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Abstract: The increasing demand for solar photovoltaic systems that generate electricity from sun-
light stems from their clean and renewable nature. These systems are often deployed in remote areas
far from urban centers, making the remote monitoring and early prediction of potential issues in
these systems significant areas of research. The objective here is to identify maintenance requirements
early and predict potential problems within the system. In this study, a cost-effective Internet of
Things-based remote monitoring system for solar photovoltaic energy systems is presented, along
with a machine learning-based photovoltaic power estimator. An Internet of Things-compatible data
logger developed for this system gathers critical data from the photovoltaic system and transmits
them to a server. Real-time visualization of these data is facilitated through web and mobile mon-
itoring interfaces. The measured data encompass current, voltage, and temperature information
originating from the photovoltaic generator and battery, alongside environmental parameters such
as temperature, radiation, humidity, and pressure. Subsequently, these acquired data are employed
for photovoltaic power estimation using machine learning techniques. This enables the estimation
of potential issues within the photovoltaic system. In the event of a problem occurring within the
photovoltaic system, users are alerted through a mobile application. Early detection and intervention
assist in preventing power loss and damage to system components. When evaluating the results
according to performance assessment criteria, it was observed that the random forests algorithm
yielded the best results with an accuracy rate of 87% among the machine learning methods such as
linear regression, support vector machine, decision trees, random forests, and k-nearest neighbor.
When prediction models using other algorithms were ranked in terms of success, decision trees
exhibited an accuracy rate of 81%, k-nearest neighbor achieved 79%, support vector machine reached
67%, and linear regression achieved 64% accuracy. In conclusion, the developed monitoring and
estimation system, when integrated with web and mobile interfaces, has been demonstrated to be
suitable for large-scale photovoltaic energy systems.

Keywords: solar photovoltaic power; low-cost; remote monitoring; Internet of Things; power estima-
tion; machine learning

1. Introduction

The awareness regarding the utilization of renewable energy sources in energy produc-
tion has been steadily increasing worldwide due to factors such as the rising global energy
demand, the depletion of fossil fuel reserves, and the adverse effects of CO2 emissions.
Among the most widely employed renewable energy sources, solar energy is harnessed
through solar panels to convert sunlight into electricity in photovoltaic (PV) systems. The
annual average solar irradiance in Turkey is 1527.46 kWh/m2/year, with an average sun-
shine duration of 2741.07 h, approximately equivalent to 27 million TOE (Tons of Oil
Equivalent). As of the end of December 2022, the installed capacity of solar power plants in
Turkey reached 9425.4 MW, indicating a growth of 1609.8 MW compared to the previous
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year [1]. This global increase in solar energy installation capacity, observed in Turkey, brings
about the necessity to address aspects such as power control, optimal energy generation,
mitigation of power losses, power estimation, and maintenance and repair requirements in
solar energy systems.

In this context, the conducted study comprises two fundamental parts. In the first part,
a data recording and monitoring system is designed. Particularly crucial is the development
of an automation system for remote monitoring of large-scale PV energy systems situated
in remote areas, enabling early intervention against potential power losses. Considering
the aforementioned attributes, this study designs an Internet of Things (IoT)-based data
recording and monitoring system to real-time record and monitor parameters obtained
from the PV panels, batteries, and energy system within their operational environment. The
gathered data are stored in a database and can be tracked in real-time using the designed
web and mobile interfaces. The data are presented both numerically and graphically to the
user. Furthermore, the implemented monitoring system sends alert messages to the user in
the event of a malfunction in the energy system, facilitating informed actions to prevent
potential power loss through early intervention.

The second part of the study involves power forecasting using the collected data.
The power output from PV panels varies based on factors such as geographical location,
seasonal changes, and environmental conditions. Accurate power forecasting is essential
for the efficient and economical utilization of solar panels as a reliable energy source.
This enables the installation of controllable PV energy systems, guides electric companies,
manages energy, optimizes energy levels, and identifies necessary panel adaptations to
reach maximum production capacity. Moreover, it holds significant importance in terms of
time savings and reduction of additional labor costs. Therefore, the estimation of power
output values and load trends for renewable power facilities like PV energy systems
emerges as a fundamental process [2].

