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Abstract: Deep learning has proven to be effective for enhancing the accuracy and efficiency of attack
detection through training with large sample sizes. However, when applied to cyber–physical systems
(CPSs), it still encounters challenges such as scarcity of attack samples, the difficulty of selecting
features for high-dimensional data, and weak model-generalization ability. In response, this paper
proposes ResADM, a transfer-learning-based attack detection method for CPSs. Firstly, an intentional
sampling method was employed to construct different sets of samples for each class, effectively
balancing the distribution of CPS-attack samples. Secondly, a feature-selection method based on
importance was designed to extract the meaningful features from attack behaviors. Finally, a transfer-
learning network structure based on ResNet was constructed, and the training parameters of the
source model were optimized to form the network-attack detection method. The experimental results
demonstrated that ResADM effectively balanced the data classes and extracted 32-dimensional attack-
behavior features. After pre-training on the UNSW-NB15 dataset, ResADM achieved a detection
accuracy of up to 99.95% for attack behavior on the CICIDS2017 dataset, showcasing its strong
practicality and feasibility.

Keywords: attack identification; cyber–physical systems (CPS); transfer learning; residual network
(ResNet)

1. Introduction

Cyber-Physical Systems (CPSs) are a complex, tight integration of computer networks
and physical systems that interact with each other. They are characterized by their large
scale and high complexity. With the rapid development of computer network technology
and the expanding reach of the Internet, an increasing number of enterprise and gov-
ernment services rely on the Internet to provide convenience in people’s lives and work.
However, the openness and interconnectedness of CPS applications have also resulted
in more prominent network security issues [1]. Network attack behaviors, particularly
advanced-persistent-threat (APT) attacks, exhibit characteristics including high destruc-
tiveness, extreme stealthiness, and long incubation periods. These attacks can carry out
targeted attacks and covert theft of critical assets, especially CPSs, making CPSs significant
factors affecting the security of government and enterprise networks [2]. Therefore, the
network security concern is pressing.

For the timely detection of malicious activities and attack behaviors in CPSs, as well
as to prevent attackers from stealing sensitive data and reducing the risk of CPS service
interruption, accurate attack detection methods are particularly important. Traditional
host-based methods have required the constant monitoring of the operation and the state
of the host system in order to detect system events, but they have been unable to analyze
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behavior information related to the CPS. On the other hand, network-based methods have
faced difficulties in obtaining the internal state information of the monitored system when
dealing with big-data scenarios, leading to poor detection performance [3].

With the continuous development of machine-learning and deep-learning technolo-
gies, intrusion detection methods based on anomalies have flourished, with the assistance
of artificial intelligence models. Yang et al. [4] proposed multiple efficient machine-learning
algorithms that realized network anomaly behavior detection models in lightweight IoT en-
vironments and achieved excellent results in simulation experiments on multiple datasets.
Sinha et al. [5] proposed a convolutional neural network (CNN) fused with a bidirectional,
long short-term memory (BiLSTM) network model that effectively mined the hidden fea-
tures of network attack behaviors and improved the accuracy of network-attack detection.

However, the application of machine-learning methods in CPS attack detection have
encountered several challenges: (1) Scarcity of attack samples: Machine-learning methods
rely heavily on the availability of training data. However, CPS attack behavior data have
often been scarce, making it challenging to collect a comprehensive dataset [6]. (2) Difficulty
in selecting high-dimensional data features: CPS attack behavior samples encompass
numerous data features related to network interactions. Handling high-dimensional data
has not only increased storage and computational costs but has also posed challenges to
uncovering hidden features of attack behaviors [7]. (3) Weak model generalization: Trained
machine-learning models have often struggled to adapt to CPS attack behaviors in new
application scenarios, leading to high false-positive rates and reduced effectiveness [8].

The proposed CPS attack detection method, ResADM (ResNet-Based Attack Detection
Method), addressed these challenges and provided the following contributions:

• A data-cleaning method was proposed that utilized intentional sampling to clean
the CPS traffic data. Subsequently, a sampling technique was employed to address
the issue of data category imbalance by extracting a comparable number of training
samples from each category.

