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Abstract: Active distribution grids that contain energy sources (so-called distributed generation or
DG) are nowadays a reality. Besides the many benefits DGs bring to the distribution grid, some
challenges are associated with their integration. Since there are DGs now in the distribution grid, the
occurrence of islanding operation is possible. Since an islanding operation can be dangerous, it is
necessary to have an effective method to detect it. In the last decade, scientists have made a great
effort to develop and test various islanding detection methods (IDMs). Many approaches have been
tested, and the methods based on computational intelligence (CI) have shown great potential. Among
them, artificial neural networks (ANNs) gained most of the research attention. This paper focuses on
ANN application for islanding detection. It gives an exhaustive review of the ANN types used for
islanding detection, the types of input data, and their transformation to fit the ANNs. Furthermore,
various applications based on specific input data, preprocessing types, different learning algorithms,
real-time implementation, and various distribution models used for ANN are reviewed. This paper
investigates the potential of ANNs to enhance islanding detection accuracy, reduce non-detection
zone (NDZ), and contribute to an overall efficient detection method.

Keywords: artificial neural network; distribution grid; islanding detection; local methods;
distributed generation

1. Introduction

Significant changes are taking place in the electrical distribution network due to the
growing integration of DGs. While these innovations promise a more sustainable energy
infrastructure, they also introduce new challenges like the islanding operation (ID). One
of the challenges is the upgrading of traditional protection schemes in order to enable the
effective detection of the occurrence of the islanding operation. In many scientific articles,
numerous islanding detection methods (IDMs) are described and tested. The ever-growing
body of scientific articles has been systematized and analyzed in many review papers. The
work in [1] presents an early overview of islanding detection methods in systems with
photovoltaic power plants. It deals in detail with passive and active IDMs in networks
with photovoltaic inverters. A valuable review of central and remote (at the distributed
generator site) IDMs is presented in [2].

Most of the early developed methods detect the islanding operation by observing
changes in available measured quantities (voltage, frequency, active and reactive power, ro-
tor angle of the synchronous generator, etc.) during the duration of the islanding operation.
If the change in the mentioned quantities is high, the detection is easy and straightforward.
Otherwise, some methods fail to detect islanding operations correctly, and there is a large
zone of active and reactive power changes in which islanding operations cannot be detected
(so-called non-detection zone or NDZ). To reduce or eliminate the previously mentioned
shortcomings of IDMs, scientists are starting to use methods for signal processing and

Appl. Sci. 2023, 13, 13047. https://doi.org/10.3390/app132413047 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132413047
https://doi.org/10.3390/app132413047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3239-7618
https://orcid.org/0000-0002-7237-3565
https://doi.org/10.3390/app132413047
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132413047?type=check_update&version=1


Appl. Sci. 2023, 13, 13047 2 of 20

methods based on computer intelligence (CI). One of the first review papers that deals with
new signal processing procedures and methods based on computational intelligence is [3].
In [4], authors made a more detailed presentation of modern trends in the development
of IDM. Most authors [1–4] agree that artificial neural networks (ANNs) are a promising
tool for islanding detection applications and certainly one of the most investigated with a
large body of scientific literature published in the last decade. In particular, in [5], which
deals with review of different computational intelligence methods for ID, authors noted
that neural networks and decision trees are the most used methods. The accuracy of the
ANN-based method is high (according to [5], the accuracy can be as high as 98.19%). Also,
they are capable of islanding detection with high accuracy in multi-inverter systems [6],
they can deal with nonlinear systems, and they can also overcome the requirement of
threshold settings [7].

Since the authors of the previously published review papers [1–8] make a general
comparison of different islanding detection methods and do not present a detailed analysis
of the neural network application to islanding detection, the authors of this paper decided to
conduct a comprehensive review of ANN applications for the islanding detection problem.
This paper aims to make a literature review to answer the following questions regarding
the use of ANN for islanding detection:

1. How are ANNs integrated into islanding detection?
2. What types of input data are used for ANN?
3. How are the “raw” input data transformed and processed to make it suitable for

ANN?
4. What types of ANN architectures are used in islanding detection applications?
5. Which ANN learning algorithms are used for ID applications?