Presently, the prevalent approach for power forecasting in PV energy systems involves
analyzing historical data and considering seasonal, daily, and hourly variations to predict
future power generation. Artificial neural networks and regression models are among the
methods employed for this purpose [3]. In this study, power forecasting is conducted using
the data obtained from Karabük province in Turkey’s Western Black Sea region, where
the annual sunshine duration is 2402 h, and the annual radiation value is 1369 kW/h per
square meter. Meteorological data, such as humidity, temperature, pressure, and time
information, are utilized in power forecasting through machine learning techniques [4].
To determine the most successful machine learning method for power forecasting, linear
regression, support vector machines (SVM), decision trees, random forests, and k-nearest
neighbors (KNN) algorithms are sequentially employed. The results obtained from each
algorithm are presented in a comparative manner.

The subsequent section provides an in-depth review of the relevant literature on the
topic. Section 3 details the experimental setup, dataset, and algorithms employed. In
Section 4, experimental studies and the resulting findings are thoroughly analyzed, and in
Section 5, the conclusions are discussed.

2. Related Work

The first part of the literature review addresses the studies related to monitoring of
PV energy systems. In the initial research efforts concerning the monitoring of PV en-
ergy systems, wired systems utilizing RS232 and RS485 communication protocols were
employed for data transmission [5,6]. Due to exposure to environmental factors, such as
rain, temperature, and humidity, the cables carrying data in these systems necessitated
additional maintenance costs. In contrast, wireless monitoring systems are less affected
by environmental conditions compared to wired monitoring systems and, especially in
real-time applications, they possess quicker decision-making capability. Additionally, they
convey information over a longer range with higher accuracy. In their work, Rouibah
et al. [7] developed a low-cost IoT-based tracking system for maximum power point track-
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ing (MPPT) in PV systems. Deshmukh and Bhuyar [8] addressed the automation of solar
PV power generation. An IoT platform was utilized to monitor and control solar energy
production. Cheddadi et al. [9] aimed to provide a cost-effective and open-source IoT
solution using the ESP32 board to intelligently gather and real-time monitor the gener-
ated power and environmental conditions of solar stations. Adhya and co-workers [10]
discussed an IoT-based, low-cost monitoring system for solar PV installations. Luwes
and Lubbe [11] developed an IoT device that individually monitored each PV array and
provided feedback on their efficiencies to prevent power losses in large solar farms. Lee
et al. [12] described an IoT-based software architecture for continuous monitoring of solar
panel efficiency. López-Vargas et al. [13] introduced IoT-based application innovation to
a low-cost Arduino microcontroller-based solar data logger. Fernandez et al. [14] pro-
posed a fully open-source software-based IoT solution for monitoring PV installations.
Gupta et al. [15] systematically presented all design stages of a low-cost IoT-based data
collection system. In Nurhafizah’s study [16], an IoT-based real-time monitoring system
for renewable stand-alone power plants was discussed. Portalo et al. [17] presented an
open-source hardware and software-based monitoring system for tracking the temperature
of PV generators in smart microgrids. The monitoring system they developed utilized an
Arduino microcontroller and a Raspberry Pi microcomputer. Boubakr et al. [18] assessed
a remote monitoring system for photovoltaic power generation stations using IoT and a
state-of-the-art tool for virtual supervision.

Continuing the literature review, the second part of the study examines the power
forecasting methods used in solar PV systems. Lorenz et al. [19] presented a comparative
study of solar irradiance predictions obtained through multiple linear regression methods
and Artificial Neural Networks (ANN) models, revealing PV panel power output character-
istics using weather data. Wang and colleagues [20], apart from the aforementioned studies,
concluded that ANN is the most suitable method for predicting PV power outputs. Shi
et al. [21] conducted research using Support Vector Machines (SVM), a machine learning
approach, to predict PV system power outputs. Kou et al. [22] utilized a backpropagation-
trained ANN structure along with meteorological data to forecast solar panel output power.
Zhang et al. [23] hybridized the Particle Swarm Optimization (PSO) evolutionary algorithm
with an ANN, incorporating irradiance values as inputs, to obtain solar radiation prediction
in their training approach. Qasrawi and Awad [24] designed a multi-layered feedforward
ANN using panel outputs from differently located solar panels along with satellite data.
Zhu et al. [25] employed wavelet transform to extract useful information from complex PV
output power data and constructed an ANN model.