• A feature-selection method was developed based on feature importance to identify
significant CPS attack features and eliminate irrelevant ones. This approach effectively
addressed the challenge of feature selection in high-dimensional data, making the
process more manageable.

• A transfer-learning network structure was constructed using the residual network
(ResNet) model. The optimization of the training parameters for the source model
enabled the formation of a network-attack-behavior detection model that improved
the model’s generalization ability.

• To validate the effectiveness of ResADM, pre-training was conducted on the UNSW-
NB15 dataset, followed by simulation experiments on the CICIDS2017 dataset. The
results demonstrated that ResADM had achieved a balanced distribution of the data
categories, extracted 32-dimensional attack-behavior features, and achieved a high
accuracy of 99.95% in detecting CPS attack behaviors.

This paper is organized as follows: Section 2 provides an introduction to the back-
ground. Section 3 presents the model design proposed in this paper. Section 4 describes the
conducted experiments and provides a comprehensive analysis of the experimental results.
In Section 5, a summary of the entire article is presented, along with highlighting the future
research directions.

2. Background
2.1. Attack Detection

Network attack detection is a crucial task in maintaining CPS security, as it aims
to identify and prevent unauthorized network activities. Traditional statistical, learning-
based methods have had certain limitations in this regard, including vulnerability to
detection by attackers and sensitivity to normality assumptions. As machine-learning
technology continues to advance, these conventional methods are gradually being replaced.
In recent years, extensive research has focused on utilizing machine-learning models,
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such as Bayesian, support vector machine, and decision tree, for network-attack detection.
However, these methods rely heavily on expert knowledge and struggle to uncover the
underlying and concealed features of network attack behaviors. Furthermore, with the
increasing number of devices and the expanding network data in network scenarios, this
problem becomes even more pronounced, necessitating the use of more self-learning and
adaptive methods to address this challenge.

Deep-learning technology, with its ability to construct nonlinear network structures
with multiple hidden layers, offers the advantage of deeply learning sample data and adapt-
ing to high-dimensional learning and prediction requirements. It also saves a significant
amount of time during feature extraction. As a result, deep learning has achieved remark-
able success in various fields, including image recognition, natural language processing,
and speech recognition. Within the context of CPS attack detection, some studies [9] have
utilized a multi-scale CNN structure to explore the spatial features of network attacks while
employing LSTM to extract temporal features, resulting in improved accuracy of attack
detection. Furthermore, previous research has proposed the use of BiLSTM networks to
analyze bidirectional, temporal features of data streams, enabling the discovery of hidden
temporal features of network attacks and significantly reducing false alarm rates [10]. How-
ever, it is important to acknowledge the challenges associated with deep-learning methods,
such as gradient-vanishing and -exploding, which has led to unstable weight updates in
the model and resulted in under-fitting or over-fitting situations.

2.2. Residual Network

The residual network, also known as ResNet, is a classic convolutional neural network
that utilizes residual blocks to implement skip connections in stacked CNN networks. This
approach mitigated the problem of feature loss and addressed the issues of vanishing and
exploding gradients by directly passing the previous layer’s features on to the subsequent
layers, facilitating easier training and optimization [11]. Residual networks have found
wide applications in tasks such as image recognition and text classification. The structure
of ResNet is illustrated in Figure 1, where x represents the input; the weight layer refers to
the convolutional layers responsible for feature extraction; F(x) denotes the result obtained
after convolution; x identity represents the identity mapping, where the input data are
directly passed through the residual connection without any transformation to ensure
the consistency of input dimensions, enabling smooth residual connections; F(x) + x
indicates the combination of the output from two convolutional layers with the previous
convolutional layer; and ReLU (rectified linear unit) is the activation function.

Figure 1. Structure of the residual block.