The structure of the paper is as follows. In Section 2, the islanding detection principles
are explained, and a general IDM description and classification are presented. Section 3
describes the general architecture of artificial neural networks and associated learning
algorithms. Analysis of the used input data and their transformation is described in
Section 4, while in Section 5, ANN architectures and learning algorithms are reviewed. In
the last section, types of the analyzed electrical grids and types of DGs involved in the
islanding operation are reviewed.

2. Islanding Detection Principles and Methods
2.1. Islanding Operation in Distribution Grids

Nowadays, there are three types of distribution grids: passive, active, and microgrid.
Figure 1 displays part of the passive, 10 kV distribution grid. The direction of electric
energy flow is from the transmission grid (where power plants are connected) through the
distribution grid to consumers. Assume that a fault has occurred on the 10 kV transmission
line connecting busbars W1 and W0 (the location of the fault is represented by the lightning
symbol in Figure 1). Then, the protective device will activate the CB6 switch, and the
faulted line will be switched off. Simultaneously, the local load (see Figure 1) will be
disconnected and left without electricity until the faulted line is repaired. In passive grids,
the occurrence of islanding operation is not possible.

If the DGs (i.e., a photovoltaic PV and a synchronous generator GEN) are connected
to bus W0, the passive grid becomes active—Figure 2. Bus W0 is now a point of common
coupling (PCC) between the DGs and the distribution grid. Let us assume the same event
as in the case of Figure 1, i.e., line fault and its disconnection. Even though the faulted
line is disconnected from the rest of the distribution network (via CB6), the DGs can still
supply the part of the network connected to the PCC and the faulted line. The protection
schemes and devices need to be updated to ensure the disconnection of the faulted line
(CB 7 needs to be installed and connected to the protection device). Such a situation is an
example of an islanding operation (or islanding), and in this case, islanding is unplanned
and dangerous since the faulted line is energized; workers who want to repair the line may
get hurt. Many scientific papers deal with protection coordination in distribution grids
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with DGs; some examples are [8,9]. However, when the faulted line is disconnected, part of
the grid connected to PCC (see red circle in Figure 2) is still an unplanned island. To ensure
the sustainability of the islanding operation within the grid island, the balance of active
and reactive power between generation and consumption needs to be maintained, which
requires regulation and flexibility of the DGs. Since the flexibility of some types of DG
(i.e., PV and wind) is limited, it can lead to voltage (magnitude and angle) and frequency
distortions [5]. Therefore, such an unplanned grid island must be quickly detected and
eliminated (by shutting down all DGs in the grid island), which imposes the need for fast
and efficient IDM.
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The possibility of the planned islanding operation is part of the microgrid definition,
so an additional device, such as an energy storage system, is needed (see Figure 3). When
planned islanding operation in a microgrid is present, local load needs to be supplied in
a reliable manner by the energy produced by DGs or by the energy stored in the energy
storage system. Although microgrids can operate in both grid-connected and island mode,
they mainly work in grid mode due to high costs. If an unplanned islanding operation of
the microgrid occurs (i.e., due to the faults), it needs to be detected quickly, so effective
IDM is also inevitable in the microgrid.
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Many authors [6,7,10,11] agree that quality IDM needs to satisfy several criteria con-
cerning detection time, accuracy, implementation cost, influence on power quality, etc.

There are many technical standards worldwide in which restrictions such as the
voltage range, frequency range, detection time, and quality factor are indicators for IDM [8].
Detection time differs from 0.2 s (defined in VDE 0126-1-1 [12]) to 2 s (defined in IEEE
1547 [13]). The main goal of all researchers is to create an IDM that can detect islanding as
soon as possible.

Regarding accuracy, IDM must reduce the non-detection zone (NDZ). The NDZ
represents the zone where the IDM cannot detect islanding (illustrated in Figure 4). The
accuracy of IDM is high when the NDZ is low and vice versa. Active (∆P) or reactive power
(∆Q) mismatches between the generation and the consumption in the islanded part of the
network can be used to evaluate NDZ. The oscillations in frequency or voltage following
the islanding event will not change enough to detect the islanding operation if the power
mismatches P and Q at PCC are too low.
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2.2. IDM Method Classification

IDM methods are generally classified into two distinct groups: remote and local
methods. Remote methods are based on islanding detection from a distant site (grid
operator/dispatcher-based), while local methods detect islanding based on the measure-
ment at the DG site or at the PCC site [3]. The general systematization of the IDMs is shown
in Figure 5.
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Remote IDM usually requires communications between the distribution network
management center and local DGs. The main advantage is that the accuracy of islanding
detection is high, but additional communication equipment can be costly. Some of the usu-
ally investigated remote methods are based on the supervisory control and data acquisition
systems (SCADA) [14], power line carrier communication [15], transfer trip method [16],
the signal produced by disconnect [17], etc.

