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Abstract: The establishment of a three-dimensional velocity field is an essential step in seismic
exploration, playing a crucial role in understanding complex underground geological structures.
Accurate 3D velocity fields are significant for seismic imaging, observation system design, precise
positioning of underground geological targets, structural interpretation, and reservoir prediction.
Therefore, obtaining an accurate 3D velocity field is a focus and challenge in this field of study. To
achieve intelligent interpolation of the 3D velocity field more accurately, we have built a network
model based on the attention mechanism, JointA 3DUnet. Based on the traditional U-Net, we
have added triple attention blocks and channel attention blocks to enhance dimension information
interaction, while adapting to the different changes of geoscience data in horizontal and vertical
directions. Moreover, the network also incorporates dilated convolution to enlarge the receptive
field. During the training process, we introduced transfer learning to further enhance the network’s
performance for interpolation tasks. At the same time, our method is a deep learning interpolation
algorithm based on an unsupervised model. It does not require a training set and learns information
solely from the input data, automatically interpolating the missing velocity data at the missing
positions. We tested our method on both synthetic and real data. The results show that, compared
with traditional intelligent interpolation methods, our approach can effectively interpolate the three-
dimensional velocity field. The SNR increased to 36.22 dB, and the pointwise relative error decreased
to 0.89%.

Keywords: three-dimensional interpolation; attention mechanism; transfer learning; dilated convolution

1. Introduction

The establishment of a three-dimensional velocity field is a significant step in seismic
exploration [1], and essential for understanding complex underground geological structures.
An accurate velocity model is vital for most seismic imaging methods. The precise 3D
velocity field model is a prerequisite for reverse time migration and other seismic imaging
technologies. Moreover, it is crucial for observation system design, precise positioning of
underground geological target bodies, structural interpretation, and reservoir prediction.
The accuracy of velocity directly affects all aspects of seismic exploration and the final
results. However, due to economic and natural constraints, only a small amount of real data
can be obtained [2], and the complete 3D velocity field is often established by interpolating
sparse data.

Traditional three-dimensional spatial interpolation methods rely on inferring the
relationships between known data points to generate estimates for the entire spatial domain.
For example, R. Dumas [3] and others successfully reconstructed soft-tissue pseudoshadow
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data using three-dimensional linear interpolation methods, providing additional geometric
information helpful for subsequent medical research. Qinghang He [4] and others applied
inverse distance weighting (IDW) to three-dimensional fluorescence spectroscopy data
interpolation, expressing more details of the fluorescence spectrum. J. Guo [5] and others
applied three-dimensional spline interpolation to transmissivity estimation in the South
China Sea, obtaining reasonable and accurate results. In the field of Earth Sciences, Ray
Abma and Nurul Kabir [6] and others used the convex set projection (POCS) algorithm
of Fourier transform as a simple iterative method for interpolating irregular filling grids
of seismic data, producing high-quality results. Parisa Bagheripour [7] and others used
the ordinary Kriging method to double the resolution of nuclear magnetic resonance
(NMR) well logging data, enabling more accurate predictions of the free fluid porosity and
permeability of carbonate reservoir rocks in the South Pars gas field, facilitating a better
understanding of the reservoir. Ilozobhie A. J. [8] and others used Kriging and co-Kriging
methods to analyze well logging data from five oil wells, estimating the porosity in the
Bornu Basin area of northeastern Nigeria, laying the foundation for subsequent exploration
strategies. Traditional interpolation methods usually rely on mathematical functions for
fitting or interpolation functions for data completion, which may not effectively capture
complex geological or geographical features in some scenarios, especially when dealing
with the nonlinearity of real underground scenarios, such as heterogeneous underground
media or terrain undulations. Therefore, more effective techniques are often needed for
three-dimensional spatial interpolation.