Some studies have utilized ResNet as a foundation and enhanced the richness and
the accuracy of the feature extraction by incorporating cross-layer transfer and embedding
modules [12]. This approach has successfully addressed the challenges associated with
detecting train bottom parts. Furthermore, there has been research that combined auto-
encoder networks with residual networks to create a novel network intrusion-detection
method [13]. In this method, pre-processed data were used to extract features through
an auto-encoder network by reconstructing the reconstruction error. The extracted fea-
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tures were then employed to train a specifically designed residual network, which was
subsequently used for classification detection on a test set using the trained model. The
experimental results demonstrated that this approach achieved good performance in terms
of accuracy, a true-positive rate, and a false-positive rate.

However, network intrusion-detection work has often faced a scarcity in the train-
ing data for business systems and intelligent security devices. This limitation has pre-
sented challenges to deep-learning-based intrusion-detection models when applied to new
cyber–physical-system applications, as their generalization capability has been weak. The
distribution of network traffic samples in a new CPS application scenario might differ from
the training dataset, leading to reduced effectiveness. Therefore, enhancing the general-
ization capability of network-attack-detection models is a critical issue that necessitates
further research and improvements in model design. By addressing this challenge, these
models can be more effective and reliable in new CPS scenarios.

2.3. Transfer Learning

Transfer learning is a machine-learning method that leverages existing knowledge
from source tasks to enhance the learning performance in targeted tasks. As depicted in
Figure 2, this approach utilizes labeled data, pre-trained models, and domain adaptation
techniques to overcome challenges related to limited labeled data and an abundance of
unlabeled data in the targeted domain. By doing so, transfer learning has reduced the
computational complexity in big-data environments and improved the generalization
ability of conventional models under specific conditions. Consequently, transfer learning
has emerged as a promising framework for addressing the weak generalization capabilities
of machine-learning models [14].

Figure 2. Schematic diagram of transfer learning.

Yilmaz et al. [15] proposed the use of transfer learning to tackle this issue in IoT
network-intrusion-detection tasks. They employed pre-trained models to extract knowl-
edge from a source domain and adapt it to the characteristics of the target domain. In a
similar vein, Mehedi et al. [16] developed a deep residual convolutional neural network
model for network-intrusion detection in industrial systems. Through the utilization of
transfer learning, they successfully achieved the detection of unknown attacks. Their
work represented a valuable exploration and the practical application of transfer learning
within the context of network-intrusion detection in industrial control systems. Hence,
transfer learning, as an effective machine-learning method, holds significant importance
and demonstrates great potential in addressing the challenges associated with limited
datasets and weak generalization ability in CPS intrusion detection.

3. ResADM Architecture

The overall architecture of the proposed ResADM is illustrated in Figure 3. The
method comprised three main modules: the backbone network pre-training module, the
transfer-learning module, and the backbone network re-training module.
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Figure 3. Architecture of ResADM.

3.1. Pre-Training Module

In the backbone network pre-training module, ResNet-50 was employed as the back-
bone network. The pre-training process involved training the backbone network using the
source task dataset through supervised learning, resulting in a trained backbone network
with all parameters. The residual block structure formed the foundation of ResNet. The
convolutional process typically involved feature dimension reduction. The inclusion of a
Cov1×1 operation in the shortcut connection aimed to ensure consistency in the dimensions
of the input and output features. In the residual network layer, represented as y = H(x),
the residual block could be expressed as H(x) = F(x) + x. In the case of identity mapping,
y = x represents the observed value, H(x) represents the predicted value, and thus F(x)
corresponds to the residual. Based on these considerations, the process of calculating the
residual could be derived, where Wi is the weight matrix and Ws is the linear projection
matrix, as shown in Equation(1).

H(X) = F(x, Wi) + WSx, (1)

3.2. Transfer-Learning Module

The pre-trained model and its parameters were passed into the transfer-learning
module for the pre-processing of the target task dataset. The pre-processing process
consisted of two main parts: the data-cleaning layer and the feature-selection layer.

3.2.1. The Data-Cleaning Layer

The collected dataset of online CPS behavior often contained a significant amount of
noise, missing values, and outliers. These issues not only hindered the analysis of network
traffic but also could have a detrimental effect on the accuracy and reliability of detection
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models. Consequently, a purposive-sampling-based data-cleaning method was devised,
and the specific steps included:

1. Illegal character replacement: Replace unrecognizable illegal characters in the dataset.
Replace the “NaN” (Not a Number) and “Inf” (Infinity) characters in the dataset with
the mean value of their respective columns.