On the other hand, local methods detect islanding operations based on locally available
devices and their measurements. In most cases, they do not require additional equipment
cost, but their disadvantage is lower accuracy than remote methods. Local IDMs are further
divided into three main groups: passive, active, and hybrid methods (Figure 5).

Passive local methods are based on local measurements of variables such as voltage,
frequency, active power change, reactive power change, etc. In the case of an island-
ing operation, the above-mentioned variables will be changed (some to a lesser extent
and some to a greater extent), and in the case that observed variables change beyond or
below the predefined threshold value, the passive method will detect islanding. Since
they rely on simple variable changes for detecting islanding conditions, they are easy
to implement, and they are not expensive. Commonly observed variables are voltage
(voltage unbalance [18], voltage harmonics [19], over/under voltage [20], rate of change of
voltage—ROCOV [20], phase jump detection [19]), frequency (over/under frequency and
rate of change of frequency—ROCOF [21]), and active or reactive power (rate of change
of power—ROCOP [20]). On the other hand, defining appropriate variable thresholds
and large NDZ are disadvantages of passive methods. A large NDZ occurs when local
generation and consumption (in the islanded part of the network) are similar. Then, the
change in the observed variables in the case of islanding is too low, and the passive method
can fail in detecting the islanding operation.

To overcome the limitations of passive methods, researchers began to use active
methods. Active methods operate on the external disturbance signal injection principle, and
islanding detection is based on the system response. Although these methods are slower
than passive methods, they are more accurate and have lower NDZ. As disadvantages,
active methods interfere with power quality, as the signal injection can distort the voltage
waveform, which affects harmonic distortion. Some of the commonly used active methods
are impedance measurements [21], active frequency drift [22], active frequency drift with
positive feedback [23], frequency jump [24], Sandia frequency shift [24], Sandia voltage
shift [24], virtual capacitor/inductor [25], variation in active and reactive power [26], and
high-frequency signal injection [27].

To combine the benefits of both passive (fast detection and simple implementation)
and active (small NDZ) methods and to alleviate their disadvantages, researchers created
hybrid methods that engage both passive and active detection principles. The foundation
of hybrid approaches is the presence of both active and passive components. Island
detection is initially performed by the passive component. If successful, the procedure
stops, and the islanding operation is detected quickly. If the passive component is unable to
detect islanding, the active component is activated and injects signals to perform islanding
detection. Thus, the additional signal is injected only when the passive component is
inefficient. Good examples of hybridization between passive and active methods (see
Figure 5) are voltage unbalance and frequency setpoint [28], Sandia frequency shift and
reactive power shift [29], voltage and active power shift [30], voltage and reactive power
shift [31], etc.

Based on the previously published review papers [3,6,7,10] in which detailed analysis
and comparison of different IDMs are performed, the conclusion is that passive methods
gain great attention, and there is a plethora of research papers that deal with improvements
of passive methods. Passive methods can be further classified (see Figure 5) into direct pas-
sive methods, signal processing (SP), and computational intelligence (CI) passive methods.
Direct passive methods simply check the change in variable signal without changing and
processing the signal itself. They show a rather high NDZ, and to improve the accuracy,
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researchers start processing the input signal and extract the appropriate features that make
up the essence of the SP passive methods. It is the passive method form with the capability
for hidden feature extraction of any signal, which is an added advantage. Commonly used
SP methods are Fourier transform [32], Stockwell transform [33], wavelet transform [34],
Hilbert–Huang transform [35], matrix pencil method [36], etc. Although the accuracy of
islanding operation detection is improved by the SP approaches, the detection based on the
extraction signal feature can be hard in more complicated network structures. Therefore,
the next step is to add computational intelligence (CI) methods already proven in data
classification. Instead of checking whether some values are below or above the prespecified
threshold, the signal is sent to the intelligent classifier, trained to detect islanding operation.
Before an intelligent classifier is applied, the signal can be processed and appropriate
features extracted. In that case, it can be said that signal processing methods and computa-
tional intelligence-based methods are hybridized (see Figure 5). Some of the computational
intelligence methods used in islanding detection are artificial neural network (ANN) [37],
fuzzy logic [38], adaptive neuro-fuzzy inference system (ANFIS) [39], decision tree [40],
probabilistic neural network (PNN) [41], support vector machine (SVM) [42], and deep
learning [43].

