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Abstract: Breast cancer profoundly affects women’s lives; its early diagnosis and treatment increase
patient survival chances. Mammography is a common screening method for breast cancer, and
many methods have been proposed for automatic diagnosis. However, most of them focus on single-
label classification and do not provide a comprehensive analysis concerning density, abnormality,
and severity levels. We propose a method based on the multi-label classification of two-view
mammography images to comprehensively diagnose a patient’s condition. It leverages the correlation
between density type, lesion type, and states of lesions, which radiologists usually perform. It
simultaneously classifies mammograms into the corresponding density, abnormality type, and
severity level. It takes two-view mammograms (with craniocaudal and mediolateral oblique views)
as input, analyzes them using ConvNeXt and the channel attention mechanism, and integrates the
information from the two views. Finally, the fused information is passed to task-specific multi-
branches, which learn task-specific representations and predict the relevant state. The system was
trained, validated, and tested using two public domain benchmark datasets, INBreast and the Curated
Breast Imaging Subset of DDSM (CBIS-DDSM), and achieved state-of-the-art results. The proposed
computer-aided diagnosis (CAD) system provides a holistic observation of a patient’s condition. It
gives the radiologists a comprehensive analysis of the mammograms to prepare a full report of the
patient’s condition, thereby increasing the diagnostic precision.

Keywords: breast cancer; mammography; deep learning; multi-label classification; convolutional
neural network (CNN)

1. Introduction

Breast cancer is a malignant transformation and proliferation of breast cells [1]. Ac-
cording to the American Cancer Society [2], it is ranked as the second most prevalent
cancer among women in the United States. The survival of patients depends on whether
it is diagnosed at an early stage [3]. Screening programs help to identify breast cancer
at early stages to facilitate early treatment, which increases patients’ survival rates. In
contrast, delayed diagnoses allow the disease to spread, and the cancer can grow to a stage
where treatment is no longer possible. Mammography is a breast-imaging technique that is
usually used to detect abnormal tissues in the breast, thereby aiding the early diagnosis of
abnormalities found in a patient.

Mammography screening involves many breast views, the most common being the
craniocaudal (CC) and mediolateral oblique (MLO) views. Radiologists usually use these
two views to observe breast tissues from different angles and detect abnormal tissues. A
mammogram aids in identifying the breast density type according to the Breast Imaging
Reporting and Data System (BI-RADS), the kind of abnormality (e.g., masses and calcifi-
cations), and the level of severity of the abnormality (benign or malignant) [4]. Several
approaches for automated breast cancer diagnosis are available [5]. However, the existing
studies mainly focus on a single view. The research presented in [6] demonstrated that
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two views are more helpful in improving a diagnosis; however, this method requires
special treatment to avoid redundant data existing in both views. Therefore, using a fusion
technique helps to handle this case.

In addition, most studies model the diagnosis problem as a single-label classifica-
tion, such as detecting the breast density type [7–10], identifying the masses as benign
or malignant [11–14], diagnosing microcalcifications as benign or malignant [15,16], or
classifying both masses and calcifications as benign or malignant [17,18]. Single-label
classification ignores the interdependencies between different conditions; for instance, a
breast with high density is more likely to be malignant than a breast with low density. In
addition, single-label classification requires developing multiple methods, each focusing
on one aspect of the problem. These issues can be overcome by using a method based
on multi-label classification for identifying breast cancer in an initial phase. A method
that formulates the diagnosis as a multi-label classification problem can help to diagnose
a patient’s condition comprehensively. It leads to better diagnosis results by considering
additional aspects, such as the correlation between the density type, lesion type, and states
of the lesions, which radiologists usually perform. It can assist radiologists in their decision
making by providing a comprehensive report of the patient’s condition, increasing the
precision of their diagnosis.

Given the above discussion, we formulate a diagnosis as a multi-label classification us-
ing two views. Inspired by the success of advanced CNN and transformer models [19–25],
we designed the proposed method using four modules: a feature extraction module, an
attention module, a fusion module, and a multi-label classification module. First, the fea-
ture extraction module employs the state-of-the-art CNN and transformer models, such as
the Swin transformer and ConvNeXt, and extracts features from two views, CC and MLO.
The attention module concentrates on relevant features and suppresses irrelevant features.
The information extracted from the two views is fused using the fusion module. Finally,
the multi-label classification module takes the fused features as input and simultaneously
predicts the density type, abnormality type, and severity levels.

The key contributions of this research paper are as follows:

• We propose a method based on the multi-label classification of two-view mammog-
raphy images—with CC and MLO views—that diagnoses the patient’s condition
comprehensively.

• We employ channel attention for selectively emphasizing the most informative chan-
nels of the input feature maps while suppressing the less informative ones.

• We propose a multi-branch deep architecture, which takes the features from two views
as input and performs multi-label classification.

• We thoroughly evaluated the proposed method on two public-domain benchmark
datasets, INBreast and CBIS-DDSM.

This paper is organized as follows: Section 2 discusses the ‘Related Work’ on breast
cancer diagnosis. Section 3 details the ‘Proposed Method.’ The ‘Evaluation Method’ is
described in Section 4, while Section 5 covers the ‘Experiments and Results.’ Section 6 in-
cludes the ‘Discussion,’ followed by ‘Limitations and Future Work’ in Section 7. This paper
concludes in Section 8 with the ‘Conclusions,’ and the ‘Nomenclature’ used throughout the
paper is provided at the end.

2. Related Work

Significant research has contributed to developing and improving advanced CAD
systems, especially for detecting and diagnosing breast cancer using mammography. Within
this particular context, many studies have focused on solving related problems such as
mass classification as non-cancerous (benign) or cancerous (malignant), the classification of
microcalcifications as non-cancerous (benign) or cancerous (malignant), the classification of
both microcalcifications and masses as non-cancerous (benign) or cancerous (malignant);
classification as masses and microcalcifications; the classification of mammograms based
on breast density; and the multi-label classification of mammograms. This section provides
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an in-depth review of the recent state-of-the-art (SOTA) research and methods that address
these problems.

2.1. Mass Classification as Benign or Malignant

A whole mammogram image or the regions of interest (ROIs) are classified as benign
or malignant, and there are many methods for this purpose.