As the demand continues to grow, traditional 3D interpolation methods are gradually
showing their limitations when facing complex, large-scale, or high-uncertainty data.
Under such circumstances, introducing deep learning methods brings new possibilities
for 3D interpolation. The application of three-dimensional interpolation technology is
also used in medical imaging [9–14], hydrological analysis [15], atmospheric sciences [16],
hydrodynamics [17], virtual reality [18], and other fields. Mikhailiuk A et al. [19] first
achieved the restoration of the full picture of seismic data from 20% of actual data through
a deep autoencoder. Wang G [20], Liu Z [21], Zhao T [22], Fisher P F [23], and others
have also used three-dimensional interpolation methods to carry out related work in the
field of geoscience. Araya Polo [24] and others used deep neural network (DNN) and
feature extraction steps to interpolate and establish velocity models from seismic trace sets,
reducing computational costs. Wang et al. [25] are dedicated to solving the same problem,
using an improved fully convolutional network (FCN) [26] with fewer parameters, thus
more efficient than DNN. Kazei et al. [27] used a large synthetic dataset and established
velocity models directly from seismic trace sets interpolation based on the VGG (Visual
Geometry Group) [28] network. These deep learning 3D interpolation methods typically
rely on standard convolution operations with fixed kernel sizes and limited receptive
fields, meaning the model can only capture local geological features and is unable to
understand global spatial relationships effectively, presenting limitations for handling
large-scale geological data.

Most of the current deep learning interpolation methods are based on the training of
large datasets or specialized training datasets, which is contrary to the reality of interpo-
lation tasks. In real scenarios, the acquisition of velocity field data will consume a great
amount of manpower and financial resources and is easily hindered by natural conditions,
making the data very sparse [29]. Secondly, the network finds it difficult to transfer in
the face of different underground features in various scenarios. More importantly, some
methods are based on two-dimensional spatial processing, which does not conform to the
three-dimensional features of underground data, and will also lose some inter-dimensional
related information. For this reason, we have built a 3D velocity field intelligent interpo-
lation method based on a hybrid triple attention mechanism, the JointA 3DUnet network
model. It selectively enhances information exchange between dimensions by introducing
triple and channel attention mechanisms based on the traditional U-Net structure. In
addition, dilated convolution is introduced to increase the receptive field of the convolution
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kernel. Through transfer learning, we have enhanced the performance of the algorithm
in interpolation tasks. It is worth noting that our method operates in an unsupervised
mode, learning only from input data, and can effectively interpolate missing velocity field
data. We have verified our method using synthetic and real data. The JointA 3DUnet
network model demonstrates superiority in 3D velocity field interpolation, showing better
performance compared with traditional intelligent interpolation methods.

2. Materials and Methods

In this section, we will provide a detailed introduction to our intelligent interpolation
method, including the network architecture we use, detailed information about the related
attention modules, and the training method of the network.

2.1. Network Architecture

The three-dimensional velocity field interpolation of geoscientific data is different
from three-dimensional spatial interpolation in other fields due to the multidimensional
correlation, irregular spatial distribution, and the large-scale nature of the interpolated data
in geoscientific datasets. Geoscientific data typically involve multiple dimensions with
complex interrelationships among them. Additionally, the irregularity in the horizontal
and vertical distribution of geoscientific data, caused by geological structures and features,
implies that the velocity exhibits inconsistent variations horizontally and vertically.

The U-Net [30], as a type of encoder–decoder structure, was initially applied in the
medical image segmentation domain. Due to its outstanding performance, it was later
extended to various fields such as semantic segmentation, remote sensing image processing,
fault detection, data interpolation, and more, boasting a wide range of applications. To
realize the interpolation of geoscience-related three-dimensional velocity fields, we intro-
duced a triple attention mechanism combined with a channel attention mechanism, as
shown in Figure 1. By adding the TA Block and CA Block attention modules, based on
the U-Net framework, the two mechanisms are interlinked to allocate weights dynami-
cally to information from different dimensions. This enables the network to understand
the relationships between various dimensions better. Furthermore, before interpolating
geoscience data, the distribution is irregular, and, after interpolation, it typically exhibits
large scale. Therefore, performing three-dimensional interpolation requires not only effi-
cient computational and storage resources but also adjustments to the network training
strategy to enhance processing efficiency and accuracy. In this paper, we update network
parameters using a transfer learning training method, effectively addressing the challenges
of large-scale and unevenly distributed geoscience data. By dividing geoscience data into
multiple blocks or subsets and prioritizing training on areas with dense data points, the
inaccuracies in training sparse data regions are reduced, making the model easier to handle.