3. Artificial Neural Networks
3.1. Artificial Neural Network Performance for Islanding Detection

As noted in the previous section, the IDM should be as fast and precise as possible and
the non-detection zone should be as small as possible. Also, the method should be simple to
implement in existing equipment (protection systems) with as little additional investment
as possible. Regarding the criteria of cost, implementation complexity, and minimal impact
on power quality, passive islanding detection methods have an advantage over active ones.
Direct passive methods are easy to use and usually do not require additional investments in
equipment; however, they have lower accuracy and a large non-detection zone. Setting the
appropriate detection threshold for direct passive methods represents a special challenge
on which the accuracy of the method depends. In some situations (especially when, in the
grid island, the energy that is produced is almost or completely equal to the energy that
is consumed), the changes in electrical quantities during islanding operation are minimal
and will not exceed the set threshold, and therefore, IDM will not detect the islanding
operation properly. In order to improve the performance of the direct passive methods
(especially the threshold-setting problem), researchers have started to modify input signals
using signal processing methods. The goal is to find some hidden features of the signal
that can improve islanding detection. Further improvement is carried out by adding an
intelligent classifier that will based on the extracted features to classify the occurrence of
the islanding operation. Further improvement is accomplished by adding an intelligent
classifier that will based on the extracted features to classify the occurrence of the islanding
operation. According to [5], commonly used intelligent classifiers are ANNs, Fuzzy Logic
Control (FLC), Adaptive Neuro-fuzzy Inference System (ANFIS), Support Vector Machine
(SVM), and Decision Tree (DT). As for accuracy, according to [5], ANN-based methods
show high accuracy (up to 98.19%), although ANFIS and DT-based methods show 100%
accuracy in some applications [5]. Another advantage of ANN-based methods is their
wide application possibilities to different kinds of real-life situations. They are capable of
handling situations with DGs based on synchronous generators as well as multi-inverter
DGs (photovoltaics) [6]. Since the ANN makes a decision based on the data that were
used for training, setting the activation threshold is no longer necessary, but choosing the
appropriate dataset for training is crucial. A review of the literature reveals that the ANN
as a classifier for islanding detection, despite many advantages, also has its drawbacks.
According to the literature [6,7], authors discuss the quality of the input data and the
potential shortcomings of the extensive training with huge and irrelevant data. This all can
lead to bad performance of the ANN.
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3.2. Application of Artificial Neural Network to Islanding Detection

The step-by-step islanding detection procedure adopted in ANN is depicted in Figure 6.
In general, the methodology of applying neural networks in the detection of islanding
operations can be broken down into three phases, as shown in Figure 6. In the first phase,
which represents the training of the selected neural network, the input data first go through
transformation and reduction with the various mathematical transformations, which are
described in more detail in Section 4.2. Transformed data are then divided into testing and
training datasets. The most common ratio of training and testing is 66/33 [44]. The training
dataset then goes to the neural network which is learned to detect islanding operation. The
second phase serves as a testing of a trained neural network. The testing dataset is sent
to the neural network and the decision (islanding operation or not) is checked in order
to evaluate the neural network accuracy. In the third phase, after the neural network is
tested, implementation of the developed method to a real-world system follows. Most of
the reviewed papers failed to realize this phase and only performed the first two. Some
examples of successfully implemented islanding detection methods in practice are reviewed
in Section 6.3.
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4. Classification and Analysis of the Input Data
4.1. Types and Sources of Input Data

Input data commonly refer to physical values such as voltage amplitude, frequency,
active power, current, etc. Input data related to physical values are most often taken locally,
near DG or on the PCC. Figure 7 shows the input data used for islanding detection using
ANN. It also shows that the number and type of input data are determined based on
one’s knowledge and experience. Some methods and authors use only one type of input
data, mostly voltage amplitude. The other authors use several types of input data, most
of which are voltage amplitude and current. The introduction of rotor stability into the
detection of islanding operation by monitoring the rotor angle [44,45] should be specially
highlighted, with the help of which it is much easier to conclude whether the generator is
in synchronism with the grid or has gone into islanding.
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Different types of input data with associate research papers are shown in Table 1.

