extraction [43], urban
planning [44], and other practical applications are of great civil and military significance.
The traditional segmentation algorithm can only extract low-level features, which can not
meet the requirements of high-resolution remote sensing image segmentation. In order to
prove that the proposed EAGNet can reduce the number of primitives, we introduce the
EAGNet on remote sensing images to process them.

First, we use some examples of remote sensing images. As shown in Figure 11, we
chose some images from the UCM dataset. These images have complex scenarios and dif-
ferent feature characters. And the UCM dataset has 22 classes with 100 images in each class.
Every class stands for the most common scene in the real world. As shown in Figure 12, we
introduced the EAGNet on the remote sensing images. We can see the buildings of complex
scenarios are segmented accurately, which means our proposed EAGNet can reduce the
primitives by seeing the superpixel as one pixel with high generalization. It stands that
our EAGNet can reduce computation costs to meet the demand of the real-world remote
sensing application.

Figure 11. Examples of the remote sensing dataset UCM. We can see that the UCM dataset consists of
the most common scenes in the real world.
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Figure 12. The visual result of EAGNet on remote sensing images.

5. Conclusions

We proposed EAGNet, which consists of an enhanced atrous extractor and self-
dynamic gate. The enhanced atrous extractor can extract the multi-scale superpixel feature
with contextual information and the self-dynamic gate can filter and fuse the feature ef-
fectively. EAGNet can solve under-segmentation effectively. And we conducted massive
experiments to show that our methods can achieve 97.61 in ASA and 18.85 in CO of the
BSDS500 and can be applied in the remote sensing fields. And we will reduce the computa-
tion complexity and explore more applications of superpixels in the remote sensing field.
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Abbreviations

The following abbreviations are used in this manuscript:

SLIC Simple Linear Iterative Clustering
SNIC Simple Non-Iterative Clustering
LSC Linear Spectral Clustering
GCN Graph Convolutional Network
CNN Convolution Neural Network
SSN Sampling Superpixel Network
SCN Superpixel Fully Connected Network
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