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Featured Application: The paper highlights the steps taken in checking the required data qual-
ity (both real and synthetic) before it is used for the development of services in the context of
IIoT-enabled smart infrastructure systems. A case study of a scaled-down version of a water
distribution system will be presented in detail and data from healthy and faulty conditions
will be used to demonstrate the details of the data qualification process and the impact on var-
ious health assessment techniques meant to support fault detection and isolation of single and
multi-component degradation scenarios. The paper also proposes an IIoT architecture for the
instantiation of measurement system analysis.

Abstract: In the development of analytics for PHM applications, a lot of emphasis has been placed on
data transformation for optimal model development without enough consideration for the repeata-
bility of the measurement systems producing the data. This paper explores the relationship between
data quality, defined as the measurement system analysis (MSA) process, and the performance of
fault detection and isolation (FDI) algorithms within smart infrastructure systems. This research
employs a comprehensive methodology, starting with an MSA process for data-quality evaluation
and leading to the development and evaluation of fault detection and isolation (FDI) algorithms.
During the MSA phase, the repeatability of a water distribution system’s measurement system is
examined to characterise variations within the system. A data-quality process is defined to gauge
data quality. Synthetic data are introduced with varying data-quality levels to investigate their
impact on FDI algorithm development. Key findings reveal the complex relationship between data
quality and FDI algorithm performance. Synthetic data, even with lower quality, can improve the
performance of statistical process control (SPC) models, whereas data-driven approaches benefit
from high-quality datasets. The study underscores the importance of customising FDI algorithms
based on data quality. A framework for instantiating the MSA process for IIoT applications is also
suggested. By bridging data-quality assessment with data-driven FDI, this research contributes to the
design of digital twins for IIoT-enabled smart infrastructure systems. Further research on the practical
implementation of the MSA process for edge analytics for PHM applications will be considered as
part of our future research.

Keywords: digital twins; industrial internet of things (IIoT); instrumentation; data quality; statistical
process control; machine learning

1. Introduction

To meet the evolving needs of a dynamic, global urban space, infrastructure assets
supporting modern cities should make use of technologies that drive the operations and
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predictive maintenance activities enabled by the capabilities of the industrial internet of
things (IIoT). In recent years, more and more articles have discussed the concepts of digital
twins and their use in the context of smart cities. The sense–acquire–transform–analyse–act
sequence is not new, and it underpinned the topic of condition monitoring for the past
two decades. The adoption of the related concepts of condition monitoring (CM), industrial
internet of things (IIoT), digital twins (DTs), and cyber–physical systems (CPS) in modern
city infrastructure applications is often described as the fourth generation of the industrial
revolution. The central theme of this so-called revolution is the integration of the physical
with the digital world and the visualisation of insights and realisation service offerings
that can be obtained therefrom. Condition monitoring is the process of monitoring a
condition parameter in machinery to identify a significant change, which is indicative of
degradation/anomaly.

The IIoT can be defined as the connection of industrial equipment to networked
computing resources to collect data and use these data to drive relevant outcomes/services.
In a similar vein, a digital twin can be described as a virtual data model that represents
an actual physical entity in digital space—within the confines of a defined use case or
experimental frame. Cyber–physical systems can comparably be described as systems that
integrate the dynamics of physical processes with computation, networking, and decision-
making capabilities. These four concepts are so closely related that they are sometimes
confused with each other and used interchangeably, although, over the years, academia
and industry have tried to define processes for their design and implementation, as well
as standards and recommended practices for their realisation and deployment. Fuller
et al. [1] provide a tabulated review of recent research works relating to digital twins
and highlight some common misconceptions with other cognate notions of Industry 4.0.
Tao et al. [2] discuss the correlation and comparisons between DTs and CPS, whereas Lu
et al. [3] distinguish between all four concepts of CM, IIoT, DTs, and CPS and explain the
interactions between them.