2. Invalid column removal: Analyze the elements in the dataset columns and remove
columns that consist entirely of “0”, empty values, or duplicate items, in order to
reduce data dimensionality.

3. Purposive sampling: Randomly select an equal number of samples from all the data,
but with different categories, for model training and testing. This helped to avoid the
problem of class imbalance caused by a large amount of benign traffic and a small
amount of attack traffic, which could affect the model training.

4. Data standardization: Apply the min–max normalization method to the sampled data,
which maps numerical features of the data samples to the range [0, 1]. Use one-hot
encoding to encode categorical features in the samples.

5. Dataset splitting: The processed data samples are divided into a training set and a
testing set, according to the requirements of the model training process.

3.2.2. The Feature Selection Layer

Effective feature selection could significantly reduce data dimensionality and enable
the model to discover underlying patterns and structures in the data more efficiently, miti-
gating the impact of data complexity and noise. In this study, a feature-selection method
based on feature importance was designed, leveraging the efficient graph-computing
algorithm in the light gradient-boosting machine (LightGBM). The LightGBM employs
a gradient-based optimization sampling algorithm to efficiently reduce the number of
data instances and features for each feature. This process helped to narrow down the
search space for split points [17]. The algorithm sorted all the data in descending order
based on the absolute value of the gradient. Subsequently, a subset P was extracted
by selecting the data with the maximum gradient, while a random subset Q was ran-
domly chosen from the remaining data. The gain was then calculated from the subset
(P ∪Q), and the variance gain G f (i) for feature f at split point i was defined according to
Equations (2)–(4), where S represents the number of instances in the subset (P ∪Q) and
Sl(i) and Sh(i) represent the number of instances with feature f values less than or greater
than i, respectively. Additionally, gk represents the negative gradient of instance Xk, where
Pl = {Xk ∈ P : Xkj ≤ v}, Ql = {Xk ∈ Q : Xkj ≤ v}, Ph = {Xk ∈ P : Xkj ≤ v}, and
Qh = {Xk ∈ Q : Xkj ≤ v}.

G f (i) =
1
S
(G f 1(i) + G f 2(i)), (2)

G f 1(i) =
1

Sl(i)
( ∑

Xk∈Pl

gk +
1− a

b ∑
Xk∈Ql

gk)
2, (3)

G f 2(i) =
1

Sh(i)
( ∑

Xk∈Ph

gk +
1− a

b ∑
Xk∈Qh

gk)
2, (4)

The decision model in LightGBM was constructed based on the aforementioned steps
for feature set Fi = { f1, f2, ..., fm}, where i = {1, 2, 3, ..., m}. The feature importance score
FISi was calculated by considering the number of times each feature had been used to
split the training data across all decision models, as shown in Equation (5). In this formula,
wi represents the weight assigned to each feature, and fi represents the feature set.

FISi = {s|s = wi fi}, (5)

Based on the above approach, the feature importance of the attributes for different
categories of CPS behaviors was calculated during the classification process. All attributes
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were then sorted in descending order based on their importance. From the sorted attribute
set, the top k attributes were selected, one by one, to create the feature value set. This
feature value set was used as input for retraining the baseline LightGBM model. The
value of k was gradually increased until the maximum classification accuracy was achieved
after retraining. The top k attributes at this point were selected as the feature set for
model training.

3.3. Retraining Module

To address the differences in the feature distribution and learning between the pre-
trained ResNet-50 backbone network used on the UNSW-NB15 dataset and the CICIDS2017
dataset, this study proposed the integration of a multilayer perceptron (MLP) layer after
the backbone network. Unlike conventional deep neural networks, the MLP architecture
in ResADM comprised 2 dense layers with 128 and 64 neurons, respectively, in addition
to the input and output layers. Furthermore, a regularization layer with a dropout rate of
0.5 was incorporated into the MLP. By retaining certain pre-trained ResNet weights, the
model effectively learned the features specific to the target dataset, thus enhancing the
generalization capability of the attack-detection model.