Figure 1. Joint attention mechanism architecture diagram.

TA Block: in extracting feature maps from geoscience data using deep learning models,
to establish weight relationships between different dimensions explicitly and focus effec-
tively on the connection between different dimensions in the data, we introduce a triple
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attention mechanism. Through the replication and rotation of data, we realize attention
interaction between inline, xline, and depth dimensions, making information interaction
between different dimensions more compact, and enhancing the model’s understanding
and expression of spatial information. The architecture of the TA Block will be detailed in
Section 2.2.1.

CA Block: during the interaction among inline, xline, and depth dimensions, we inter-
act two dimensions at a time, resulting in three joint channels: inline–xline, inline–depth,
and xline–depth. To conform to the irregular lateral and longitudinal distribution of geo-
science data more, emphasizing inline–xline attention while weakening inline-depth and
xline–depth attention, we introduce the channel attention mechanism. Through the squeeze
and excitation modules, we learn the weight of each joint channel, allowing the model
to adapt better to the differences and correlations between different channel data. The
architecture of the CA Block will be detailed in Section 2.2.2.

2.2. Joint Attention Mechanism

In our network architecture, we place particular emphasis on the correlations among
different dimensions and the inconsistency in the horizontal and vertical variations of
geoscientific data. Traditional deep learning methods often overlook these interactions and
data characteristics among dimensions, leading to insufficient feature extraction and lower
accuracy when dealing with multidimensional geoscientific data. Attention mechanisms,
on the other hand, can effectively overcome this limitation. There has been substantial
research on convolutional attention mechanisms [31–34], and, in this paper, we introduce
the combined attention mechanism consisting of the TA Block and CA Block.

2.2.1. TA Block

The three-dimensional velocity field data is composed of inline, xline, and depth di-
mensions. Effectively extracting key information from these three dimensions and allowing
interactions between each dimension are crucial for interpolation tasks. Therefore, we
introduce a triple attention mechanism [35]. This mechanism aims to realize the interaction
between the three dimensions, namely the H, C, and W dimensions. It is implemented
through rotation and parallel computing without reducing the data dimensions. Each
branch first rotates a C × H × W input tensor by 90°, changing its shape to W × H × C.
Then, through a pooling module, it is reduced to 2 × H × C, and then passes through a
convolution layer and batch normalization layer, ultimately becoming a 1 × H × C inter-
mediate representation. This intermediate representation generates an attention weight
representation through a sigmoid activation layer, used for weighting the rotated input vec-
tor. Finally, the weighted vector is rotated back to its original direction. The pooling module
is responsible for reducing the size of one dimension of the tensor to 2 by average-pooling
and max-pooling, and then concatenating them.

Our constructed TA Block, as shown in Figure 2, utilizes the triple attention mechanism
to establish connections between the inline, xline, and depth dimensions, enhancing the
network model’s extraction of spatial information and better integrating underground
geological structural features. In Figure 2, taking the first branch as an example, a copy
of the input is first made, and then the copied data are rotated 90 degrees along the
depth direction. The rotated data are then divided into two branches. The first branch
performs global and average pooling in the inline direction, then extracts features through
a 7 × 7 convolution, and passes the extracted features through a sigmoid layer to become
attention weight values. Multiplying the attention weight values with the rotated data
generates attention for the depth and xline dimensions, allowing interaction between these
two dimensions.

The remaining two branches follow the same approach, but each is rotated 90 degrees
along the “inline” and “xline” directions before subsequent operations. This completes the
joint processing among the three dimensions, namely, our “inline–xline”, “inline–depth”,
and “xline–depth” joint channels. Next, the outputs of these three joint channels are fed
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into the CA Block, where weights are learned for each channel individually. These weights
are then used for weighted summation, completing end-to-end triple attention weighting.
This enables attention interaction between every pair of dimensions, effectively extracting
three-dimensional information from the spatial data.

Figure 2. TA Block.