In the studies by Paulin and Praynlin [26], a comparative investigation was pre-
sented using a backpropagation-based Artificial Neural Network (ANN) where inputs
encompassed average ambient temperature, average panel temperature, average inverter
temperature, solar irradiance, and wind speed data, while the output consisted of power
data. Rana et al. [27] offered a comprehensive evaluation of a series of leading methods
to forecast solar power output profiles one day in advance. Kwon et al. [28] proposed the
Naive Bayes (NB) classification method, employing publicly available outdoor data (tem-
perature, humidity, dew point, and sky coverage) for solar irradiance prediction. Dinçer
and İlhan [29] comparatively employed feedforward-backpropagation artificial neural
networks and KNN algorithms using temperature, humidity, pressure, and irradiance
values to predict output power of PV panels. Gumar and Demir [30] utilized metaheuristic
algorithms such as Genetic Algorithm (GA), PSO, and Artificial Bee Colony (ABC) in
conjunction with an ANN model to predict solar energy outputs.

In this study, current technologies were integrated to enable real-time monitoring of
the electrical data from the IoT-based PV energy system and meteorological data from the
environment accessible, both via the internet and through the developed mobile application.
Subsequently, power forecasting of the generated energy in the PV system was conducted
using machine learning methods based on these data. The combination of the cost-effective
IoT-based real-time monitoring system and machine learning techniques for power forecast-
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ing represents a significant contribution and innovative aspect of this study to the literature.
The following section presents the developed IoT-based PV monitoring system.

3. Materials and Methods
3.1. Design of an IoT-Based Solar PV Data Monitoring System

In the designed system, real-time IoT-based condition monitoring of a solar PV panel
and a battery charged by this panel is conducted. Issues occurring within the system are
identified through the acquired data. Current, voltage, and temperature values of the panel
and battery, along with environmental parameters such as humidity, temperature, and
irradiance, are measured using relevant sensors. The obtained data are sent to SD cards
and Firebase servers through the NodeMCU v2 Wi-Fi microcontroller board and stored.
Firebase was chosen due to its ease of use and quick integration into the project. It provides
real-time database connectivity, allowing multiple users to observe changes in data when
they are created or edited. Despite not being open-source, Firebase offers open-source
libraries and SDKs for developers. Data tracking can be carried out in real-time through
Firebase, as well as via a mobile application. The mobile application has been developed
in the Flutter environment using the Dart programming language. Moreover, various
potential errors in the system can also be monitored in real-time through these systems.
These errors encompass low panel voltage, low panel current, high panel temperature,
low battery voltage, high battery temperature, and PV panel connection fault. The block
diagram of the developed IoT-based PV data recording and monitoring system is provided
in Figure 1.
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Figure 1. Block diagram of the proposed monitoring and estimation system.

The NodeMCU v2 Wi-Fi microcontroller board, frequently favored in IoT applications,
renders the system controllable and monitorable from any location worldwide. The de-
velopment board possesses features such as a 10-bit ADC, USB-TTL converter, 17 GPIO
pins, Wi-Fi module for wireless network connectivity, and ease of programming. In this
study, various sensors are utilized to measure values requiring assessment, including PV
panel voltage, PV panel current, PV panel temperature, battery voltage, battery current,
and battery temperature, as well as humidity, temperature, and irradiance values of the
ambient air. The ACS712-30A current sensor is employed for measuring the current of
both the PV panel and the battery. The LM35 temperature sensor is used for measuring the
temperature of the PV panel and the battery. The Sparkfun weather shield is employed for
reading temperature, humidity, pressure, and irradiance data from the air. Simultaneously,
the GP-735 GPS (Global Positioning System) sensor on the board provides location infor-
mation. The integration of the weather measurement and microcontroller Wi-Fi boards has
resulted in the creation of an electronic board for the IoT-based data acquisition system.
The measurement setup, situated within the premises of Karabük University, is depicted in
Figure 2.