Some recent methods classify mammogram images containing masses as benign or
malignant. Chen et al. [11] developed a method using two mammography views, MLO
and CC, for both breasts, extracting spatial and frequency domain features. They utilized
particle swarm optimization (PSO) and support vector machine (SVM) for feature selection
and classification, achieving an AUC-ROC of 0.79 for two-view and 0.75 for four-view
images. Das et al. [13] implemented adaptive contrast enhancement in mammogram
images, followed by segmentation and artificial neural network classification, resulting in
a high accuracy of 97.2%. Sun et al. [12] introduced a multi-dilated CNN that integrates
multiple views and optimizes classification accuracy by modifying the cross-entropy cost
function, achieving accuracies of 82.02% and 63.06%, respectively. Nagarajan et al. [14]
employed bi-dimensional empirical mode decomposition and GLCM for feature extraction,
leading to AUC-ROC values of 0.9 and 0.96. Ayana et al. [26] presented a novel model
employing a transformer for feature extraction combined with transfer learning, tackling
the issue of imbalanced data and achieving near-perfect classification accuracy. Yu, Xiang
et al. [27] developed VGG19-DF with a dRVFL classifier, showing an average AUC of 0.93
and an accuracy of 81.71%.

2.2. Microcalcification Classification as Either Benign or Malignant

In order to classify microcalcifications, the research has considered full mammogram
images or segmented ROIs. Some recent methods classify mammogram images containing
macrocalcifications as benign or malignant.

George et al. [15] proposed a multi-scale connected chain graph method for classifying
microcalcifications, achieving up to 90% accuracy. Mabrouk et al. [16] enhanced mammo-
gram images using various mechanisms and integrated feature extractions followed by
ANN, KNN, and SVM classification, resulting in an accuracy of 0.96. Gerbasi et al. [28]
introduced DeepMiCa, a U-Net-based network for the segmentation and classification of
microcalcifications, achieving an AUC of 95%. Sarvestani et al. [29] enhanced extracted
ROIs using a fuzzy system and Gabor filtering, achieving a 93% accuracy rate in classifying
microcalcifications.

2.3. Mass and Microcalcification Classification as Benign or Malignant

In the task of classifying masses and microcalcifications as benign or malignant, two
approaches can be employed: either classifying the ROIs corresponding to segmented
masses and microcalcifications or performing classification on the entire mammogram
image to determine its benign or malignant nature.

Li et al. [17] enhanced the DenseNet architecture for classifying mammogram images,
achieving a 94.55% accuracy rate. Mohanty et al. [18] proposed a method using block-based
discrete-wavelet packet transform and principal component analysis, enhanced with a
kernel extreme learning machine classifier, achieving accuracy rates above 99%. Jabeen
et al. [30] developed an automated framework for breast cancer classification from mam-
mogram images, employing a novel image enhancement technique and the EfficientNet-b0
model fine-tuned via deep transfer learning. The framework, which included advanced
feature extraction and optimization using the Equilibrium-Jaya controlled Regula Falsi
algorithm, was tested on the CBIS-DDSM and INBreast datasets, achieving notable accu-
racies of 95.4% and 99.7%, respectively. Chakravarthy et al. [31] combined deep learning
with metaheuristic techniques to classify mammography images, achieving up to 97.36%
accuracy. Azour et al. [32] utilized ensemble learning techniques with a combination of
multiple deep-learning models, achieving an accuracy of approximately 82.4%.
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2.4. Multi-Label Classification of Mammograms

Few studies have addressed the multi-label classification of mammograms, with
studies only [33] investigating this issue in recent years.

Chougrad et al. [33] introduced a CAD system for the multi-label classification of
mammogram images. They employed VGG16-CNN with fine-tuning techniques and a
label powerset classifier, demonstrating promising results across various datasets.

2.5. Analysis

The above studies indicate significant research addressing breast cancer detection in
mammogram images from various perspectives and formulating different problems, such
as classifying masses as non-cancerous or cancerous, microcalcifications as non-cancerous
or cancerous, and masses and microcalcifications together as benign or malignant. These
works achieved a favorable performance for the above-mentioned problems.

Only a few studies have focused on solving the problem of the multi-label classification
of mammogram images [33], which simultaneously identifies the risk/density grade,
abnormality type (e.g., mass or microcalcification), and state of the lesion (benign or
malignant). The research presented in [19] adopted VGGNet and used transfer learning to
fine-tune the model using ROIs before using the model as a feature extractor and multi-
label classifier. Although this method provides favorable results and uses new techniques
such as deep learning and transfer learning, it entails some limitations, such as using a
simple CNN architecture and single-view ROIs as input. According to the study presented
in [6], using multiple views can enhance prediction performance compared with using a
single view. In addition, integrating residual learning into a CNN helps to overcome many
challenges, such as vanishing gradients, overfitting, and complex correlations between
labels [21].

Table 1 summarizes the existing research in the field. Jafari et al. [34] presented a
CNN-based breast cancer detection method for mammography images, extracting features
from various CNN models and selecting key features. Tested on the RSNA, MIAS, and
DDSM datasets, it achieved the highest accuracy with an NN classifier: 92% for RSNA,
94.5% for MIAS, and 96% for DDSM.

Table 1. Comprehensive summary of the existing works.

Paper Method Dataset Performance

Mass classification as benign or malignant

Chen et al. [11], 2019

Fifty-nine features like
shape, density, FFT, and

DCT for feature
extraction; PSO for

feature selection; SVM
as classifier

FFDM Sen. = 81
Spe. = 77

Das et al. [13], 2020

Power-law
transformation + shift

invariant extrema
characterization + ANN

MIAS, DDSM ACC = 97.2
Sen. = 98.4

Nagarajan et al. [14],
2019

GLCM and GLRM from
MBEMD and SVM/LDA MGM ACC = 90

AUC = 0.92

Ayana et al. [26],
(2023) Transformer DDSM AUC = 1 ± 0

Yu, Xiang, et al. [27],
(2023) CNN DDSM AUC = 0.93

ACC = 81.71

Sun et al. [12], 2019 CNN with dilated CONV
layers MIAS DDSM ACC = 63.06

ACC = 82.02
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Table 1. Cont.