To classify CPS attack behaviors, a softmax function was employed. The CPS traffic
data were passed through the feature learning layer of ResNet-50 to extract the deep
features from the input CPS traffic data. The learned attack-behavior features were then fed
into the softmax layer for classification, resulting in recognition results for the CPS traffic
samples. Specifically, if there were m categories of labels L in the CPS traffic sample F,
where L ∈ {1, 2, ..., m}, the conditional probability of softmax predicting that the sample Fi
belonged to category m was calculated using Equation (6), where wi represents the weight
vector of the m-th category of traffic.

P(L = m|Fi) =
exp(wT

m)Fi

∑m
i=1 exp(wT

i Fi)
, (6)

4. Experiment and Analysis
4.1. Experimental Environment

The experimental work described in this paper was performed on a deep-learning
workstation running the Ubuntu operating system. The code was implemented using
Python, and an RTX 3090 GPU accelerator was utilized for acceleration. TensorFlow was
employed as the deep-learning framework. The hardware and software configuration of
the workstation used in the experiments is provided in Table 1.

Table 1. Experimental environment configuration.

Category Configuration Parameter

Hardware

CPU AMD 7T83
RAM DDR4 ECC 128GB
GPU NVIDIA GeForce RTX 3090
SSD 2T

Software

Operating System Ubuntu 22.04
Python 3.9

LightGBM 3.2.1
TensorFlow 2.11

4.2. Evaluation Indicators

The performance metrics used to evaluate the machine-learning model have been ex-
tensively explained in previous studies [18,19]. Here is a brief introduction to these metrics:

Accuracy measured the overall performance of the model by calculating the ratio of
correctly classified samples to the total number of samples.
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Accuracy =
TP + TN

TP + TN + FN + FP
, (7)

Precision evaluated the ability of the model to correctly identify negative samples by
calculating the ratio of true-negatives to the sum of true-negatives and false-positives.

Precision =
TP

TP + FP
, (8)

Recall, also known as sensitivity or the true-positive rate, measured the model’s ability
to correctly identify positive samples. It was calculated as the ratio of true-positives to the
sum of true-positives and false-negatives.

Recall =
TP

TP + FN
, (9)

The F1-score was a measure of the model’s balance between precision and recall. It
was the harmonic mean of precision and recall and provided an overall assessment of the
model’s performance.

F1− score =
2TP

2TP + FN + FP
, (10)

The formulas for calculating these metrics are shown in Equations (7)–(10), where TP
represents true-positives, FP represents false-positives, TN represents true-negatives, and
FN represents false-negatives.

4.3. Dataset Selection

The completeness of the training data directly affects the effectiveness of deep-learning
models and their performance in real-world applications. Public datasets in the field of
intrusion detection, such as KDD CUP 99 and NSLKDD, have had some limitations. These
included outdated data; lack of integrity and diversity in attacks; and data sanitization
issues. As a result, most attacks in these datasets have lacked meaningful payload infor-
mation and thus have not effectively reflected attack trends. After conducting multiple
experimental attempts, we found in this study that the UNSW-NB15 and CICIDS2017
datasets contained a significant amount of valid attack payloads. These datasets could
accurately reflect the trends of network attacks over a period of time, meeting the require-
ments of this study. The UNSW-NB15 dataset consisted of 257,673 flow records, with
175,341 records used for the training set and 82,332 records used for the testing set.
Each flow record contained 49 features, including 5 flow features, 13 basic features,
8 content features, 9 time features, 12 additional features, and 2 label tags. The CICIDS2017
dataset consisted of 8 CSV files, comprising a total of 2,273,097 network flow samples. Each
flow sample included 79 features and 1 label.

4.4. Experimental Setup

The experimental dataset was constructed using the CICIDS2017 dataset, which was a
standard dataset for network traffic anomaly detection. The training process of ResADM is
shown in Algorithm 1..