Table 1. Review of input data types and associated literature.

Input data Reference

voltage amplitude [46–56]

current [57]

rotor angle [44,45]

frequency [58]

active power [59]

voltage and current amplitude [45,60–65]

voltage, current and frequency [66]

voltage, current, frequency and power factor [67]

voltage, frequency and active power [68]

voltage, current and rotor angle [45]

voltage amplitude and frequency [69]

voltage, frequency, current, active and reactive
power [70–73]

voltage, frequency, active and reactive power [74]

frequency and active power [75]

voltage, active and reactive power [76]

active and reactive power [77,78]
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The sources of input data used for training and testing the IDMs are extracted into
data obtained by measurement and downloaded from relays that can record data or fault
recorders, or they are extracted in dynamic analysis real-time simulation using programs
such as PSCAD-EMTDC, DIgSILENT, ATP, PSIM, and MATLAB. Table 2 shows the sources
of input data, and most papers use measurements as a source of the input data.

Table 2. Sources of input data.

Measurements Simulation

Papers Software Papers

[49–70]

PSCAD-EMTDC [64,74,76,79,80]

DIgSILENT [49–51,81]

ATP [52]

PSIM [53]

MATLAB [54,59,78,82–91]

No name [44,65,69,72,73,92]

4.2. Transformation and Reduction in Input Data

Data processing essentially includes data preparation in an extensive sense, i.e., data
cleaning, supplementing, extracting attributes, transformation and reduction, and many
other less important actions. The speed of the next ANN layer is faster because the input
data are smaller than when there is no processing. The flaw of processing is the slower
operation of the input data layer due to the action. Table 3 shows different transformation
methods in input data processing that use complex mathematics, the most common of
which is the discrete wavelet transformation (DWT). The authors of the most recent papers
use input data processing. The transformation and reduction in input data aim to present
the input data as more compact as an algorithm that is sophisticated and computationally
demanding and calculates the problem faster and easier. A certain share of information
is lost during data reduction and transformation. The focus is on data reduction and
transformation using a transformation, although the reduction process can be carried out
in several different ways. What the transformation does is that it turns one column of data
into several columns of shorter length and less complexity, i.e., it makes more than one
dimension, which is the case with DWT. The essence of the transformation is dual, i.e., to
reduce the complexity and increase the transferability of data.

Table 3. Transformation of input data.

Transform Papers

Discrete wavelet transform (DWT) [45,47,49,54,55,59,65,66,72,75,80,83,88–97]

Wavelet transform (WT) [48,59,62,73,78,87,89,98,99]

S-transform (ST) [41,47,52,54,100]

Wavelet packet transform (WPT) [77]

Fast Fourier transform (FFT) [58]

Discrete Fourier transform (DFT) [44,65,85,101]

Slantlet transform (SLT) [41,54,84]

Hilbert transform (HT) [82,84]

Continuous wavelet transform (CWT) [56]

Tunable Q wavelet transform (TQWT) [69]

Phase space technique (PST) [49]
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Fourier transformation provides a representation of a signal in the frequency domain.
This is useful for analyzing the frequency components of a signal, which is essential for
understanding the characteristics of the input data. Fourier transformation is widely
used to analyze the non-stationary signal, but computational time can be slow due to
the complexity. The authors of [61] used DFT to transform the data in order to speed
up standard FT. The symmetrical components of the second harmonic of voltage and
current signals were used as input to MPNN. The second harmonics of voltage and current
signals are almost zero under normal conditions, whereas in islanding, the symmetrical
components of the second harmonic of voltage and current signals have remarkable values.
The wavelet transform provides a representation of a signal in the time and frequency
domain. Wavelet transformation has a high computational speed due to less complexity
than Fourier transformation. Batch processing, high-frequency integration, and being
heavily affected by noise are the drawbacks. The authors of [54] used DWT of the currents
and voltages to capture unique signatures that can be used to reveal the cause of the
corresponding transient signals. The transients generated during the islanding event
contain special specific information that can be used to distinguish the islanding operation
from normal operation. The DWT is based on non-stationary phenomena studies and has
proven to be of value in the characterization of transient signals.