Paper Method Dataset Performance

Microcalcification classification as benign or malignant

George et al. [15]
Topology, graph

connectivity, multi-scale
morphology, and KNN

DDSM ACC = 86.47
AUC = 0.899

Mabrouk et al. [16]

HS, WT, ME, HE, Otsu,
Shape, GLCM, invariant
moment features, ANN,

KNN, and SVM

MIAS ACC = 96
Sen. = 98

Gerbasi et al. [28],
2023

UNet for segmentation +
ResNet18 DDSM AUC = 0.95

Sarvestani et al. [29],
2023

Fuzzy system + Gabor
filtering for image

enhancement + ANN for
classification

DDSM ACC = 93
Sen. = 95

Mass and microcalcification classification as benign or malignant

Li et al. [17], 2019 DenseNet with the
Inception structure. FFDM 94.55

Mohanty et al. [18] BDWPT + PCA +
WC-SSA-KELM MIAS

ACC = 99.28
Sen. = 99.44
AUC = 0.994

Chakravarthy et al.
[31], 2023

Resnet18 + wKNN + PSO
+ DFOA + CSOA MIAS ACC = 84.35

F. Azour et al. [32],
2023

VGG, Resnet,
Inception-v3, DensNet,

MobileNet, and
EfficientNet

ACC = 82.4

Jabeen et al. [30], 2023

Image enhancement,
EfficientNet-b0, feature

optimization and
selection, and ML

classifiers

CBIS-DDSM and
INBreast

ACC = 95.4% and
99.7%

Jafari et al. [34], 2023

Feature extraction from
various CNNs, feature
selection using mutual

information, and
classification with NN,

kNN, RF, and SVM

RSNA, MIAS, and
DDSM

Acc = 92%, 94.5%,
and 96%

Multi-label classification of mammograms

Chougrad et al. [33],
2020 VGG16 DDSM, BCDR

INBreast, and MIAS

Exact match:
0.822, 0.802 0.827,

and 0.782

3. Proposed Method

We address the problem of simultaneously identifying the breast density type (accord-
ing to BI-RADS), abnormality type (mass or calcification), and severity level/pathology
(benign or malignant) from mammogram images. This is a multi-label classification prob-
lem. First, we formally define and formulate the problem and then present the details of
the proposed method.
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3.1. Problem Formulation

To screen a patient for breast cancer detection, two commonly used views of a patient’s
mammogram are the MLO and CC views. The problem is identifying the breast density,
severity level/pathology, and findings from the two views. Based on the BI-RADS (Breast
Imaging Reporting and Data System) guidelines, there are four density levels, BI-RADS I,
BI-RADS II, BI-RADS III, and BI-RADS IV, which are used to classify breast density, where
BI-RADS I represents the category with the lowest density, while BI-RADS IV corresponds
to the category with the highest density. Additionally, there are two main abnormality
types, masses, and calcifications, which are important to identify. Finally, the severity
level/pathology means whether the case for the abnormality type is benign or malignant.

We represent an ROI as x∈ Rm×n , where m and n represent the resolution of the
ROI. xMLO and xCC stand for the ROIs extracted from the MLO view and the CC view,
respectively. There are eight categories: BI-RADS I (1), BI-RADS II (2), BI-RADS III (3),
BI-RADS IV (4), mass (5), calcification (6), benign (7), and malignant (8). The first four
categories correspond to density types, the next two categories represent abnormality
types, and the last two categories stand for severity levels (pathology). In view of this,
the label for a pair of ROIs (xMLO, xCC) ∈ Rm×n × Rm×n corresponding to a patient is
l =

(
ld, l f , lp

)
, where ld ∈ Yd =

{
0, 1}4 , l f ∈ Yf =

{
0, 1}2 , and lp ∈ Yp =

{
0, 1}2 ; Yd, Yf ,

and Yp are the label spaces of the density type, abnormality type/findings, and severity
level/pathology, respectively, in one-hot encoding; and 0 means absent, and 1 means
present. For example, if l =

(
ld, l f , lp

)
, where ld = [0 1 0 0], l f = [1 0], and lp = [1 0],

then the density level is 2, the finding is a mass, and the case is benign. It is a multi-label
classification problem. We need to design a mapping ϕ : Rm×n ×Rm×n → Yd ×Yf ×Yp ,

such that ϕ(xMLO, xCC) =
(

ld, l f , lp

)
.

We employ deep learning techniques to design the mapping ϕ that extracts discrimi-
native features from the input ROIs and associates them with three labels in an end-to-end
manner. In the following subsections, we give the details of the deep-learning-based
method for modeling ϕ.

3.2. Dataset Description

Our model utilizes two benchmark mammography datasets: the Curated Breast
Imaging Subset of DDSM (CBIS-DDSM) [35] and INBreast [36]. Both datasets are publicly
available and extensively annotated. Both cover various breast densities, abnormalities,
and pathologies in different imaging views (MLO and CC). These datasets include a variety
of breast densities (BI-RADS I-IV), abnormalities, and pathologies across the MLO and
CC imaging views. They provide detailed annotations of ROIs and clinical findings such
as masses, calcifications, and architectural distortions and categorize lesions as benign or
malignant. For our research, we focused on cases where ROIs are present in both views,
suitable for fusion methods while excluding cases with ROIs in only one view to ensure the
relevance and comprehensiveness of our data.

3.3. Two-View-Based Deep Model

This section outlines the model architecture for simultaneously classifying mammog-
raphy images into multiple labels, density, severity level, and abnormality type, using a
channel-attention-based multi-task learning framework. It employs two branches, CC and
MLO, with the Swin and ConvNeXT models as feature extractors.

The model consists of a feature extraction module and a fusion module. The feature
extraction module, operating in the CC and MLO views, uses the Swin and ConvNeXT
backbones to extract features crucial for all classification tasks, aiding in multiple-label
prediction. A channel attention mechanism refines the focus on relevant features and
reduces the less informative ones, ensuring selective emphasis on essential channels.

Subsequently, the fusion module merges features from both views, enhancing the
multi-label classification by incorporating diverse information. Integrated features pass
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through three fully connected layers, each dedicated to a specific classification task (density,
severity level, or abnormality type). These layers function as classifiers, producing predic-
tion labels for the input mammographic views, thus enabling simultaneous multi-label
classification.