As stated in [4–6], the IIoT provides the data framework upon which most industrial
digital twins are built. Thus, a thorough understanding of the IIoT application development
process is crucial in implementing digital twins. In the built environment space, the concept
of building information modelling (BIM) has begun to be discussed more often in recent
years in relation to DTs and CPS [7]. If BIM is typically employed as designed/as built
during the delivery stages of a project supporting commissioning activities and facilities
management, DT capabilities tap into the asset management, predictive maintenance, what-
if analysis, and a diverse range of simulations supporting the optimisation of operations. At
the same time, a different perspective on DT-related research actively discussed in various
working groups is attributed to the definitions of layers describing the digital counterpart
of a physical asset. These layers refer to data services (DS), integration (I1), intelligence (I2),
user experience (UX), management (M), and trustworthiness (T) [8]. Datasets supporting
the development of DTs for smart infrastructure systems exist, and some can certainly sup-
port the instantiation of the DT layers mentioned above. An example of such a dataset is the
one generated by [9] to target leak detection and localisation in water distribution systems.

Also, several authors have explored different fault diagnosis and prognostics ap-
proaches for various systems with the use of machine learning as a more recent phe-
nomenon. Fernandes et al. [10] provide a systematic review of the application of machine
learning techniques in real industrial use cases for fault diagnosis and prognosis. The
research highlighted in their work shows that most supervised model development ap-
proaches rely on datasets from a measurement system. This is not uncommon in the
development and application of data-driven methods for diagnostic or prognostic services,
as seen in [11–13]. The approach used for data preparation in the development of analytics
for prognostic and health management (PHM) applications depends on the nature of the
training dataset used. Where data preparation methods focus on the distribution of the
training dataset, data pre-processing paves the way for feature extraction, feature selection,
and model training [14,15]. However, this approach does not consider the performance
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of an asset’s measurement system or its impact on the development of the analytics for
PHM applications. This paper defines a measurement system analysis instantiation process
for developing fault diagnosis and isolation (FDI) algorithms to detect multi-component
degradation in a water distribution system. The main contributions of this paper are
summarised below:

1. Definition of a measurement system analysis process for developing fault detection
and isolation algorithms for multi-component degradation;

2. Investigation of the impact of data quality on the development of fault detection
and isolation algorithms for multi-component degradation for IIoT-enabled smart
infrastructure systems;

3. Delineation of an application development process with clear steps for the quantifica-
tion of data quality before it is used for the design and development of services for
IIoT-enabled water distribution systems;

4. Demonstration of a practical implementation of the application of a measurement
system assessment and offering of perspectives on the impact of data quality on SPC
applications, an ensemble model of ML techniques, and neural networks, which can
act as a reference for data analysts operating in the DT/IIoT space.

2. Methodology
2.1. Methodology for the Assessment of Data Quality
2.1.1. Measurement System Analysis (MSA)—Methodology Overview

Measurement system analysis (MSA) is generally a set of procedures used to determine
the variation caused by a measurement system and whether the measurement data are valid
before being used for the construction of services delivered by a DT. MSA aims to separate
the variation among devices being measured from the error in the measurement system [16].
Understanding and minimising the sources of variation in the measurement process allows
organisations to make more informed decisions and improve the quality of their products
or services. An MSA process was defined to determine the level of repeatability by a water
distribution testbed’s measurement system to aid in identifying the impact of the data
quality on analytics as a service. The analysis starts with defining a process for capturing
healthy and faulty condition data over one month by different operators. A relative pooled
variance, which computes a combined measure of variability by considering both the
sample sizes and the variances of the groups, was used to determine whether there was
variability in the healthy and faulty condition data over the period in which data were
recorded. To determine the source of data variation when more than 10% relative pooled
standard deviation was observed, a gage repeatability and reproducibility (gage R&R)
approach was adopted to determine the variation in the process data associated with the
process and the measurement system. The earth mover’s distance (EMD) metric was also
used to complement the gage R&R analysis by determining the similarity between datasets
by measuring the distance between the probability distributions of the measured process
data. A data-quality (DQ) score between 0 and 1 was then defined as an average of the
scaled outcomes of both the gage R&R analysis (repeatability) and the EMD score (similarity
metric), where a DQ score of 1 represents a highly repeatable measurement system.