5. Artificial Neural Network Architectures and Learning Algorithms
5.1. Types of Artificial Neural Networks

During the literature review, a division of different types of ANNs applied as IDM in
distribution networks was carried out. Table 4 shows the types of neural networks used in
islanding detection. Depending on the method of solving the identification problem, types
of neural networks intended to solve these types of problems were used. Depending on
the complexity of the islanding problem, the input data, the type of DG, and the author’s
subjective option, one of the ANN types shown in Table 4 is selected for IDM.

Table 4. Types of artificial neural networks.

Type of Artificial Neural Network Papers

Multilayer perceptron neural network (MPNN) [46–49,52,58,60,61,63,65,66,68–70,74–
76,78,79,82,83,86,87,90–92,95,97–99,102–104]

Probabilistic neural network (PNN) [41,50,55,64,65,77,84,96,100]

Adaptive neuro-fuzzy information system
(ANFIS) [47,59,62,72,73,75,78,97]

Self-organizing map (SOM) neural network [44,103]

CMAC neural network (CMACNN) [67]

Extreme learning machine (ELM) [50,90,95,98]

Extension neural network type-2 (ENN-2) [78]

Recurrent neural network (RNN) [81,85]

Figure 8 shows the chart of different types of ANN over a selected time. Authors
continuously use MPNN over an analyzed time period because they are simple, with very
low NDZ and high accuracy. SOM for IDM was used for a very short time and in fewer
articles, where it was realized that this type was unsuitable for IDM. PNN has appeared
in papers over the years but in much smaller numbers than MPNN because they are a
more complex type. ANFIS, just like PNN, has appeared over the years, but in fewer
numbers than MPNN and higher than PNN because it is a more complex type, because its
architecture includes a fuzzy layer. The literature review leads to the conclusion that the
most common type of ANN that is used as an IDM is MPNN.
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5.2. Types of Learning Algorithms

Table 5 shows the types of learning algorithms used in ANNs for islanding detection.
Depending on which type of ANN is used for islanding detection, it has a corresponding
learning algorithm.

Table 5. Types of learning algorithm.

Type of Learning Algorithm Papers

Back-propagation [46–49,52,58,60,61,63,65,66,68–70,74–
76,78,79,82,83,86,87,90–92,95,97–99,102–104]

Boltzmann learning algorithm [81,85]

Bayesian function [41,55,64,77,96]

Differential evolution [41,51,78,84]

Fuzzy logic [59,62,72,73,75,78,92,97]

Vector quantization [44,45]

Machine learning [50,63,67,88,98]

Optimized learning algorithm [65,76,82,83,95]

5.3. Discussion of Input Data, Types of Artificial Neural Networks, and Types of
Learning Algorithms

The most common type of ANN in islanding detection is MPNN—Table 5 and Figure 8.
In the literature review, MPNN is used continuously by the authors. The reason for this
is the speed of detection and adequate accuracy of the method. Authors of [84,99] claim
that MLP’s main advantages are flexibility and capability of capturing system nonlinearity.
The other most common types of ANN are PNN and ANFIS. PNNs generate accurately
predicted target probability output and can be more accurate than MPNNs. ANFIS’s
advantage over MPNN is adaptation capability and rapid learning capacity. ANFIS takes
more time to process detection due to the fuzzy layer than MPNN and PNN [53,62]. The
advantage of ANFIS is high accuracy and very small NDZ. Also, in [55], RNN is used,
which is a novelty in island detection. It has proven effective, and the authors compare it
with SOM and MPNN.

The back-propagation learning algorithm is the most widely used learning algorithm
for MPNN. The back-propagation learning algorithm is a widely used and well-established
algorithm for training MPNN, effective in handling complex and non-linear relationships
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in data, but may suffer from slow convergence [87]. The Boltzmann learning algorithm
is suitable for training Boltzmann machines (a type of recurrent neural network) and
it can capture dependencies between variables over time but it has low computational
efficiency [85].