This architecture integrates channel attention, feature extraction, and fusion mecha-
nisms, facilitating the learning of both shared and task-specific features, thereby improving
efficiency in the multi-label classification of mammography images. This section provides
an overview of the model’s structure, with the subsequent sections detailing the data
preprocessing, evaluation metrics, and deep learning model architecture. Figure 1 visually
represents this model, highlighting its components and their interplay.
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3.3.1. Details of the Model Architecture

This subsection delves into the design and functionality of our multi-label classification
model for mammography images, building on the initial overview. We examine the feature
extraction and fusion modules in detail, highlighting their roles in processing CC and MLO
views for adequate classification. The model integrates channel attention and multi-task
learning, focusing on pertinent features and learning shared and task-specific characteristics,
enhancing breast cancer diagnosis via precise mammography classification.

3.3.2. Preprocessing

To prepare mammography images for model training, we first implement prepro-
cessing, including resizing the ROIs to 224 × 224 pixels, aligning them with the input
requirements of our backbone architectures like Swin and ConvNeXT. The normaliza-
tion of ROI pixel values, based on ImageNet dataset standards, ensures consistency in
feature representation.

3.3.3. Backbone Model

Our proposed architecture uses two advanced models, ConvNeXt and the Swin
transformer, for feature extraction in mammography image classification. These models
were chosen for their superior performance in various computer vision tasks, marking
them as leading solutions in CNN and transformer models.

The Swin transformer excels in capturing both local and global image features due to
its hierarchical structure, shifted windows, and feature attention mechanism, leading to
highly discriminative and informative representations. This feature makes it well-suited
for feature extraction in multi-label classification.

The ConvNeXt model is known for its modularity, efficiency, and scalability, with a
deep architecture that addresses gradient issues, providing stable and effective feature
representations. We utilize pre-trained models on a 21 K image dataset. Their extracted
features, refined through a channel attention mechanism, are combined to integrate features
from both views, enhancing task-specific feature extraction for classification.
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The depth of the Swin transformer and ConvNeXt models allows for the capture of
distinct features crucial for each classification task, significantly boosting the model’s per-
formance in the multi-label classification of mammography images. Our final model uses
ConvNeXt-L as a feature extractor, omitting its last fully connected layer and retaining the
feature map from the penultimate ConvNeXt block (dimension 7,71536). The architecture,
including omitted layers, is illustrated in Figure 2, with critical features indicated for clarity.
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Figure 2. This diagram illustrates ConvNeXt-L, our backbone model, highlighting customized
layers (red boundaries and shading) and key features in the penultimate layer (green box) for our
mammography image classification task.

3.3.4. Chanel Attention Block

Not all feature channels of a feature map are equally important for the current task.
Some channels may contain highly informative features that are directly relevant to the
task, while others may contain less informative or redundant features that can potentially
distract the network from focusing on the relevant information.

To address this, we incorporate a squeeze-and-excitation block after the last feature
map generated by the backbone model. By doing so, we enable the model to adaptively
weigh the importance of each channel, giving more attention to the informative channels
and suppressing the less relevant ones. This dynamic attention mechanism assists the
network in making better-informed decisions during the classification process. Figure 3
shows the channel attention block used.
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The channel attention block takes the input feature map x ∈ RH×W×C, where
C is the number of channels, H is the height, and W is the width. First, it applies a
squeeze operation:

g = GlobalAveragePool(x) (1)

fse = ReLU (W1.g + b1) (2)

where g ∈ RC, fse ∈ RC/c
′
, W1 and b1 are the weights and biases of the FC layer, which

squeezes g to fse to incorporate interdependencies. Then, it applies the excitation operation:

w = σ(W2 . fse + b2) (3)
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where W2 and b2 are the weights and biases of the FC layer that adaptively recalibrate
fse, and w = [∝1 , ∝2 , . .. , ∝C ]T , where ∝c signifies the channel-wise excitation factor for
channel c. Once the channel-wise excitation factors w are computed, they are used to attend
to the corresponding channels:

Z = w
⊙

x = [ z1 , z2 , .... , zC] (4)

3.3.5. Fusion Layer

Fusing features from both CC and MLO views enhances mammography classification
in multi-label tasks. CC views offer a lateral perspective of breast tissue, while MLO views
provide an oblique angle, capturing additional tissue. Merging these views gives classifiers
a more comprehensive understanding of breast tissue, thus improving model performance.

For feature fusion, methods like concatenation, average-wise, and element-wise opera-
tions were considered. Following an ablation study, we chose average-wise operations for
fusing CC and MLO view features. This involves computing the global average pooling
for channel attention feature maps from both the CC and MLO branches, each resulting in
a 1D vector. We then average these vectors to form the final fused feature representation.
This approach aggregates relevant information from both views, balancing their differences
for a robust feature representation for classification.

The dimension of the channel attention feature map from the backbone model’s last
layer is H×W×C, with H and W = 7 and C = 1536. In this context, we denote the number
of channels as D (D = 1536) to differentiate from previous sections.

After applying GAP across H×W, we obtain the vector with dimension 1x1536. The
output of the fusion model is given below:

xFused = g( gGAP(zcc), gGAP(zmlo)) (5)

where xFusedεRD, zcc, zmloεRW×H×D, gGAP(zcc) =∝= [∝1, ∝2, .., ∝d]
T , gGAP(zMLO) = β =

[β1, β2, .., βd]
Tand g(∝, β) =

[
∝1+β1

2 , ..., ∝d+βd
2

]
.

The function is gGAP, and g represents the global average pooling and point-wise
average operation.

The diagram in Figure 4 shows the details of the fusion layer.
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3.3.6. Multi-Branch Classification

Our system classifies input ROIs into three distinct groups: density, severity level,
and abnormality type. To enhance feature representation and task-specific learning, we
integrated three branches of fully connected layers at the end of the fusion model.

Each branch in the multi-branch architecture focuses on learning features specific to a
particular task, allowing the model to extract more effective task-specific features. In the
post-fusion layer, we apply three parallel FC layers dedicated to density, severity level, and
abnormality type, enabling distinct learning for each task.

The architecture includes a series of FC layers leading to a classification layer, with
configurations determined via an ablation study. We use FC 256, FC 128, and dense layers
with ReLU activation, batch normalization, and then the classification layer. This setup
helps in learning task-specific features for efficient classification.