2.2.2. CA Block

In the TA Block, we calculate the attention weights between dimensions pairwise,
involving three joint channels: inline–xline, inline–depth, and xline–depth. However,
the patterns of changes in the horizontal and vertical directions in geoscience data are
constrained by geological structures and features, and are not the same.This is because
the “inline” and “xline” dimensions correspond to the planar distribution of geological
structures, while the “depth” dimension corresponds to the temporal geological changes
in geological ages. Therefore, the network needs to differentiate its focus on the three
joint channels. To address this, we introduce a channel attention mechanism to enable the
model to allocate and adjust attention weights more accurately.This helps in capturing
the characteristics of horizontally distributed geological structures more effectively, allo-
cating resources and attention more efficiently, and reducing interference from unrelated
information, given that data exhibit rapid changes or discontinuities along the “depth” axis.

The CA Block mainly includes two sub-modules [32]: the squeeze module and the
excitation module. The squeeze module aims to pool the feature map globally to obtain
global information for each channel. This extraction allows for capturing each channel’s
statistical characteristics, providing input for the subsequent excitation module. In this
paper, a joint channel is pooled as a feature map. Based on the information provided by
the squeeze module, the excitation module uses a small, fully connected network to learn
the weights of each channel. Through a sigmoid activation function, the output range is
limited between 0 and 1, representing the importance of each channel. These weights are
then used to weight the original feature map, realizing the emphasis and de-emphasis of
different channels.

In the architecture of the CA Block, as shown in Figure 3, it can be seen that, after the
TA Block outputs the feature data of the three joint channels, a squeeze operation must
first be performed. This operation encodes the entire spatial feature on one channel as a
global feature value, i.e., a scalar, achieved using global average pooling. Subsequently,
through concatenation, an excitation operation captures the relationships between channels,
learning the attention weights between channels. Finally, multiplying the channel attention
weights with the output feature data of the joint channels completes the differentiation of
attention to the joint channels.

2.3. Network Training

Geoscientific data typically exhibit nonuniform distribution before interpolation and
become large-scale after interpolation. This data characteristic requires the network to
have efficient computation methods and training strategies. To address this challenge,
we introduce the concept of transfer learning. Transfer learning is a machine learning
method that allows us to apply the knowledge and model parameters learned in one task
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to another related task without retraining the model from scratch. In the interpolation of
three-dimensional velocity fields, we cannot directly train the data for the entire work area,
so it is necessary to divide the work area into blocks. The irregularity and unevenness of
the data require us to train the network strategically. We introduce the fine-tuning idea
of transfer learning to help the network better adapt to the specific requirements of the
three-dimensional velocity field interpolation task.

Figure 3. CA Block.

2.3.1. Feasibility Analysis of Transfer Learning

In many real-world applications, the act of gathering the necessary training data and
reconstructing models is either costly or unfeasible. Minimizing the need and effort to
recollect training data would be advantageous [36]. The task of three-dimensional velocity
field interpolation is to recover complete data by interpolating sparse data. Known data
are limited, and the data to be recovered are large-scale. The distribution of geoscience
datasets is often uneven. This means that data in some areas may be very dense, while other
areas may be very sparse. Transfer learning can obtain prior knowledge from data-dense
geoscience areas and transfer it to data-sparse areas. This approach can reduce the training
complexity in sparse data point work areas. Random initialization of network parameters
on large-scale, high-dimensional, and irregular geoscience data may make the model
difficult to converge. This paper introduces a fine-tuning strategy of transfer learning to
obtain more key features about geological or geoscience phenomena in data-dense areas, so
that the model can interpolate in sparse areas more accurately. Once the model gains more
feature information in data-dense areas, it can generalize better to sparse areas, thereby
improving the convergence of interpolation.

At the same time, this paper introduces the attention mechanism, which is catastrophic
for the training of network model parameters. On the one hand, the amount of data is too
small to support the network model to learn useful feature representations. On the other
hand, the method based on implicit prior information adopted in this paper transforms the
interpolation solution of the three-dimensional velocity field from the model space to the
parameter space, and it is particularly difficult for the parameters of the network model to
find the correct iterative update direction for convergence. Therefore, we use the concept
of transfer to solve these two problems.