The NodeMCU v2 module within the solar PV data measurement, recording, and
monitoring apparatus should initially establish a connection with a wireless network. Once
connected, data from the sensors are sequentially measured, displayed on the built-in LCD
display, saved to an SD card, and sent to the Firebase real-time database. The Firebase cloud
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system is a platform that enables the creation of mobile and web applications for monitoring
real-time data, maintaining records and session information, making new announcements,
and creating control units. It can be used freely for these purposes. The solar PV data sent
to the cloud system can be tracked by end-users via smartphones through the developed
mobile application. Additionally, the analysis and visualization of these data in a web-
based manner are facilitated through the ThingSpeak IoT platform, where we direct the
data flow in the cloud environment. A comparison between the proposed IoT-supported
data monitoring system and some existing data monitoring systems is provided in Table 1.
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Table 1. Comparison between the proposed solar PV monitoring system and existing solar PV
monitoring systems.

Author Network Hardware Software Cost (€)

Koutroulis and Kalaitzakis [6] Wired NI PCI-6024E DAQ LabView 6.1 749 €
Chouder et al. [31] Wired Agilent 34970A DAQ LabView 2011 1420 €

Ferdoush and Li [32] Wireless Raspberry Pi and Arduino UNO Arduino IDE 1.0 60 €
Rezk et al. [33] Wired NI USB-6009 DAQ LabView 2016 120 €

Proposed IoT-Based System Wireless ESP8266 Arduino IDE 2.2 5 €

In this study, following the integration of IoT-based electronic hardware, the ThingS-
peak platform, and the mobile application, experimental measurements were conducted.
The data from the experimental measurements were recorded and monitored through in-
ternet and mobile platforms. The prototype system, which was purposefully designed and
cost-effective, utilized a NodeMCU v2 microcontroller board, a Sparkfun WeatherShield
weather measurement board, an ADS1115 ADC module, an ACS712-30A current sensor, an
LCD display, an LM35 temperature sensor, and a Sparkfun (SparkFun Electronics, Boulder,
CO, USA) GP-735 GPS receiver. The approximate budget spent on creating this prototype
system was around 120 €. Examining the results obtained from the testing process, it was
observed that the developed system accurately measured and transmitted data. Electrical
and meteorological measurements were corroborated through comparison with diverse
sources. The mentioned measurements in the study were repeated and recorded at five-
minute intervals. Daily variation graphs for the output voltage of the monitored PV panel,
battery voltage, daily irradiance, and ambient temperature are provided in Figure 3.

Figure 4 illustrates the visualization of the data transferred to the Firebase real-time
database and sent to the cloud platform, where they are displayed via the developed mobile
application.
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Figure 3. Voltage, illuminance, and ambient temperature measured in (a,b) Karabuk (9 November
2021) and (c,d) Karabuk (16 November 2021).
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The subsequent section addresses the analysis of the collected data with the aim
of utilizing machine learning methods to predict the future performance of the solar
PV system.

3.2. Solar PV Power Estimation using Machine Learning Methods

For solar PV power estimation, we have a dataset containing time, temperature, pres-
sure, and humidity data. This dataset is based on five-minute weather measurements. In
order to investigate the relationship between solar energy and meteorological data, certain
weather parameters have been collected, aiming to accurately predict PV power generation.
The steps related to this part of the study involve acquiring and preprocessing the dataset,
followed by splitting the data into training and testing sets, applying classification tech-
niques, and making predictions based on the results. Data preprocessing is necessary to
clean the data and prepare them for the utilization of various learning models, thus enhanc-
ing accuracy and efficiency. Training and testing data are separated from the preprocessed
data. The model is trained using the training data and its predictions are verified using the
testing data. Data splitting generally refers to dividing the available data into two parts for
cross-validation purposes. The first dataset is used to build a prediction model, while the
second dataset is used to evaluate the model’s performance. The training percentage is set
at 80%, while the testing percentage is set at 20%. Solar PV power generation is predicted
using machine learning methods such as linear regression, SVM, decision trees, random
forests, and KNN, as proposed in the article. Linear regression is one of the fundamental
and commonly used regression methods [34]. Linear prediction functions are used to repre-
sent the relationship between input and output variables, and the method of least squares
is employed to estimate unknown model parameters from the data. An iterative method,
such as a series of linear equations or gradient descent, can be used to estimate parameter
values. In the study, a scaling process was applied to standardize the input data, followed
by feature provisioning and then scaling for feature standardization. The sensitivity of
SVM depends on the kernel function and other variables. The Grid Search approach was
employed to find optimal settings. Methods such as decision trees and random forests
are commonly used in various data science challenges. The random forests method is a
tree-based machine learning approach that can be used for regression and classification.
It also conducts dimensionality reduction, checks for missing and abnormal values, and
performs various additional data exploration activities. The bagging approach is used
to train random forests. This method allows for the use of a large number of examples
during training as the dataset is sampled with replacement. The KNN algorithm is a
distance-based classifier extensively utilized in artificial intelligence, especially in pattern
recognition. In KNN-based classification, distances between training and test data are
calculated to select the nearest K samples to the test example. Subsequently, the class of the
test example is determined through majority voting based on the class information of the
selected K samples [35].