The final classification layer makes predictions for the three groups. Density classifica-
tion uses four output neurons for BI-RADS classes, while abnormality type and severity
level classifications use two output neurons each for classifying into mass or calcification
and benign or malignant, respectively.

We employ the softmax activation function in each group’s output layer for these
tasks. This function transforms the network’s output into class-specific probabilities,
aiding in accurate class determination. The choice of softmax is guided by our multi-
label classification needs and the nature of the tasks. Figure 5 illustrates the multi-branch
classification block.
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Figure 5. Multi-branch classification block. It takes a fused feature and passes it to three parallel task
blocks. It presents a multi-branch neural network architecture with a unified task block structure
replicated across three tasks: density, pathology, and severity level categories. The left side enumerates
sequential task blocks, indicative of a deep and comprehensive processing approach. On the right
is a breakdown of the task block. The output layer employs a softmax function, tailored with four
classes for the density task and two classes for both pathology and severity levels.

In this block, we employ a series of mathematical equations to map the input data to
the output, with the overarching goal of achieving multi-label classification. Specifically,
we utilize these equations to model and predict probability distributions for three distinct
branches: density (denoted as d), severity level/pathology (denoted as p), and abnormality
type/findings (denoted as n). The equations for each branch are presented as follows.

For a given branch,

b (b ∈ {d, p, n}) : Pb = So f tmax
(

f3
b o f2

b o f1
b (xFused)

)
(6)

In this equation, Pb represents the probability distribution specific to branch b, and
{ f3

b , f2
b , f1

b} denote the functions modeled with fully connected layers (FC1, FC2, and
FC3) tailored to each branch. The output is a probability vector pb, and the predicted class
label lb is determined as max max1≤i≤kb pi

b. , where kb is the number of classes associated
with branch b.

Each function fi
b follows a consistent structure, comprising a fully connected layer,

batch normalization, ReLU activation, and dropout. The number of neurons and layer-
specific parameters may vary across branches. Additionally, in each branch, we implement
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a two-stage projection on the fusion features, initially reducing their dimension from D to
D1, and then further compressing them to D2, which are variables determined according to
the specific branch’s requirements.

In each branch, we employ a two-stage projection on the fusion features, initially
reducing their dimension from 1536 to 256, and then compressing them to a 128-dimensional
space. These projections are followed by a classification layer specific to each task, which
has varying numbers of classes (ranging from 2 to 4 depending on the task). This strategy
yields the following benefits:

1. Dimensionality reduction: Reducing fusion features from 1536 to 256 and, further, to
128 dimensions decreases the data complexity, mitigating computational overhead
and overfitting risks while retaining essential information.

2. Targeted feature learning: This helps the model learn crucial task-specific features by
mapping them onto a lower-dimensional space, enhancing class discrimination.

3. Task-specific classification: Post-projection, a classification layer for each task, ac-
commodating 2 to 4 classes, transforms features into class probabilities for precise
task-specific classification.

The entire process is implemented using functions f1 , f2, and f3, encompassing
the operations described. This strategy integrates dimensionality reduction, task-driven
feature learning, and specialized classification to optimize model performance across
different tasks.

4. Evaluation Method

This section describes the evaluation methods for our proposed model, including
datasets, challenges, the evaluation protocol and metrics, and model training.

4.1. Model Training

Our model, trained simultaneously across all branches, uses weighted cross-entropy
loss for each branch, with an average calculated for the final loss. Key considerations
include handling unbalanced multi-label data and utilizing three output branches for
specific tasks.

We employed an RMSprop optimizer with dual learning rates for pre-trained (1× 10−4)
and new layers (1× 10−3). The training involved 400 epochs, a batch size of 128, learn-
ing rate reduction on a plateau, dropout (factor 0.2), and weight decay (1 × 10−6) for
regularization. The stopping strategy had a patience of 40 epochs.

Pre-trained weights from the ImageNet-21K dataset were used for transfer learning.
Data augmentation included random rotations, width and height shifts, horizontal flips,
and zoom, coupled with normalization.

4.2. Evaluation Protocol and Metrics

The datasets were split into 80:20 for training and testing, with a 10% validation set,
using 5-fold cross-validation [37]. The evaluation metrics included mean average precision,
F1-score, Hamming loss, coverage, ranking loss, and exact match [38,39].

The system was implemented using TensorFlow, Keras, and PyTorch in Anaconda
Navigator (2022) on an Intel(R) Core(TM) i9-9900K CPU with a GPU with 32 GB memory
and 64.0 GB RAM.

5. Experiments and Results

This section outlines the experiments to evaluate our multi-label classification model
using the CBIS-DDSM and INBreast datasets. We tested the model with various SOTA
backbone models, assessing its performance using metrics like F1-score, mean average
precision, and exact match. The focus was on classifying breast cancer and abnormalities in
terms of density, severity level, and abnormality type. Additionally, an ablation study ex-
amined different fusion methods and configurations for a multi-branch block, culminating
in a comprehensive assessment of our proposed fusion model.
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5.1. Ablation Study

We conducted this study to analyze which fusion technique is more suitable and which
configuration is the best for a multi-branch block.

5.1.1. Which Fusion Technique Is Suitable?

We conducted this study to analyze and evaluate the model’s performance when using
different common fusion techniques. The goal was to determine which fusion method
was more suitable for our model. We examined three fusion methods: concatenation,
element-wise addition, and averaging. Table 2 shows the results of each technique.

Table 2. Performance results for CBIS-DDSM with different fusion methods.

Fusion Method F1% mAP% EM%

Concatenation 94.29% ± 0.011 90.54% ± 0.016 86.69% ± 0.016

Multiply 93.97% ± 0.01 89.8% ± 0.013 85.6 % ± 0.023

Average 94.7% ± 0.01 91.3% ± 0.017 86.9% ± 0.019

The table compares three fusion techniques: concatenation, element-wise, and average-
wise, using metrics like F1-score, mAP, and EM. Average-wise outperformed others in all
metrics, indicating its effectiveness in integrating features from two views. Consequently,
we selected average-wise as our preferred fusion method.