The CICIDS2017 dataset needed to be cleaned according to the prescribed model
design. Firstly, identify and replace any illegal characters found in the “Label” column
in the dataset. Next, delete column 55 (Fwd Header Length) that duplicated column 34
(Fwd Header Length). Furthermore, discard rows where the values in columns 31 (Bwd
PSH Flag), 33 (Bwd URG Flags), 56 (Fwd Avg Bytes/Bulk), 57 (Fwd Avg Packets/Bulk),
58 (Fwd Avg Bulk Rate), 59 (Bwd Avg Bytes/Bulk), 60 (Bwd Avg Packets/Bulk), and
61 (Bwd Avg Bulk Rate) were all equal to zero. In column 14 (Flow Bytes/s), there were
1358 instances of “NaN” and 1509 instances of “Inf”. Similarly, column 15 (Flow Packets/s)
contained 2867 instances of “Inf”. To rectify these invalid values, calculate the column
mean and substitute these values accordingly.
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Algorithm 1: ResADM for Attack Detection
Input : ResNet-50, UNSW-NB15 dataset, pre-processed CICIDS2017 dataset
Output : ResADM attack detection results
Pre-train ResNet-50 on the UNSW-NB15 dataset;
Initialize ResADM with the pre-trained ResNet-50;
Compute feature importance using LightGBM on the CICIDS2017 dataset;
for k = 2 to N do

Get top k importances;
Retrain ResADM with the top k importances;
if ReTrain.Score > Score then

Features[]← Get top k importances;
end

end
Data← getDataWithFeatures(CICIDS2017);
result← train(ResADM.add(MLP));
result← softmax(result);
return result;

Once the dataset was cleaned, a purposive sampling of network attack samples could
be performed. To begin, randomly select 10,000 benign flows labeled as “BENIGN” from
the file “Monday-WorkingHours”. Extract 5000 instances of brute-force attacks labeled as
“FTP-Patator” and another 5000 instances labeled as “SSH-Patator” from the file “Tuesday-
WorkingHours”. Merge these samples to form a set of 10,000 attack samples labeled as
“Patator”. Similarly, sample 10,000 instances of denial-of-service attacks labeled as “DoS”
from the file “Wednesday-workingHours”. Lastly, extract 10,000 instances of distributed
denial-of-service attacks labeled as “DDoS” from the file “Friday-WorkingHours-Afternoon-
DDos”. These steps result in a dataset containing 40,000 network flow samples, each with
78 features and 1 label. Randomly split the dataset into an 80% training set and a 20% test
set. The distribution of each class within the divided dataset can be found in Table 2.

Table 2. Number of samples in each category of the dataset.

BENIGN DDoS DoS Patator

Training set 7953 8000 8014 8033
Testing set 2047 2000 1986 1967

The training set had to be passed to the attack-feature-selection layer for feature-
importance analysis using the LightGBM model. The feature importance was calculated in
the multi-classification process of traffic samples, and the features were ordered accordingly.
Select the top k features with the highest importance for retraining the baseline multi-
classification model. Gradually increase the value of k until it reaches 32, which maximizes
the accuracy of the retrained baseline model. Remove the remaining features and keep the
selected 32 features, as shown in Figure 4.

To visualize the correlation between these 32 features and their sample labels, apply
the K-means clustering algorithm to the network flow samples, as illustrated in Figure 5.
The visualization demonstrated a clear distinction between the benign flow samples and
the various categories of network attack flow samples, indicating that these 32-dimensional
features effectively characterized normal traffic and attack traffic. Although DoS and
DDoS attacks shared some behavioral features, there were still significant differences
due to the presence of a large number of dispersed source addresses in the DDoS attacks.
Therefore, the selected 32-dimensional features could be used as a feature set for training the
backbone network.
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Figure 4. Selected features.

(a) (b)

(c) (d)

Figure 5. Comparison of CPS attack behavior samples. (a) DoS. (b) Patator. (c) DDoS. (d) All samples.