PNNs can learn different algorithms, the most common of which are based on Bayesian
function, differential evolution, etc. ANFIS is a combination of two learning algorithms:
fuzzy-logic and back-propagation, from which they derive the best advantages of both
algorithms. The learning algorithm can be optimized where the amount of input data is
reduced, and the learning process is improved. The best example of learning optimization is
grey wolf and PSO. The above algorithms are supervised learning algorithms, while vector
quantization is an example of an unsupervised learning algorithm. Vector quantization is
based on competitive learning, so it is related to the SOM.

As shown in Figure 7, the input data in ANN are diverse. By reviewing the literature,
most authors often use voltage amplitude, with or without more quantities like current,
power, etc. Input data are taken from the relays or by dynamic analysis on a real-time
simulator. The amount of input data is often huge, so it is transformed by reduction, most
commonly by DWT. Figure 9 shows a chart of ANN types with the associated type of
transformation of input data.
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6. Types of DGs and Network Application
6.1. Types of DGs

DGs such as synchronous generators, PVs, and wind power plants with asynchronous
generators are the most common types that appear in the islanding. Figure 10 shows a
chart of three types of DG that appear in the islanding detection. The largest representation
among the literature review are PVs, for which islanding is detected, followed by the classic
synchronous generator, whose turbine is driven by steam, and the asynchronous generator
driven by wind. The reason for the large presence of PVs in solving the problem of islanding
detection is that it is possible to implement it at a low voltage level (distribution), with low
power and low costs of equipment, installation, and maintenance, whereas in the case of
plants with synchronous and asynchronous generators, it requires considerable investment,
and at the same time, they are connected to a medium- or high-voltage network, so it is
expected that there will be fewer of them in research.



Appl. Sci. 2023, 13, 13047 14 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21 
 

 
Figure 10. Types of DGs. 

6.2. Types of Network Application 
As explained in detail in Section 2, islanding is possible in active networks and mi-

crogrids. Figure 11 shows the applications of developed ANN-based IDMs to active dis-
tribution networks or microgrids. By reviewing the literature, Figure 11 shows that most 
authors deal with the problems of islanding detection using ANN in an active distribution 
grid, while a small number of articles are classified in the microgrid. The reason for this 
might be that, in an electric distribution grid, active distribution networks are more com-
mon than microgrids. Figure 8 also shows that the first papers on the islanding detection 
topic of DGs using ANN appeared in 2009 and are still relevant in 2022. The first papers 
on the islanding detection topic in microgrids using ANN appeared in 2015 and are still 
relevant. 

 
Figure 11. Types of network applications. 

In the case of an active distribution network, islanding operation is generally avoided 
and in the event of its occurrence, protection devices should disconnect down-distributed 
production within the stipulated time (depending on the applied standard, from a few 
hundred milliseconds to 2 s). In the case of a microgrid, there are two possible scenarios. 
One is when islanding can be sustained and the microgrid continues to operate in island-
ing mode and another one is when islanding is unwanted and the microgrid needs to be 
disconnected. In both scenarios, quick and effective IDM is needed to provide accurate 
information to the microgrid control unit. Structurally, there is no significant difference 
between the methods that are developed for active distribution grids or microgrids. The 
same ANN architecture and the same input data can be used in both cases. In some cases, 
methods that are applied to microgrids need to be quicker than those applied to active 
distribution grids. 

Figure 10. Types of DGs.

6.2. Types of Network Application

As explained in detail in Section 2, islanding is possible in active networks and
microgrids. Figure 11 shows the applications of developed ANN-based IDMs to active
distribution networks or microgrids. By reviewing the literature, Figure 11 shows that most
authors deal with the problems of islanding detection using ANN in an active distribution
grid, while a small number of articles are classified in the microgrid. The reason for this
might be that, in an electric distribution grid, active distribution networks are more common
than microgrids. Figure 8 also shows that the first papers on the islanding detection topic
of DGs using ANN appeared in 2009 and are still relevant in 2022. The first papers on the
islanding detection topic in microgrids using ANN appeared in 2015 and are still relevant.
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In the case of an active distribution network, islanding operation is generally avoided
and in the event of its occurrence, protection devices should disconnect down-distributed
production within the stipulated time (depending on the applied standard, from a few
hundred milliseconds to 2 s). In the case of a microgrid, there are two possible scenarios.
One is when islanding can be sustained and the microgrid continues to operate in islanding
mode and another one is when islanding is unwanted and the microgrid needs to be
disconnected. In both scenarios, quick and effective IDM is needed to provide accurate
information to the microgrid control unit. Structurally, there is no significant difference
between the methods that are developed for active distribution grids or microgrids. The
same ANN architecture and the same input data can be used in both cases. In some cases,
methods that are applied to microgrids need to be quicker than those applied to active
distribution grids.