2.1.2. Description of the System under Investigation

The investigation was conducted on a testbed (see Figure 1) capable of generating
data meant to support the analysis of the dynamic behaviour of a water distribution
system undergoing multi-component degradation. This hydraulic system comprises critical
components, including a main supply tank, an external gear pump, and an induction motor
responsible for driving the pump. The rotational speed of both the motor and the pump
is regulated by a variable speed drive (VSD). The system also features a solenoid shut-off
valve (SHV) and five direct proportional valves (DPV1 to DPV5) added to the system
to support, in a controlled manner, the degradation phenomena affecting five distinct
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components. Data collection is facilitated by pressure transmitters (P1, P2, P3, P4, and P5),
turbine flow meters (f1 and f2), and a laser sensor to measure the pump’s speed.
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Figure 1. Water distribution system testbed schematic.

System components are connected with PVC tubing, and a finger valve is used for
tank isolation when needed. In the context of fault simulation, specific control valves were
manipulated to emulate fault conditions. For instance, DPV1 represented a clogged suction
filter, fully open at 0% fault severity, whereas DPV2 simulated pump discharge side leakage
and was fully closed at 0% fault severity. The SHV solenoid valve remained open, and
DPV3, emulating a blocked or degraded shut-off valve, was fully open at 0% fault severity.
DPV4 represented a clogged nozzle, also fully open at 0% fault severity, whereas DPV5,
simulating downstream pipe leakage, was fully closed with 0% fault severity. For clarity,
Table 1 summarises the default operational states as well as the fault emulation mechanism
of the system’s control valves and also provides their corresponding fault codes.

Table 1. Healthy condition operating state of the system’s control valves and associated fault codes.

Component Fault Emulation Healthy State/Fault Emulation
Mechanism Fault Code

Filter DPV 1 Fully open/gradually closing FC1
Pump DPV 2 Fully closed/gradually opening FC2
Valve DPV 3 Fully open/gradually closing FC3
Nozzle DPV 4 Fully open/gradually closing FC4
Pipe DPV 5 Fully closed/gradually opening FC5

2.1.3. Process Data Capture

Data for the fuel system process was recorded within four weeks for healthy condition
(HC), single-component degradation (SCD), and multi-component degradation (MCD)
scenarios between pump speeds of 700 rpm and 950 rpm in intervals of 50 rpm. The SCD
process data represent the degradation of individual components (see Table 2) with pressure
and flow measurements at P1, P2.....P5 and f1, f2, respectively. Data logging for each faulty
condition scenario started at least 10 min after the process had reached steady-state condi-
tions or when there was a step change in pump speed or a change in the failure condition
scenario, with each data file having different sample sizes. Figures 2 and 3 show the distri-
bution of process parameters for a filter-clogging scenario with a gradual closure of DPV1
(see Figure 1) and a water distribution system under the healthy condition, respectively.
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Table 2. Summary of data capture process.

Test Period 4 Consecutive Weeks

Faulty condition scenarios (total No. of tests)

FC0—healthy condition (24)
FC1—clogged filter (24)
FC2—degraded pump (24)
FC3—blocked valve (24)
FC4—blocked nozzle (24)
FC5—leaking pipe (24)

Pump speed (rpm) 700/750/800/850/900/950
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2.1.4. Synthetic Data Generation

Synthetic data with varying levels of repeatability were generated from the distri-
butions of the data captured over the 4 weeks. The rationale for generating synthetic
data with varying levels of repeatability was to determine the impact of measurement
system repeatability on the development of fault detection and isolation algorithms for
multi-component degradation scenarios. To achieve this, a conditional tabular generative
adversarial network (CTGAN) [17] was used to generate synthetic data from data captured
in Table 2 with random hyperparameters in order to increase the variation in the recorded
data at each sensor measurement. This enabled the generation of different datasets related
to the same process dynamics for the training of fault detection and isolation algorithms.
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2.1.5. Relative Pooled Variance

To calculate the relative pooled variance [18], the variance S2 of each group of data
in the dataset was multiplied by its degrees of freedom (ni − 1). These values were then
added together for all groups. To obtain the relative pooled variance, the sum was divided
by the total degrees of freedom (the sum of the individual degrees of freedom for each
group). Equations (2) and (3) were used to determine the pooled standard deviation and
relative pooled standard deviation, respectively.

Standard deviation =
√

Variance (1)

Equation (1): standard deviation.