2.3.2. Network Training Based on Transfer Learning

The key idea of transfer learning is that we can learn some general features and
knowledge from a related but different task, and then transfer these features and knowledge
to our target task. In our research, by first learning in data-dense areas, we prioritize
obtaining general features and knowledge related to the overall area, which helps to
improve the initial performance of the model. During the training process, the deep
network parameters are kept unchanged, and only the shallow data are fine-tuned. This
ensures that the model retains the general knowledge learned from the source task and
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only fine-tunes the shallow network layers to adapt to the specific target task. This method
effectively balances the irregularity of geoscience data sampling.

In the past, random initialization of network model parameters, if the initialized
parameters are poor, leads to difficulties in network model convergence, or even no re-
sponse, resulting in no training results. To solve this situation, Glorot et al. [37] invented
the method of Xavier initialization, which randomly samples parameters from a normally
distributed parameter, making the network’s initial parameters satisfy a similar distribu-
tion, thus enhancing the stability and efficiency of the network model. This paper adopts
this initialization method to improve the performance, stability, and efficiency of the deep
learning model.

The specific transfer learning strategy of this paper involves dividing the overall
survey data into blocks. We first select areas with high data density for training. During
the training process, the deep network parameters are kept unchanged, and only the
shallow data are fine-tuned. After the training is completed, interpolation is performed on
the sparse survey areas. Based on the fine-tuning strategy, the network can benefit from
previous learning experiences each time it trains a new area, thus improving training speed
and effects. At the same time, it enhances the stability of the model, avoiding problems
that may be brought about by random initialization. More importantly, this strategy allows
the network to adapt better to various different data distributions and features, retain deep
features, and fine-tune shallow features, which is consistent with the characteristics of
geoscience data.

3. Experiments

To verify the effectiveness of the attention-mechanism-based network model JointA
3DUnet on the three-dimensional velocity field interpolation task, we conducted a series of
experiments and analyses. This section will discuss our experimental design and results
in detail.

3.1. Synthetic Data

Since it is impossible to obtain the real three-dimensional velocity field data for the
entire work area, we need to evaluate the network’s interpolation results through synthetic
data. Synthetic data can be generated according to specific patterns and rules, ensuring that
all variables are controllable during the testing process while also reducing the complexity
of network pretraining. After generating synthetic data for the entire work area, we
simulate sparse data by sampling and inputting them into the network, and then compare
the residuals of the interpolation results and synthetic data. By using synthetic data, we
can test and verify the algorithms of this paper under known geological conditions.

Figure 4a shows synthesized three-dimensional velocity field data. Subsequently,
sampling of the synthesized simulated three-dimensional velocity field is conducted, as
shown in Figure 4b. We use the sampling results as actual observed data. Moreover, we can
set the sampling rate to evaluate the network’s three-dimensional interpolation capability
by comparing different existing data volumes. This is then applied to subsequent real data.

To compare the effects of basic 3DUnet and the constructed JointA 3DUnet network’s
three-dimensional interpolation, we use both networks to interpolate the sampled synthetic
data. To control the singularity of the dependent variables, the inputs, loss functions, and
training methods of the two networks are the same, and the input data are a randomly
sampled 10% of the synthetic data. The obtained three-dimensional velocity field is shown
in Figure 5. From Figure 5, neither 3DUnet nor JointA 3DUnet has been able to achieve
an ideal interpolation effect. In the areas with layer undulations and low values, the
interpolation results of both networks are uneven. The reason for this phenomenon is that
the receptive field of the convolution kernel is too small, and the network cannot learn
useful features in positions with large data loss. Therefore, this paper introduces dilated
convolution to increase the receptive field of the convolution kernel.
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(a) (b)
Figure 4. 3D velocity field synthetic data schematic diagram. (a) Synthetic 3D velocity field. (b) Ob-
served data obtained through sampling.

(a) (b)
Figure 5. Interpolation results of simulated data. (a) 3dUnet. (b) JointA 3DUnet.

In the later experiment, we chose the expansion rate as 1,2,5, and the interpolation
results are shown in Figure 6. From the figure, the continuity of the undulating layers has
been improved. However, the interpolation effect of 3DUnet in the low-value areas is still
not ideal after combining with dilated convolution. The network JointA 3DUnet in this
paper can overcome this problem better after combining with dilated convolution.

As shown in Figure 7, we conducted experiments on a synthetic dataset. We visualized
the overall relative error, and observation point relative error for the interpolation results
obtained from both methods as well as after adding dilated convolution.