5.1.2. How Many Hidden Layers in Multi-Branch Block

We conducted a study on how many deep layers we needed for our model. The table
below shows the model’s performance for a multi-branch block in a fusion model with
different numbers of hidden layers. In this study, we examined up to five layers. Table 3
shows that the highest F1-score, mAP, and EM were achieved with two fully connected
layers, with scores of 94.72% and 91.33 for F1-score, mAP, and EM, respectively.

Table 3. The performance of a multi-branch block fusion model with different configurations.

# Layers # of Neurons in
Each Layer F1% mAP% EM%

1 256 94.44 90.69 86.69

2 256 and 128 94.72 91.33 86.86

3 512, 256, and 128 94.27 90.5 86.45

4 1024, 512, 256,
and 128 94.24 90.4 86.53

5 2048, 1024, 512,
and 256 94.48 90.9 86.69

This study recommends using two hidden layers to provide a good balance and trade-
off between the model’s performance and complexity, as it achieved the best performance
among all evaluated metrics.

5.1.3. Which Backbone Model Is Better?

The question was which of the backbone models used in the experiments performs the
best among selected SOTA pre-trained CNN and transformer models? We used the CBIS-
DDSM dataset to test those two models. As shown in Table 4, ConvNeXt was selected as a
backbone model for our proposed model as it obtained the best result. This decision was
made because ConvNeXt outperformed the Swin transformer model in terms of F1-score,
RL, and Cov.
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Table 4. The performance of different backbone models on the DDSM dataset.

Model F1% HL mAP% RL Cov EM%

ConvNeXt 0.910 0.07 0.85 0.12 4.11 0.78

Swin transformer 0.90 0.07 0.85 0.13 4.12 0.78

5.1.4. The Effect of Fusion

Fusing features from both CC and MLO views enhances mammography classification,
as they capture different breast tissue aspects. CC views offer a lateral perspective, while
MLO views include additional tissue through an oblique angle. This fusion provides
a more comprehensive tissue analysis, potentially improving model performance. Our
experiments using SOTA backbone models compared the efficacy of single- and dual-view
approaches for multi-label classification. The results in Table 5 show that dual-view fusion
surpasses single-view classifiers in performance on the CBIS-DDSM dataset.

Table 5. The influence of the overall performance when comparing the single view and two views of
the CBIS-DDSM dataset.

View Model F1% mAP% EM%

Single view
Swin 90% 85% 78%

ConvNeXt 91.0% 85% 78%

Dual view

Swin 94.18% 90.15% 86.28%

ConvNeXt 94.54% 90.88% 87.27%

ConvNeXt with attention 94.72% 91.33% 86.86%

5.1.5. The Effect of the Attention Module

In deep learning models, not all channels in the input image contribute equally to
classification, as some may contain irrelevant or noisy data. To address this, we used a
channel attention mechanism in our backbone model and fusion process. This experiment
demonstrated that channel attention positively impacts performance. Table 6 shows that
integrating this mechanism into the ConvNeXt fusion model improves most evaluation
metrics. The F1-score increased from 94.54% to 94.72%, and the HL decreased from 0.0364
to 0.0355, while mAP and RL showed slight improvements.

Table 6. This table shows the impact of incorporating the attention mechanism into the fusion model.

Model Chanel
Attention F1% HL mAP% RL Cov EM%

ConvNeXt No 94.54% 0.0364 90.88% 0.071 3.636 87.27%

ConvNeXt Yes 94.72% 0.0355 91.33% 0.070 3.657 86.86%

5.1.6. The Analysis of Features

In this section, we assess the performance of the proposed model on the test data by
analyzing the distribution of the features learned by each classification branch. Figure 6
shows how the features are discriminative for each label. This indicates that the proposed
model can extract the discriminative features with less overlapping.
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6. Discussion

We employed the two-views (CC and MLO) technique to construct and evaluate a
proposed multi-label classification of breast cancer into eight labels corresponding to three
groups, simultaneously, i.e., density (I, II, III, or IV), abnormality type/findings (mass
or calcification), and severity level/pathology (benign or malignant). The CBIS-DDSM
benchmark dataset was used to decide which technique is more suitable for this task; for
example, it was used to evaluate the effect of different configurations, backbone models,
fusion methods, and so on. The SOTA backbone model was used as the core component of
the model to enable the automatic extraction of the features without human intervention.

By relying on both views, the system can detect and identify the abnormalities that
might not exist and are visible in a single view. Furthermore, certain irregularities might
only be seen in one view and not the other; accordingly, using both views raises the chance
of identifying the abnormalities and decreases the possibility of missing and neglecting
any potential concerns and important information.

We examined the SOTA CNN and transformer models, including ConvNeXt and the
Swin transformer, and concluded that ConvNeXt was the best model for our proposed
CAD system.

After evaluating the performance of each model, we found that ConvNeXt was the
most appropriate option for our specific tasks. ConvNeXt outperformed other architectures
due to its use of depth-wise separable convolutions. These convolutions required fewer
learnable parameters than traditional convolutional layers, making the network more
effective and reducing overfitting. In addition, it can be adaptive to the data by dynamically
building networks with a varying number of layers, depending on the complexity of the
data. This makes the architecture more adaptable and flexible to several tasks and allows it
to extract important features more efficiently.

Moreover, ConvNeXt utilizes multi-scale processing. This allows for extracting the
features from multiple levels of abstraction. This helps the model to extract and capture
extra related information and enhance the performance of the introduced system.

Three different fusion techniques were examined. The average-wise method was
selected based on the results as it gave the best performance among the methods.

As the proposed system classifies the input ROIs into three non-overlapped groups,
integrating three branches into the end of the backbone model assists in enhancing the
performance as it helps improve the feature representation and task-specific learning. Each
branch of the multi-branch architecture focuses on learning features specific to a particular
task, leading to more effective feature representation and task-specific learning. This helps
the model capture more task-related features, yielding a better performance on that task,
leading to improved performance.

On the other hand, incorporating a channel attention mechanism for each task in
the classification layer of a deep neural network has a slightly positive impact on the
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model’s performance. Channel attention leads the model to focus on the significant relevant
channels and suppress noninformative ones.

Incorporating channel attention into ConvNeXt enables the selective enhancement of
the most informative channels in the feature maps. It leads to a more effective representation
of features and, eventually, results in enhanced model performance.