SDpooled =

√
(n1 − 1)S1

2 + (n2 − 1)S2
2 + . . . + (nk − 1)Sk

2

n1 + n2 + .. + nk − k
(2)

Equation (2): pooled standard deviation.

RPSD =
SDpooled

mean
(3)

Equation (3): relative pooled standard deviation.

2.1.6. Gage R&R Analysis

In this work, the gage R&R [19] approach was adopted to determine the variation in
the process data associated with the process dynamics and the measurement system. The
faulty conditions at different pump speeds were treated as parts in a gage R&R analysis,
with the weekly data recording as replications and the test campaign as the operator (see
Table 3). The grand mean for the process parameters of each faulty condition scenario
(see Equation (4)) and the total sum of squares were determined to gauge the overall data
variability. Subsequently, the operator-related variance was determined as well as the
degrees of freedom, which in this case was the number of operators. Repeatability as a
function of variation in the data was then determined (see Equation (5)) and scaled between
0 and 1.

FCXweek
pump_speed = ∑ mean(P1, P2, P3, P4, P5, F1, F2) (4)

Equation (4): process data mean.

Table 3. Data for gage R&R analysis.

Week Nomenclature Test FC0_700 . . .. . .. . .. . . FC5_950

1 Test campaign 1 FC01
700 . . .. . .. . .. . . FC51

950
2 Test campaign 2 FC02

700 . . .. . .. . .. . . FC52
950

3 Test campaign 3 FC03
700 . . .. . .. . .. . . FC53

950
4 Test campaign 4 FC04

700 . . .. . .. . .. . . FC54
950

Repeatability = 1 −
(

Mean sum o f squares (operator)
/

Total sum o f squares

)
(5)

Equation (5): repeatability score.

2.1.7. Earth Mover’s Distance

The earth mover’s distance (EMD) is used to measure the discrepancy between
two probability distributions and provides a way to quantify the minimum cost of trans-
forming one distribution into another [20]. In this paper, the distributions of sensor
data measured at P1, P2.....P5 and f1, f2 were compared and the Wasserstein distance was
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computed for each sensor measurement across the 4 weeks for each faulty condition.
Equation (6) was used to compute a similarity metric scaled between 0 and 1, using the
average EMD for faulty condition scenarios FC0, FC1, FC2, FC3, FC4, and FC5. A value of
1 represents a significant similarity between sensor data across the weeks and 0 represents
dissimilar datasets across the week by the same sensor.

Similarity metric = 1 − Average EMD
1 + Average EMD

(6)

Equation (6): similarity metric for process data.

2.2. Component Degradation Characterisation

The nature of filter degradation, i.e., clogging over time due to the accumulation of
particles or debris [21] (FC1), was emulated on the testbed by using the position of a valve
(DPV1) that was proportional to the level of severity. In the case of the pump (FC2), pump
failures can result from motor or drive issues, such as electrical faults, mechanical wear,
or overheating, or leaks leading to a complete breakdown of the pumping system [22]. A
degraded pump with leaks was simulated on the testbed with a change in the opening of a
bypass valve (DPV2) connected to the main line (see Figure 1). Sediment build-up [23] was
also emulated as the degradation of the valve (FC3) by a gradual closure in DPV3 or a step
change in the valve opening. In the case of the nozzle (FC4), represented by DPV4, partial
blockage generated by solid particle contaminants present in the fluid [24] was emulated
by a gradual closure of the valve. Finally, a leaking pipe [15] faulty condition scenario (FC5)
was emulated via a step change in the DPV5 valve opening, which offered the possibility
of creating fine leaks or a significant pipe burst. In this paper, only two faulty conditions
occurring simultaneously for the MCD case were considered, with each valve associated
with each component under consideration set at a specific valve opening.