From Figure 7, it can be observed that JointA 3DUnet outperforms the traditional
3DUnet in terms of observation point relative error and overall relative error. Compared
with 3DUnet, the JointA 3DUnet without adding dilated convolution reduces the overall
relative error by 22.31%, and the relative error of observation points by 28%. After adding
dilated convolution, the errors of both JointA 3DUnet and 3DUnet decrease, but the error
of JointA 3DUnet is still the smallest. Compared with 3DUnet, the overall relative error of
JointA 3DUnet decreases by 22.77%, and the relative error of observation points decreases
by 21.43%. Therefore, the interpolation results of JointA 3DUnet are more accurate and
better than those of 3DUnet.

Although the observation point relative error of 3DUnet is also lower, the overall effect
is not ideal. This is due to the training method used. The loss function defined in this paper
fits the speed data of the observation point positions. As the number of training times
increases, even the traditional 3DUnet can fit the observation points. However, the missing
parts of the non-observation points need to be generated by network interpolation. The
CNN module in the network implicitly undertakes the role of using the correlation in the
data to learn its internal structure’s prior information. The construction of the CNN model
is crucial for the interpolation results of the missing positions. A large receptive field, multi-
scale information, and three-dimensional spatial dimension interaction can help the CNN
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model to interpolate more suitably the missing speed data around while fitting the speed
data of the observation points, thus generating a more accurate three-dimensional velocity
field. Overall, the interpolation effect of JointA 3DUnet combined with dilated convolution
is better, being able to recover the real speed values of the synthesis more accurately.

(a) (b)
Figure 6. Interpolation results of simulated data with the addition of dilated convolution. (a) 3DUnet
with dilated convolution. (b) JointA 3DUnet with dilated convolution.

Figure 7. Comparison of interpolation results for simulated data between 3DUnet and JointA 3DUnet.

3.2. Real Data

For real data, our objective is to validate the performance of the network constructed
in this paper further. Due to the fact that real data typically consist of only a limited amount
of data and are unevenly distributed, as shown in Figure 8, the network represents different
perspectives of sampled data. The combination of 3DUnet and JointA 3DUnet with dilated
convolutions has shown promising interpolation results on synthetic data. Therefore, we
test the interpolation performance of these two networks on real data directly.

(a) (b)
Figure 8. Different slices of real data are displayed. (a) Slice A. (b) Slice B.
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Figure 9 displays the interpolated result images in real data. It can be observed that, in
the interpolation process of real data, the combination of 3DUnet and dilated convolutions
leads to discontinuous layers in high value areas, while the integration of JointA 3DUnet
and dilated convolutions can overcome this difficulty.

(a) (b)
Figure 9. Interpolation results of real data with the addition of dilated convolution. (a) 3DUnet with
dilated convolution. (b) JointA 3DUnet with dilated convolution.

The comparison of interpolation results is shown in Figure 10, where the JointA
3DUnet network has a lower observation point error and overall higher performance,
compared with 3DUnet combined with dilated convolution. The interpolation results
obtained from both methods have high SNR values, which is due to the inherent smoothing
effect of Unet when used for interpolation tasks, resulting in high SNR values for both
interpolation results. After adding inflation convolution, JointA 3DUnet reduces the relative
error at the observation points by 47.34% compared with 3DUnet. It can be observed
that, for more complex measured data, the method mentioned in this paper has precise
interpolation effects, especially for more delicate geological structures such as faults, where
JointA 3DUnet can restore their shapes better.

We selected a channel of data for plotting the line chart, as shown in Figure 11, It can
be seen that the obtained interpolation results are very close to the real curve, and the errors
are also found to be within a smaller range after the difference is taken.

In order to compare and evaluate the interpolation ability of JointA 3DUnet combined
with dilated convolution for three-dimensional velocity field data with different sampling
rates, we conducted interpolation experiments on the original real dataset, with sampling
rates of 20% and 30%. The 20% sampling is based on resampling the data sampled at 30%,
and the distribution of the two sets of data is the same. The obtained three-dimensional
velocity field interpolation results are shown in Figure 12.