6.1. Performance Comparison with the SOTA Methods

As shown in the related work section, few studies have addressed the multi-label
classification of mammograms, with only [33] investigating this issue in recent years.

The multi-label classification of mammogram images proposed by Chougrad et al. [33]
simultaneously classifies a mammogram into its abnormality type/findings (mass/mic-
rocalcifications), severity level/pathology (benign/malignant), and density class (I–IV).
They used ROIs as input for the deep learning module, transfer learning to initiate the
VGG16-CNN weights with a fine-tuning technique, and a label powerset classifier for
classification. The proposed algorithm considers the correlation between labels. They
evaluated their method using the CBIS-DDSM [35], BCDR [40], INBreast [36], and MIAS [41]
datasets with multiple metrics.

On the other hand, the introduced system outperformed the SOTA methods as we
used the fusion method and SOTA backbone model in addition to the multi-branch and
channel attention techniques. It achieved a higher performance in all metrics on both the
CBIS-DDSM and INBreast datasets. It is observed that fusing two view inputs improves
the overall performance across all performance metrics when compared with a single view.
This is because several irregularities and features might be visualized better in one view
than in the other, and combining the features from two views leads to a comprehensive
assessment of the breast situation. In addition, utilizing the SOTA ConvNeXt performs
better than using other backbone models.

Table 7 gives the performance metrics for the proposed and existing methods on the
INBreast and CBIS-DDSM datasets.

Table 7. The comparison of the proposed method with SOTA method on CBIS-DDSM and INBreast
datasets.

Reference Method F1 HL mAP RL Cov EM

CBIS-DDSM

Chougrad et al. [33] VGG16 93.5% ± 0.019 0.047 ± 0.022 89.5% ± 0.017 0.087 ± 0.025 3.895 ± 0.320 82.2% ± 0.041

Proposed method ConvNeXt 94.7% ± 0.01 0.036 ± 0.007 91.3% ± 0.017 0.07 ± 0.012 3.66 ± 0.095 86.9% ± 0.019

INBreast

Chougrad et al. [33] VGG16 94.2% ± 0.102 0.042 ± 0.092 88.7% ± 0.140 0.082 ± 0.125 3.723 ± 0.147 82.7% ± 0.092

Proposed method ConvNeXt 95.1% ± 0.016 0.032 ± 0.013 92.8% ± 0.025 0.065 ± 0.021 3.55 ± 0.174 88.9% ± 0.035

For the CBIS-DDSM dataset, Chougrad et al. [33], who applied the VGG16 architecture,
attained an F1-score of 0.935, a Hamming loss (HL) of 0.047, a mean average precision
(mAP) of 0.895, a ranking loss (RL) of 0.087, a coverage (Cov) of 3.895, and an exact match
(EM) of 0.822. The proposed method, which utilized the ConvNeXt architecture with a
fusion technique, outperformed the existing method, achieving a higher F1-score of 0.947,
a lower HL of 0.036, a higher mAP of 0.913, a lower RL of 0.07, a lower Cov of 3.66, and a
higher EM of 0.869.

For the INBreast dataset, Chougrad et al.’s method [33] achieved the following perfor-
mance metrics when testing their proposed method using the INBreast dataset: an F1-score
of 0.935, a hamming loss of 0.047, a mean average precision of 0.895, a ranking loss of 0.087,
a coverage of 3.895, and an exact match of 0.822. The proposed method outperformed their
method, achieving a higher F1-score of 95.13, a lower HL of 0.032, a higher mAP of 0.928, a
lower RL of 0.06565, a lower Cov of 3.557143, and a higher EM of 0.88857.
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These results indicate the superiority of the proposed method compared with the
existing methods for both the CBIS-DDSM and INBreast datasets.

On the CBIS-DDSM dataset, our proposed method achieved improvement for all
matrices. For the F1-score, the proposed method improved by 1.33% compared with
Chougrad et al.’s method [33]. For HL, the proposed method significantly improved by
23.4% compared with Chougrad et al.’s method [33]. The proposed method showed a 4.60%
improvement in mAP compared with Chougrad et al.’s [33] method. For RL, the proposed
method significantly improved by 16.09% compared with Chougrad et al.’s method [33].
Regarding Cov, the proposed method showed a slight enhancement of 0.60% compared
with Chougrad et al.’s [33] method. The proposed method improved by 5.06% in EM
compared with Chougrad et al.’s method [33].

On the other hand, regarding the INBreast dataset, the proposed system outperformed
the existing method in the INBreast dataset, with an improvement of 0.99% in the F1-score,
23.1% in Hamming loss, 4.64% in mAP, 20% in ranking loss, 4.45% in the coverage score,
and 7.42% in exact match.

Overall, the proposed method achieved notable improvements compared with the
previous methods. The results in Table 7 indicate that the proposed method using the
ConvNeXt architecture with two views performs better than the method using both the
VGG16 and Efficientnetb3 architectures among all the performance metrics. The higher
F1-score, EM, and mAP, and the lower HL, Cov, and RL show that the proposed method
achieves better accuracy and precision in predicting the presence of abnormalities in
mammograms and classifying breast density.

In addition, the ROC curves shown in Figure 7, for each category—density, abnor-
mality type (case), and severity level (pathology)—demonstrate the model’s classification
effectiveness. For ‘Density,’ the model’s ability to differentiate between multiple den-
sity classes yielded an AUC score of 0.91, demonstrating its discriminative power. The
‘Abnormality type (case)’ category exhibited near-perfect classification with an AUC of
0.99, indicative of the model’s exceptional accuracy in case determination. Similarly, the
‘severity level (pathology)’ category showed an AUC of 0.96, reflecting the model’s high
proficiency in identifying pathological features. These AUC values, significantly exceeding
the 0.5 threshold of random chance, underscore the model’s potential to provide reliable
and accurate diagnostic assistance in mammographic analysis.
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6.2. Comparative Analysis with Recent Deep Networks

Our research advances the multi-label classification of mammograms by integrat-
ing state-of-the-art techniques. It contrasts with previous studies like that of Chougrad
et al. [33], which primarily relied on the simpler CNN model with the VGG16 architecture.
Our model employs the ConvNeXt architecture, utilizing depth-wise separable convolu-
tions. This design requires fewer learnable parameters, reducing the risk of overfitting and
proving more adaptability in dynamically building networks based on data complexity, a
clear advantage over the more rigid structure of VGG16.