2.3. Fault Detection and Isolation (FDI)
2.3.1. Test Degradation Scenarios

Benchmarking was carried out using a series of test datasets recorded to assess the
performance of FDI algorithms in the context of multi-component degradation. Table 4
below describes the nature of the test data with the components under consideration for
the multi-component degradation scenarios at different pump speeds as well as their levels
of severity. For example, T14 captured data from a scenario where the system (running
at 950 rpm) was affected by a combination of a degraded pump and nozzle; the pump’s
level of severity was emulated by setting the DPV2 at 45% open, whereas the degradation
of the nozzle was emulated by swiping the entire opening envelope of the DPV4 (100%
open highlighting a healthy nozzle and 30% opening emulating a high-severity level of
degradation). Also, Appendix A.1 (Figure A1) shows the distribution of the MCD test
degradation scenarios in Table 4 used to test the performance of the FDI algorithms. The
levels of severity were categorised into five groups, with below 20% defined as healthy,
between 20% and 40% defined as low severity, between 40% and 60% defined as medium
severity, between 60% and 80% defined as high severity, and above 80% defined as high
failure risk. The FDI algorithms were expected to classify or predict any instances above
20% severity as faulty in both multi-component and single-component scenarios. To
better clarify how the deviation from normality occurred, Figures 4 and 5 show how the
distribution of the process parameters of the water distribution system deviated in test
degradation scenarios T13 and T17, respectively.
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Table 4. Test degradation scenarios (the fault in component 1 is initiated before that of component 2).

MCD Test No.
(Total No. of Tests)

Degradation Level
(Component 1)

(in Percentage of
DPV Opening)

Degradation Level
(Component 2)

(in Percentage of
DPV Opening)

Operational Speed
Range (rpm) Fault Combination

T13 (1) Pump (medium severity)
at 45%

Constant degradation of
nozzle (30–100% severity) 700 FC2 and FC4

T14 (1) Pump (medium severity)
at 45%

Constant degradation of
nozzle (30–100% severity) 950 FC2 and FC4

T15 (1) Filter (high severity) at 68% Healthy condition
(0% severity) 700 to 950 FC1 only

T16 (1) Pump (medium severity)
at 50%

Nozzle (medium severity)
at 60% 700 to 950 FC2 and FC4

T17 (1) Constant degradation of
pump (0–100% severity)

Constant degradation of
pipe (0–100% severity) 800 FC2 and FC5

T18 (1)
Intermittent faults for the
pump between a 45% and

60% level of severity

Healthy condition
(0% severity) 850 FC2 only

T19 (1) Constant degradation of
pump (0–100% severity)

Constant degradation of
valve (30–100% severity) 850 FC2 and FC3

T20 (1) Pump (medium severity)
at 55%

Nozzle (high severity)
at 70% 700 to 950 FC2 and FC4
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2.3.2. Statistical Process Control (SPC) Approach

Statistical process control (SPC) is a quality-control method used to monitor and
control processes to ensure they operate consistently within specified limits. It involves the
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use of statistical techniques to analyse process data, identify variations, and take corrective
actions when necessary. Threshold testing is a critical aspect of statistical process control
(SPC) used to determine whether a process is operating within acceptable limits. In SPC,
control charts are employed to monitor process data over time, and threshold testing
involves setting limits or thresholds on these charts to distinguish between common cause
variation and special cause variation [25]. In this report, Equation (7) was used to calculate
the upper and lower bounds for pressure and flow measurements at each pump speed for
each faulty condition scenario, where µ and σ are the mean and standard deviation of the
sensor measurements, respectively. Equation (8) was also used to develop the SPC table
at each pump speed for each faulty condition scenario, which was then used to set the
thresholds for each component failure. T1 and T2 represent the lower and upper bounds,
respectively, of the process dynamic faulty condition scenarios FC1, FC2, FC3, FC4, and
FC5, and the logic condition returned 1 when true and 0 when false using Equation (9).
The logic condition of each faulty condition at time t1 returned a response of “true” when
T1 ≤ x1 ≤ T2, where x1 is the process parameter at t1. An SPC surface was then developed
for every faulty condition scenario at pump speeds of between 700 and 950 rpm at intervals
of 50 rpm and stored in an SPC model repository for FDI predictions. For instance, the
SPC model repository contained an SPC surface such as the one shown in Figure 6 for
sensor measurements at P3 for the healthy condition scenario of the system. It was then
used to define the distribution of the data at that sensor measurement for a particular
component condition.
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Upperbound(UB) = µ + 3σ

Lowerbound(LB) = µ − 3σ
(7)

Equation (7): lower and upper bounds.