Figure 10. Comparison of interpolation results for real data between 3DUnet and JointA 3DUnet.
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(b)
Figure 11. Displaying a graph of one trace extracted from the interpolation results of real data.
(a) Three values of velocity. (b) The output value differs from the true value.

(a) (b)
Figure 12. Interpolation Results of real data with different levels of sparsity. (a) Sparse 80%.
(b) Sparse 70%.

The figure demonstrates that the interpolation effects of 30% and 20% sampling are
highly similar, and the 3D velocity field data are well recovered. Although the introduc-
tion of the attention mechanism improves the model’s performance, it also increases the
complexity and training difficulty. To address this issue, we decided to adopt a transfer
learning strategy to enhance the training efficiency and performance. Figure 13 compares
the network convergence curves before and after the transfer learning implementation. It
can be observed that, after utilizing transfer learning, the convergence speed is accelerated,
and the network performs well in reconstructing velocity field data in sparse areas.

(a) (b)
Figure 13. Convergence curve comparison. (a) Without transfer learning. (b) With transfer learning.

The interpolation effect diagram is shown in Figure 14. From the figure, it can be seen
that, after adding the idea of transfer to the JointA 3DUnet network, its three-dimensional
interpolation ability has been improved in terms of speed and quality.
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(a) (b)
Figure 14. Figure of results for transfer learning. (a) Without transfer learning. (b) With transfer learning.

4. Discussion

In the experimental process of this study, we first compared the performance of the
3DUnet and JointA 3DUnet network models for synthetic data. Preliminary experiments
did not introduce dilated convolution. At this stage, we mainly observed and compared
the interpolation effects of these two models under baseline conditions. The experimental
results provided us with a preliminary performance evaluation and understanding, which
was conducive to our further optimization and improvement of the model structure and
strategy. In the next stage, we introduced dilated convolution into the two models and con-
ducted comparison experiments again. The results of this stage showed that the inclusion
of dilated convolution indeed enhanced the model’s interpolation performance, especially
when dealing with real data.

For the real data experiments, we first compared the effects of 3DUnet and JointA
3DUnet with dilated convolution. The experiment proved that JointA 3DUnet performs
better than 3DUnet on real data. At the same time, we also conducted interpolation
experiments under different data extraction ratios (20% and 30%), further confirming the
robustness and efficiency of JointA 3DUnet.

In the final stage, we compared the speed and interpolation effects of the network
after adding transfer learning. Through this experiment, we observed that transfer learning
effectively enhanced the performance of JointA 3DUnet, and significantly optimized the
network’s operating speed.

5. Conclusions

The precise construction of three-dimensional velocity fields occupies an indispensable
position in seismic exploration, playing an irreplaceable role in insight and interpretation
of underground geological structures. This paper constructs a network model based on a
joint attention mechanism, JointA 3DUnet, which innovatively integrates technologies such
as dilated convolution, triple attention, and channel attention. This effectively expands
the receptive field, enhances information interaction between dimensions, and adapts well
to the irregular horizontal and vertical distribution of geoscience data. Additionally, the
introduction of transfer learning further optimizes the network’s interpolation performance.

Through a series of detailed and in-depth experimental verifications, this paper ex-
tensively compares and evaluates the performance of the 3DUnet and JointA 3DUnet
network models under different conditions and strategies. The experimental results consis-
tently show that the JointA 3DUnet model demonstrates superior and robust performance
compared with 3DUnet at every experimental stage and condition. Particularly after the
introduction of dilated convolution and transfer learning strategies, JointA 3DUnet not
only achieves a significant improvement in interpolation accuracy but also shows evident
advantages in computational speed and efficiency. These series of experiments prove that
JointA 3DUnet possesses broad application potential and value, representing an efficient
seismic data interpolation model worthy of further promotion and application. How to
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capture the characteristics of sparse data and reconstruct them more accurately has always
been our research goal. We will also explore the application of JointA 3DUnet in other
domains and data, continually refining the network architecture, and building a better
interpolation network.

In general, the JointA 3DUnet model not only enhances the accuracy of three-dimensional
velocity field interpolation but also opens up new possibilities and perspectives for re-
search and application in related fields, demonstrating the tremendous potential and broad
prospects of deep learning in the field of earth sciences.
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