Unlike traditional CNN models like VGG16, our approach incorporates advanced
techniques like residual learning and transformer mechanisms. It also incorporates a
channel attention mechanism based on squeeze-and-excitation, focusing the model on the
most significant features and suppressing the less important ones in the input feature maps.
A fusion method is utilized to integrate features from both CC and MLO views, providing
a holistic analysis and a step forward from traditional single-view analyses, leading to a
more complete representation of mammograms.

The dual-view technique (with CC and MLO views) significantly enhances our model’s
ability to detect abnormalities that might be visible in one view but not the other. It is a
notable improvement over single-view analysis. Our exploration of various fusion methods
revealed the average-wise method as the most effective. Incorporating a multi-branch archi-
tecture and channel attention techniques leads to more effective feature representation and
task-specific learning. These innovative approaches contrast with traditional single-branch
architectures, enhancing our model’s accuracy and precision in predicting abnormalities.

6.3. Quantitative Analysis of Proposed Model

In this subsection, we provide the qualitative analysis of our model’s performance,
as illustrated in Figure 8. This analysis complements our quantitative findings and gives
insight into the practical application of our method.

Figure 8 is structured into two columns, each representing a progressive increase
in breast tissue density from left to right. Column 1 corresponds to the lowest density
(BI-RADS I), while column 2 represents the highest density (BI-RADS IV). Within each
column, rows 1 and 2 illustrate the differences between benign and malignant calcifications,
and rows 3 and 4 distinguish between benign and malignant masses. This arrangement
demonstrates the algorithm’s capability to analyze and accurately differentiate breast
abnormalities across tissue densities, showcasing its robustness and precision in lower- and
higher-density scenarios.

Additionally, our model’s inference efficiency is noteworthy, processing each image
in an average of 286 milliseconds on advanced hardware. This speed is crucial for rapid
and accurate breast tissue analysis in clinical settings. The combination of our model’s
diagnostic precision demonstrated in the annotated images and its quick processing time
solidifies its potential as an effective tool in medical image analysis.
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7. Limitations and Future Work

The current work concentrates only on masses and calcifications in mammograms.
It does not predict other abnormalities like asymmetries and architectural distortions.
Furthermore, it is not able to reveal the regions in mammograms that play key roles in
decision making, i.e., the interpretability of a decision.

In future studies, we aim to expand the scope of the algorithm by including abnormal-
ities like asymmetries and architectural distortions and explore various fusion techniques
for integrating CC and MLO views and different channel attention mechanisms, including
SKNet, to enhance its performance in a multi-label classification system.

Additionally, we plan to implement spatial attention mechanisms for revealing the
regions in mammogram images that play crucial roles in decision making and improving
accuracy by utilizing complete contextual information. Future work will also investi-
gate multi-label classification algorithms for more effective breast cancer diagnosis and
risk assessment, particularly those centered on problem transformation and adaptation
techniques.

The benchmark datasets, which we used to develop and evaluate the proposed system,
are annotated according to the fourth edition of BI-RADS. However, the fifth edition of
BI-RADS is available now, and there is a need to annotate the datasets according to this
edition and evaluate the system’s performance.

8. Conclusions

This research paper presented an innovative deep-learning-based model precisely
designed to utilize the power of dual mammogram views: the craniocaudal (CC) and
mediolateral oblique (MLO) views. This model’s main objective is to diagnose compre-
hensively by simultaneously classifying mammograms based on their density, severity
level/pathology, and abnormality type/findings. To achieve this, our model incorporates
the state-of-the-art ConvNeXt as its backbone model. The design of this model is based on
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techniques like residual learning and transformer mechanisms, setting a solid foundation
for advanced deep learning techniques. We utilized a channel attention mechanism based
on squeeze-and-excitation to improve the ability of the model to concentrate on the most
significant features and suppress the less important ones in the input feature maps. We
employed an average-element-wise fusion method to consolidate the features’ importance
from both the CC and MLO views. This fusion method operates as a new layer within
the model, seamlessly integrating the information extracted from the two views. This
collaborative data merging ensures that no essential details are neglected, and the model
acquires a holistic understanding of the mammogram image. Recognizing the diverse
nature of the classification tasks, we introduced a multi-task/multi-branch architecture.
This architecture tailors the feature-learning process to the unique requirements of each
task: density, abnormality type, and lesion severity level. These tasks each have their
distinct path within the architecture, facilitating more effective feature representation and
task-specific learning. This enables our model to provide more accurate diagnoses for
specific medical aspects. Employing multi-label learning helps enhance the model’s abil-
ity to learn task-specific features and improves the model’s performance. The proposed
method was evaluated using benchmark datasets, the CBIS-DDSM and INBreast datasets,
and outperformed SOTA. The proposed model is limited to masses and microcalcifications,
and its extension to include other abnormalities will be the subject of future work.
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Nomenclature
The following is a list of symbols and terms used in this manuscript along with their definitions

for reference.

x Input feature map
g GlobalAveragePool function
W1 , b1 Weights and biases of the first fully connected layer
fse Squeezed feature map after ReLU activation
W2, b2 Weights and biases of the second fully connected layer
fex Excited feature map
σ Sigmoid activation function
W Channel-wise excitation factors
Z Feature map with applied attention

https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://biokeanos.com/source/INBreast
https://biokeanos.com/source/INBreast
www.kaggle.com/datasets/martholi/inbreast
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zi ith channel of Z
∝i Channel-wise excitation factor for channel i
xa Weighted feature map
zcc, zmlo Feature maps for CC and MLO views.
gGAP GlobalAveragePool operation
xFused Fused feature map
b Label for breast cancer classification (density d, pathology p, and normal n)
Pb Probability of class b after applying softmax
D Number of channels
∝, β Vectors representing global average pooled features for CC and MLO views, respectively
N Total number of instances
y , ŷ n Ground truth label and predicted label for the nth instance
F1Score Harmonic mean of precision and recall
MAP Mean average precision
r ( xn , y ) Rank of label y for nth instance
HL Hamming loss
∆ Symmetric difference operator
RL Ranking loss
yn Complement of the set yn
Coverage Average count of labels to examine for all reference labels
EM Exact match
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