SPC_table_FCX = fUB,LB
pump_speed(P1, P2, P3, P4, P5, f 1) (8)

Equation (8): threshold testing table for process parameters for each process condition.

Pump_Speed
AND

SPC_table_FCXLBP1 ≤ TestP1 ≤ SPC_table_FCXUBP1

.

.
SPC_table_FCXLBP5 ≤ TestP5 ≤ SPC_table_FCXUBP5

AND
SPC_table_FCXLB f 1 ≤ TestF1 ≤ SPC_table_FCXUB f 1


(9)
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Equation (9): SPC algorithm for fault detection and isolation (FDI).

2.3.3. Data-Driven Approach

The data-driven approach for fault detection and isolation proposed in this paper was
two-fold. The first part was an ensemble of classification algorithms [26] for detecting faulty
condition scenarios. A range of classification models, including logistic regression [27],
decision tree [28], random forest [29], Gaussian naive Bayes [30], K-nearest neighbours [31],
support vector machine [32], gradient boosting [33], and AdaBoost [34], were instantiated.
These classifiers were fitted to training data and evaluated based on their performance for
each of the key components (see Table 1) of the system on test degradation data in terms
of prediction accuracy. The default parameters for each classifier in Keras were utilised
to train on the training dataset and evaluated. Based on the process dynamics for each
key component, it was anticipated that different classification algorithms would perform
differently under different levels of training data quality and degradation scenarios. A
simple modal framework was employed to develop a weighted ensemble classification
FDI model, where the highest three occurring classification algorithms were used. The
second data-driven approach was an FDI classifier based on a neural network architecture
that used a recurrent neural network (RNN) model comprising a single RNN layer with
150 neurons followed by a dense layer and a sigmoid activation function (see Figure 7
below). The model was compiled with binary cross-entropy loss and the Nadam optimiser.
Early stopping was then employed to prevent overfitting during the training of the model.
The performance of the RNN model was also evaluated using the test degradation data
recorded in Table 4.
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2.4. FDI Benchmarking Process

Figure 8 below shows a three-stage procedure for benchmarking the FDI algorithms
described in Section 2.3 above. The process begins with data capture and manipulation,
where the measurement system analysis process described in Section 2.1 is used to deter-
mine the quality of data of different training datasets. The function f1(x) is a logic function
used to select a dataset D1 with a specific level of quality to train the FDI algorithms in
the model development and testing stage. In the statistical process control, the ensemble
and neural network models are trained simultaneously, tagged as models M1, M2, and M3,
respectively, and stored in a fault detection and isolation model repository. The function
f2(x) is then used to determine the proportion of accurate predictions of test degradation
scenario data by M1, M2, and M3.

3. Results and Potential IIoT instantiation
3.1. Results and Findings
3.1.1. Measurement System Analysis

Figure 9 below shows the relative pooled standard deviation (RPSD) for the historical
process data recorded over the four-week period. In the case of the degradation scenarios,
the maximum standard deviation of data recorded relative to the mean was 950 rpm for
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the clogged filter failure condition scenario, with the minimum occurring at 700 rpm for
a leaking pipe scenario. The healthy condition scenario showed near zero RPSD for the
varying pump speeds over the four-week period. Even though Figure 9 provides insights
into the variation in the data, it was difficult to determine the source of the variation,
whether it was from the measurement system or the process itself. Figure 10 shows the
nature of data recorded by the measurement system of the water distribution testbed. Over
the four weeks, the data quality scores as defined in this paper showed data characterising
the conditions of the pump with the lowest data-quality score at 0.986 and that of the valve
at 0.9942. The quality of one of the synthetic datasets generated is also shown in Figure 10,
with data characterising the conditions of the filter with the lowest data-quality score at
0.76 and that of the valve at 0.8.
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3.1.2. The Nexus between Data Quality and FDI Model Performance