Appl. Sci. 2023, 13, 13047 15 of 20

6.3. Practical Implementation of ANN-Based IDMs

Research in the field of islanding detection in the distribution system using neural
networks goes in two directions. The first direction is the conceptual development and
testing of the off-line model in order to obtain the best synergy between the selection
of input data, data preparation, validation of these data with a neural network, and the
obtained results, and this constitutes the majority of papers currently in this scientific field.
The second direction is the online implementation of methods in the real power system,
where there are fewer published papers [62,96]. The aforementioned papers present online
applications for the islanding detection of photovoltaic systems.

The authors in [62] presented an active online method for islanding detection using
a fuzzy neural network. The method is integrated into an inverter control unit that has
the ability to function with fuzzy information to detect the islanding operation of the
photovoltaic system. Data transformation was carried out using wavelet transform (WT) to
reduce the data and gain the speed of the algorithm. A passive online method for islanding
detection using a neural network is presented in [47]. The method is integrated into the
protection device to avoid setting the threshold of the protection device and to perform
intelligent islanding detection of the photovoltaic system. Data preparation was carried out
using wavelet packet transform (WPT) in order to reduce data and increase the response of
the protection device.

There are a certain number of obstacles that should be taken into account when
implementing the method in a real power system with distributed generation (online).
The first obstacle is that the installed protective (control) equipment has certain inputs as
physical variables that are followed by certain outputs that act on precisely specified circuit
breakers, and with that, we are limited in the choice of input variables that feed the method.

7. Conclusions

This paper performs a literature review on the application of ANN for distribution
grids for islanding detection. Through this review paper, various types of different ANNs
have been addressed. Researchers mostly used multilayer perceptron neural networks
(MPNNs) and ANFIS because they show good performance in relation to their complexity.
Also, in order to boost accuracy and decrease the non-detection zone, almost all the new
papers use data processing in which transformation and reduction in the raw data occur.
Although many different types of transformation are tested, the dominance of the wavelet-
based method is evident as well as the trend of including transformations related to the
power quality (Fourier-based).

Due to the growing connection of DGs to the distribution grid worldwide, research
interest in developing efficient IDMs is still high. Generally, most of the methods are devel-
oped for application in active distribution grids, while fewer are developed for microgrid
applications, which opens future research potential in light of microgrid development.
Although the subject review shows that the application of neural networks to the detection
of islanding operation is a well-researched area with an abundance of published scientific
papers, the potential for further research and improvement certainly exists in the area
of microgrids.
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K.F.; investigation, K.Č.; resources, Z.K.; data curation, S.K.; writing—original draft preparation, K.Č.
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Abbreviations

DG Distributed Generation
ANN Artificial Neural Network
IDM Islanding Detection Method
CI Computational Intelligence
NDZ Non-Detection Zone
ID Islanding detection
CB Circuit Breaker
PV Photovoltaic
PCC Point of Common Coupling
ROCOV Rate of Change of Voltage
ROCOF Rate of Change of Frequency
ROCOP Rate of Change of Power
SP Signal Processing
ANFIS Adaptive Neuro-Fuzzy Inference System
PNN Probabilistic Neural Network
SVM Support Vector Machine
NN Neural Network
FFNN Feed-Forward Neural Network
RNN Recurrent Neural Network
MPNN Multilayer Perceptron Neural Network
SOM Self-Organizing Map Neural Network
ELM Extreme Learning Machine
ENN-2 Extension Neural Network Type-2
CMACNN CMAC Neural Network
DWT Discrete Wavelet Transform
WT Wavelet Transform
ST S-Transform
WPT Wavelet Packet Transform
FFT Fast Fourier Transform
DFT Discrete Fourier Transform
SLT Slantlet Transform
HT Hilbert Transform
CWT Continuous Wavelet Transform
TQWT Tunable Q Wavelet Transform
PST Phase Space Technique
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