In this study, the prediction models mentioned above were constructed using the scikit-
learn library in Python to predict solar PV power output based on multiple meteorological
parameters. Subsequently, a comparative performance analysis is necessary to compare the
prediction results of the created models and determine the most accurate model based on
specific evaluation criteria. To evaluate the performance of the prediction model, one or
more evaluation methods may be preferred. In this study, metrics such as Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared
(R2) values were calculated to evaluate the performance of the models on the test data.
MAE is a metric used to measure how close the predicted values are to the measured
values. MSE measures the average of the squared errors, thus encompassing both how
widely the predictions are spread from the actual samples and how far the mean estimated
value deviates from the true value. RMSE is calculated to assess the accuracy of a specific
approach’s predictions and indicates the scattering level generated by the model. R-squared
is used to indicate how close the prediction model results are to the actual measured data
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line, known as a fitted regression line. For higher modeling accuracy, the MAE, MSE,
and RMSE indices should be closer to zero, while the R2 value should be closer to 1. The
equations for MAE, MSE, RMSE, and R2 performance measurement methods are given as
Equation (1)–(4), respectively.

MAE =
1
n

n

∑
i=1
|yi − ŷ| (1)

MSE =
1
n

n

∑
i=1

(yi − ŷ)2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ)2 (3)

R2 = 1− ∑(yi − ŷ)2

∑(yi − y)2 (4)

Here, n represents the number of data points, y is the true value, ŷ is the predicted
value, and y is the mean value. The comparison of the performance of the prediction models
based on these performance measurement criteria is presented in the results section.

4. Result and Discussion

In order to comprehensively observe the solar PV power generation process based on
meteorological data, a matrix consisting of correlation coefficient pairs was constructed.
This enabled the identification of collinearity between the existing features and the power
output. The data used in this study were obtained from a research project numbered KBU-
21-DS-018 and titled “IoT-Based Condition Monitoring and Fault Analysis of Solar Panels”.
Figure 5 provides the correlation between the existing features and solar PV power output.
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From the correlation graph, it can be observed that the features with the highest corre-
lation to power output are hour and humidity. Additionally, a similar strong correlation
between humidity and temperature is also evident. Following the identification of the
relationship between meteorological data and solar PV power output, the dataset was
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subjected to machine learning models. The graph in Figure 6 presents the predicted values
against the actual test data for solar PV power output estimations performed using linear
regression, SVM, decision trees, random forest, and KNN algorithms.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 12 
 

 
Figure 5. Correlation between current features and solar PV power output. 

From the correlation graph, it can be observed that the features with the highest cor-
relation to power output are hour and humidity. Additionally, a similar strong correlation 
between humidity and temperature is also evident. Following the identification of the re-
lationship between meteorological data and solar PV power output, the dataset was sub-
jected to machine learning models. The graph in Figure 6 presents the predicted values 
against the actual test data for solar PV power output estimations performed using linear 
regression, SVM, decision trees, random forest, and KNN algorithms. 

 
Figure 6. Predicted values against real test data. 

After obtaining the graph depicting predicted values corresponding to real test data, 
the performance of the models was quantified numerically. At this stage, metrics such as 

Figure 6. Predicted values against real test data.

After obtaining the graph depicting predicted values corresponding to real test data,
the performance of the models was quantified numerically. At this stage, metrics such
as MAE, MSE, RMSE, and R2 were employed as performance evaluation criteria. The
comparison of model performances based on these evaluation criteria is presented in
Table 2.