The relationship between the quality of data defined by the MSA process and its
impact on the development of fault detection and isolation algorithms varies depending on
the nature of the principles that underpin the mathematical foundations and development
process of those algorithms. The performance of the models trained with both historical
and synthetic datasets is presented below, with Appendix A.2 (Tables A1 and A2) showing
the best classification algorithm for each component. Figure 11 shows a radar plot of the
data-quality score for every component and its impact on test degradation data T13. In the
case of the SPC model, the impact of the synthetic data with lower data quality compared
to the historical dataset resulted in an increase in model performance, where the synthetic
dataset produced a mean accuracy for all components of 85.55% and the historical dataset
producing a mean accuracy of 49.7%. The same pattern was seen in T17 as well, where
the performance of the data-driven models decreased with a decrease in data quality (see
Figure 12). Tables 5 and 6 show a summary of the performance of the FDI algorithms
using historical and synthetic data respectively. Figures 13 and 14 also show the average
performance of the FDI models in the rest of the test degradation scenarios. It was observed
that there was no direct relationship between data quality as defined and the performance
of the SPC FDI algorithms in the detection MCD scenarios.
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Table 5. Summary of average performance of FDI models for T13.

Historical Dataset with Average Data Quality of 0.99

Model SPC Best Classifier Ensemble Neural Network
Mean accuracy (%) 49.7 86.10 46.84 63.81

Synthetic Dataset with Average Data Quality of 0.794

Model SPC Best Classifier Ensemble Neural Network
Mean accuracy (%) 80.55 83.82 16.18 46.71
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Table 6. Summary of average performance of FDI models for T17.

Historical Dataset with Average Data Quality of 0.99

Model SPC Best Classifier Ensemble Neural Network
Mean accuracy (%) 40.18 87.28 72.72 87.27

Synthetic Dataset with Average Data Quality of 0.69
Model SPC Best Classifier Ensemble Neural Network
Mean accuracy (%) 72.72 87.27 27.27 78.12
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3.1.3. Discussion

The results above present interesting model performance results as a consequence
of data quality. Figure 15 below shows why there was no direct relationship between
the SPC FDI performance algorithm and the quality of the datasets defined in this paper.
Assuming T1, T2 are the lower and upper bounds, respectively, for the description of a
process condition on a system; x1, x2 are the process parameters at time t1, t2, respectively,
and S1, S2 are the lower and upper bounds, respectively, for datasets with low data quality,
the SPC FDI algorithm returned a true prediction only when the conditions in cases 1, 2
and 3 were met regardless of the level of quality in the data recorded by the measurement
system (S: synthetic data, A: actual data, P: performance). Case 4 is the only scenario
where a true prediction was not observed by the SPC FDI algorithm. That explains why
in Figures 13 and 14 the SPC model developed with a dataset with an average quality of
0.794 performed better than the data from the testbed’s measurement system, with a data
quality of 0.99. From the analysis of the performance of the SPC FDI model on the rest
of the test dataset (see Figures 13 and 14) for the various multi-component degradation
scenarios, synthetic data could be used to augment the performance of the SPC model for
better performance, and it is worth investigating the requirements for an augmented SPC
model with synthetic data.
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On the other hand, the data-driven methods in most cases required datasets with
high data-quality levels for better model performance, as seen in Figures 11 and 12 as well
as Figures 13 and 14. The neural network model showed adaptive behaviour for model
prediction due to a neural network’s ability to approximate system dynamics with effective
architecture. Its performance did not generally decrease with a decline in data quality,
unlike what was seen in the ensemble model. Implementing the best classifier approach
would be impractical from an operational standpoint, as the best classifiers for a specific
case of multi-component degradation as the best classification algorithms might not be
known and would require simulating and testing all possible MCD combinations. For a
large system, this becomes untenable because of resource constraints.

3.2. Potential IIoT Instantiation of the MSA Process

For a system
.

XiOCi . . .. . .. . .. . .
.

XNOCN , where
.

Xi is a state the system can assume for
the operating condition OCi, a database DB .

XiOCi
with tables T .

XiOCi1
. . . . . . . . . T .