4.5. Result Analysis

The training set was reduced to include only the 32 effective features. The data were
then transformed and prepared to meet the required dimensions for the ResADM model.
The transformed training set was used to train the model. Initially, the dataset was trained
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on the backbone network built with the ResNet-50 architecture, which had been pre-trained
on the UNSW-NB15 dataset. This pre-training enabled the utilization of learned generic
features from the pre-trained model for transfer learning in the task of network-attack-
behavior detection. During the fine-tuning process, a portion of the convolutional layer
weights was frozen, and only the newly added, fully connected layers were trained. This
approach reduced the need for parameter fine-tuning, conserved computational resources,
and allowed for the efficient adaptation of the features to the categories of the network-
attack-behavior dataset.

To ensure the stable optimization of the model parameters during the fine-tuning
process, the learning rate was set to 0.001. The fully connected layers and a softmax-classifier
layer were added after the backbone network. The fully connected layers retrained the
features to align with the categories of the network-attack-behavior dataset and converted
the output of the backbone network into a probability distribution, facilitating network-
attack-behavior detection. During the training process of ResADM, the model underwent
200 iterations at a batch size of 64. The Adam optimizer was used for optimization. The
overall multi-classification loss function employed was SparseCategoricalCrossentropy.
The loss was calculated as described in Equation (11), where yi represents the true class
label (not one-hot encoded), and pi denotes the predicted probability distribution of the
model, indicating the probability of belonging to each class.

Loss = −
N

∑
i=1

yi ∗ log(pi), (11)

The trends of accuracy and loss values during the 200 iterations of ResADM training
are shown in Figure 6. In Figure 6a, it was observed that the model quickly converged
and achieved a high level of accuracy. After approximately 100 iterations, the accuracy
stabilized at around 0.99, indicating that the model had successfully learned to accurately
classify network attack behaviors. Figure 6b displays the loss values of the model on both
the training and testing sets. The low values of the loss function on both sets demonstrated
that the model had effectively minimized errors during the training process. This suggested
that the model had successfully learned the underlying patterns and features associated
with network attack behaviors. The convergence of the accuracy and the low levels of loss
indicated the effectiveness of the ResADM model in detecting network attack behaviors.
These results demonstrated that the model had generalized well on the given dataset,
achieving high accuracy and effectively minimizing errors.

(a) (b)

Figure 6. Training Curve of the Model over 200 Rounds. (a) Accuracy. (b) Loss.

Following the completion of the ResADM training, the parameters of the backbone
network were updated, and ResADM was evaluated using the validation set, as presented
in Table 3. The overall accuracy of ResADM was reported as 99.9%, indicating its high
performance in accurately detecting network attack behaviors. Furthermore, the recog-
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nition performance for each network category exceeded 99%, highlighting the model’s
effectiveness for classifying different types of network traffic.

Table 3. ResADM results.

Label Precision Recall F1-Score

BENIGN 0.9985 0.9995 0.9990
DDoS 1.0000 1.0000 1.0000
DoS 0.9995 0.9995 0.9995

Patator 1.0000 0.9990 0.9995

ResADM utilized a purposeful sampling-based data-cleaning method, which con-
tributed to its accurate identification and labeling of attack behaviors within large volumes
of CPS traffic. This approach yielded high accuracy across all network traffic categories,
approaching or equaling 100%. As a result, it effectively addressed the challenge of data-
labeling for CPS attack behaviors. Additionally, ResADM employed a feature-selection
method based on feature importance, allowing for data dimension reduction and the elimi-
nation of unnecessary features. This enabled the model to identify the relevant features
associated with covert or deceptive CPS attack behaviors. As a result, ResADM achieved a
high recall rate, demonstrating its ability to effectively identify and capture instances of at-
tack behaviors. The combination of high accuracy, excellent recognition performance across
network categories, and the capability to handle challenging data labeling and discover
effective features made ResADM a robust model for detecting CPS attack behaviors.

Figure 7 presents the confusion matrix heatmap of the validation results obtained by
ResADM. From the figure, it could be observed that due to the similarity in the behavioral
features between BENIGN traffic and the DDoS attack behavior, the recall rate and F1-score
for BENIGN were relatively low. However, leveraging the concept of transfer learning,
ResADM utilized the advantages of pre-training the ResNet-50 backbone network and
retained relevant features, which effectively addressed this issue. Consequently, ResADM
achieved favorable results across all metrics.