Table 2. Comparison of prediction models based on MAE, MSE, RMSE, and R2 evaluation criteria.

Model MAE MSE RMSE R2

Linear Regression 3.41 23.53 4.85 0.64
Linear Regression-index 2.24 2.74 1.66 1.35

SVM 2.76 21.25 4.60 0.67
SVM-index 1.81 2.47 1.57 1.29

Decision Trees 1.72 12.48 3.53 0.81
Decision Trees-index 1.13 1.45 1.20 1.07

Random Forest 1.52 8.57 2.92 0.87
Random Forest-index 1.00 1.00 1.00 1.00

KNN 2.15 13.48 3.67 0.79
KNN-index 1.41 1.57 1.25 1.10

According to the performance evaluation criteria presented in Table 2, it can be
deduced that the most successful prediction model across all domains is the random
forest, while the least performing prediction model is linear regression. Based on the MAE
evaluation criterion, the random forest algorithm exhibits approximately 13% less error
than the decision trees algorithm, which provides the closest result. The KNN algorithm
is the third one, and it has 41% more error than the random forest algorithm. The error
difference between the SVM, linear regression algorithms, and the random forest algorithm
is 1.81 times, and 2.24 times, respectively.

In terms of the MSE evaluation criterion, the random forest algorithm outperforms
the decision trees algorithm, which provides the closest result, by approximately 45%.
The KNN algorithm is the third one, and it has 57% more error than the random forest
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algorithm. The error difference between the SVM, linear regression algorithms, and the
random forest algorithm is 2.47 times, and 2.74 times, respectively.

Considering the RMSE evaluation criterion, the random forest algorithm possesses
about 20% less error than the decision trees algorithm, which provides the closest result.
The error difference between the KNN, SVM, and linear regression algorithms, and the
random forest algorithm is 25%, 57%, and 66%, respectively.

With regards to the R2 evaluation criterion, the random forest algorithm performs
about 7% better than the decision trees algorithm, which provides the closest result. The
difference in performance between the KNN, SVM, and linear regression algorithms, and
the random forest algorithm is 10%, 29%, and 35%, respectively.

According to the accuracy performance comparison of machine learning methods on
test data, the prediction model utilizing the random forest algorithm has yielded the best
result with an accuracy rate of 87%. When the prediction models using other algorithms
are ranked in terms of success, decision trees have an accuracy rate of 81%, KNN has 79%,
SVM has 67%, and linear regression has 64% accuracy rate.

5. Conclusions

In the first phase of this study, a reliable and cost-effective data monitoring system was
developed to enable the remote and real-time monitoring of solar PV energy systems. The
infrastructure of the IoT-based system consists of a data recording unit, a cloud system, a
web interface, and a mobile application. Data from the solar PV system can be monitored in-
dependently of location through a mobile application that can be installed on smartphones
or via the ThingSpeak platform. The distinctiveness of the proposed system at this point
lies in making solar PV systems and the weather parameters affecting them accessible in a
cost-effective manner through open-source software and mobile applications. In the second
phase of the study, prediction models were developed to determine the expected data for
comparison with the obtained real measurement data. This approach allows for the identi-
fication of potential system issues based on the difference between actual solar PV power
and expected solar PV power derived from existing meteorological data. Machine learning
methods including linear regression, SVM, decision trees, random forests, and KNN were
employed to develop prediction models based on measurement data. The performance of
these models was then numerically compared using performance metrics including MAE,
MSE, RMSE, and R2. Through the comparison conducted using these performance metrics,
the random forests algorithm emerged as the most successful model across all criteria. In
terms of accuracy performance on test data, the random forests algorithm achieved the
highest accuracy rate of 87%. Other algorithms ranked in descending order of success were
decision trees with 81%, KNN with 79%, SVM with 67%, and linear regression with 64%
accuracy rates. In conclusion, this study successfully presents a cost-effective solar PV
power monitoring system and a machine learning-based solar PV power predictor.

In future work, increasing the number of parameters in the dataset, experimenting
with different machine learning methods, and testing the developed system in large-scale
solar fields are planned.
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