XNOCN N
can

be created with replications Ri. The database with the tables is then stored on the edge and
the MSA function is applied to them. Using the benchmarking process defined in Figure 8, a
data-quality parameter q can be defined for a specific FDI algorithm, where the output of the
MSA process is used to determine the data to be cached for training and testing. Figure 16
below shows how the MSA process can be implemented on digital network architecture.
This allows for tailoring the training and test datasets to specific fault detection and isolation
algorithms based on the impact of data quality on model performance.
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4. Concluding Remarks

In this research, we explored the relationship between data quality, as defined by a
measurement system analysis (MSA) process, and the performance of fault detection and
isolation (FDI) algorithms. Our findings show the nexus between data quality and the
reliability of FDI models in the context of complex systems undergoing multi-component
degradation scenarios. Our analysis of historical process data, using metrics such as
the relative pooled standard deviation (RPSD) and data-quality scores for individual
components, provides valuable insights. It was observed that data quality is not a singular,
universal determinant of FDI model performance. Although higher data quality appears
to benefit data-driven FDI models, it was interesting that, in certain cases, synthetic data
with lower data quality could enhance the performance of statistical process control (SPC)
models. A better understanding of the impact of data quality on FDI algorithms for PHM
applications would provide insights into the deployment of specific prognostic algorithms
for a system such as a city-wide water distribution system. Also, from an operational and
maintenance perspective, better FDI capabilities increase the overall water distribution
system’s uptime, as well as the likelihood of developing, for the critical components of
such a system, accurate potential failure–functional failure (P-F) degradation curves. The
knowledge capture related to P-F curves can also help with improvements in the operations
and optimisation of maintenance activities.

Furthermore, this non-linear relationship between data quality and FDI performance,
as shown in our results and further in our discussion, highlights the need for a targeted
approach in the design and implementation of FDI algorithms for multi-component degra-
dation scenarios. The potential instantiation of the MSA process to optimise data quality for
FDI models presents an avenue for future research and application. By creating databases
with tailored data-quality parameters, training and testing datasets can be optimised to suit
the requirements of specific FDI algorithms for multi-component degradation scenarios.
This data optimisation approach using the MSA process provides a practical means to
enhance the robustness and reliability of FDI systems in real-world industrial applications.

In conclusion, this research highlights the multidimensional nature of data quality’s
impact on FDI model performance. Leveraging MSA principles and suitable network
architectures, we can open doors to a new era of precision and effectiveness in fault
detection and isolation within complex systems such as a city-wide water distribution
system undergoing multi-component degradation. This work contributes to the ongoing
evolution of data-driven technologies to enable the monitoring of smart infrastructure.
The ability of a city-wide water distribution system to meet the needs of a growing city
population requires that assets in the system be monitored with robust FDI algorithms with
a clear understanding of the impact of data quality in the FDI model development process.
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Appendix A.2. Best Classification Algorithm for Each Component Ungergoing
Component Degradation

Table A1. Historical dataset.

Test Filter Pump Valve Nozzle Pipe

T13 Logistic regression Logistic regression Logistic regression Logistic regression Decision tree classifier
T14 Decision tree classifier SVC Logistic regression Decision tree classifier Logistic regression
T15 Decision tree classifier SVC Logistic regression Decision tree classifier Gaussian NB
T16 SVC Decision tree classifier Gaussian NB SVC SVC
T17 Logistic regression Decision tree classifier Gaussian NB Logistic regression K neighbours classifier
T18 SVC Decision tree classifier Decision tree classifier Logistic regression Decision tree classifier
T19 Logistic regression Decision tree classifier Logistic regression Decision tree classifier SVC
T20 SVC Logistic regression Logistic regression Decision tree classifier SVC

Table A2. Synthetic dataset.

Test Filter Pump Valve Nozzle Pipe

T13 Logistic regression Logistic regression Decision tree classifier Logistic regression Logistic regression
T14 Decision tree classifier Decision tree classifier Gaussian NB Decision tree classifier Gaussian NB
T15 Decision tree classifier Decision tree classifier Decision tree classifier Logistic regression Decision tree classifier
T16 SVC Logistic regression Decision tree classifier Gaussian NB Gaussian NB
T17 Logistic regression Logistic regression Decision tree regressor Decision tree regressor Logistic regression
T18 SVC Logistic regression Decision tree classifier Decision tree classifier Decision tree classifier
T19 Logistic regression Decision tree classifier Decision tree classifier Decision tree classifier Decision tree classifier
T20 SVC Logistic regression Logistic regression Logistic regression Logistic regression
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