Figure 7. Heatmap of the Confusion Matrix for Validation Results.

To thoroughly validate the advancements of the proposed ResADM method, com-
parative experiments were conducted in the same simulated environment with the latest
relevant works, including CNN [14], DNN [20], and LSTM [21]. The experiments were
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carried out using identical dataset distributions and hyper-parameter settings to ensure a
controlled experiment. The results of these experiments are presented in Table 4.

Table 4. Results of comparative experiments.

Methods Accuracy Precision Recall F1-Score

ResADM 0.9998 0.9999 0.9999 0.9999
CNN 0.9967 0.9967 0.9967 0.9967
DNN 0.9977 0.9977 0.9975 0.9976
LSTM 0.9958 0.9951 0.9951 0.9951

The analysis of the results in Table 4 demonstrated that the purposeful sampling-based
data-cleaning method proposed in this study had effectively partitioned the dataset of CPS
attack behaviors and addressed the challenge of labeling such data. As a result, all the
comparative models achieved favorable classification accuracy on this dataset. However, it
was important to note that CNN had exhibited higher sensitivity towards image data, while
LSTM networks were more suited for sequential data. Therefore, when it came to mining
CPS attack-behavior features, the performances of these two models were relatively weaker,
as compared to the feature-selection method based on feature importance, as proposed
in this study. Furthermore, although the effectiveness of DNN improved with increasing
model depth, it still fell short of the performance achieved by the transfer-learning model
based on ResNet-50. The proposed ResADM model demonstrated superior performance,
as compared to existing methods in terms of classification accuracy and feature extraction
for attack-behavior detection. It leveraged transfer learning and feature selection based on
feature importance to overcome the limitations of other models and offered a more effective
solution for identifying CPS attack behaviors.

5. Conclusions and Discussion

This study introduced ResADM, a network attack-detection method based on transfer
learning that aimed to address several challenges in network-attack detection, includ-
ing data class imbalance, feature selection in high-dimensional data, and weak model-
generalization capability. To tackle the issue of data class imbalance, intentional sampling
was utilized to construct sample sets with balanced attack categories, effectively addressing
the challenge of imbalanced attack categories in large-scale traffic datasets. Furthermore,
an importance-based feature-selection method was developed to extract key features of
network attack behaviors, addressing the difficulty in identifying attack features. Lastly,
a transfer learning model network structure was designed, and a robust network-attack
detection model was established by pre-training on the UNSW-NB15 dataset and opti-
mizing the training parameters of the source model. Simulation experiments were con-
ducted on the CICIDS2017 dataset, and promising results were obtained. The experiments
demonstrated that ResADM effectively balanced data categories, extracted 32-dimensional
attack-behavior features, and achieved a high network-attack-detection accuracy of up to
99.95%. As a result, this research holds significant practicality and feasibility.

However, this study had certain limitations that should be acknowledged. Firstly,
the constantly evolving landscape of cyber-attacks has introduced new methods that may
not have been adequately represented in outdated datasets. Thus, further validation is
necessary to assess the effectiveness of our model against the latest cyber-attack techniques.
Additionally, deep-learning models impose significant demands on server performance, so
while we endeavored to streamline our model, it requires further validation to evaluate its
performance in the face of large-scale DDoS attacks characterized by extensive flooding.

To overcome these limitations and enhance the overall robustness of ResADM, it
would be beneficial to broaden the range of experiments and validate the proposed method
using additional datasets. This could involve incorporating recently collected data that
encompasses a wider range of cyber-attack scenarios. Moreover, comparing the transfer-
learning-model network structure with other architecture would enable the selection of
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the most suitable model for the given problem. Conducting further research on parameter
optimization could also contribute to enhancing the effectiveness of the proposed method.
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BiLSTM Bidirectional Long Short-Term Memory Network
CNN Convolutional Neural Network
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DDoS Distributed Denial-of-Service Attack
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