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Abstract: Salient Object Detection (SOD) aims at identifying the most visually distinctive objects
in a scene. However, learning a mapping directly from a raw image to its corresponding saliency
map is still challenging. First, the binary annotations of SOD impede the model from learning the
mapping smoothly. Second, the annotator’s preference introduces noisy labeling in the SOD datasets.
Motivated by these, we propose a novel learning framework which consists of the Self-Improvement
Training (SIT) strategy and the Augmentation-based Consistent Learning (ACL) scheme. SIT aims
at reducing the learning difficulty, which provides smooth labels and improves the SOD model in
a momentum-updating manner. Meanwhile, ACL focuses on improving the robustness of models
by regularizing the consistency between raw images and their corresponding augmented images.
Extensive experiments on five challenging benchmark datasets demonstrate that the proposed
framework can play a plug-and-play role in various existing state-of-the-art SOD methods and
improve their performances on multiple benchmarks without any architecture modification.

Keywords: salient object detection; self-improved strategy

1. Introduction

Salient Object Detection (SOD) refers to the problem of identifying the most visually
distinctive objects. SOD methods typically learn a mapping from an image to a saliency
mask, which benefits various downstream tasks such as object tracking [1], image cap-
tioning [2], video analysis [3], person re-identification [4], image retrieval [5], semantic
segmentation [6], and object detection [7].

Despite the efforts long devoted to it, SOD remains a challenging task. One difficulty
lies in the fact that the annotations are binary, i.e., each pixel is labeled either salient or
non-salient, which does not fully capture the nuanced nature of saliency. For example, the
four giraffes in Figure 1a are labeled as equally salient regardless of their different sizes,
locations, and depths in the image. Furthermore, the binary annotations pose challenges
in learning the mapping from images to saliency masks. The abrupt transition between
salient and non-salient regions can make the learning process less smooth and hinder the
ability of SOD models to generalize well to unseen data.

In this regard, we propose a novel Self-Improvement Training (SIT) strategy to reduce
the learning difficulty incurred by the binary annotations. We design a progressively
updated module to generate smooth labels, providing flexible degrees of saliency for each
object to represent the difference of saliency between objects. The smooth labels provide
more nuanced information about the saliency levels within an image, allowing the model
to better understand the varying degrees of importance assigned to different objects. The
use of smooth labels together with the binary annotations smoothens the learning process.
However, it is worth noting that introducing smooth labels can also introduce noise into
the training process. To this end, we mitigate the noise brought by the smooth labels by
adapting the weights of smooth labels in the optimization phase.

Another difficulty is that the annotations are subjective, i.e., the saliency of an object
is influenced by the annotator’s personal preference. As shown in Figure 1b, the hollow
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part of a bicycle is labeled salient in the left but not salient in the right. Moreover, both
images with butterflies in Figure 1b share similar layouts (butterfly, flowers, and green
background) but the flowers are marked as salient in the left image and not salient in the
right. Therefore, SOD requires the model to be of high robustness to noisy labeling.

(a) Binary annotations

(b) Inconsistent annotations

Figure 1. (a) The four giraffes are labeled as equally salient regardless of their different sizes and
location in the image. (b) The bike on the left is from PASCAL-S [8] and the right is from DUT-
OMRON [9]. The butterfly on the left is from ECSSD [10] and the right is from HKU-IS [11].

To improve the robustness, we propose a novel Augmentation-based Consistent
Learning (ACL) scheme. By simulating a cross-dataset validation scenario, ACL introduces
salient-related data augmentation to images, aiming to enhance the consistency of predic-
tions between raw and augmented images. In this way, ACL makes the prediction of a raw
image be consistent to that of the augmented image. As a result, the SOD model is capable
of accurately locating the most salient objects while disregarding irrelevant variations
caused by augmentation, thus improving the robustness of the model.

Our main contributions are summarized as follows.

• We propose a novel Self-Improved Training strategy for SOD, which reduces the
learning difficulty and effectively improves the performance.

• We present an Augmentation-based Consistent Learning scheme that regularizes
the consistency between raw images and their corresponding augmented images at
training time and improves the robustness of the models.

• The proposed method is model independent, which can be applied to existing preva-
lent methods without modifying the architecture to gain considerable improvements.

2. Related Work
2.1. Network Designs for SOD

The network designs for Salient Object Detection can be summarized into three cate-
gories: architecture-based, aggregation-based, and contour-based methods.

First, architecture-based methods explore various feature extractors for SOD. Early
methods such as [11–17] obtain handcrafted or deep features from image subunits and
use MLP classifiers to predict saliency scores based on the features. For example, Super-
CNN [16] and Multi-Context [13] use super-pixels or patches as image subunits. These
methods fail to model the global context and cannot be trained end to end. Inspired by
FCNs [18], CNN-based methods [19–25] formulate the salient object detection as a pixel-
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level prediction task and generate the saliency map in an end-to-end manner. Recently,
Transformer has also been applied to SOD [26–30]. They combine both Transformer and
CNN to process multi-level features. For instance, VST [30] considers the SOD task from
the sequence-to-sequence perspective and designs a pure transformer model to handle
the tokenized input. In addition, Transformer is also utilized to model the cross-modal
information from the RGB and depth data [26,27].

Second, aggregation-based methods focus on feature aggregation or feature fusion to
combine features from different layers. These methods capture both spatial details and
global semantics for an accurate saliency map [13,24,31–36]. A simple yet effective way is
to skip connect the features from the encoder to the features with the same spatial size from
the decoder. This U-shape-based structure has been employed in many works [13,35,36].
Furthermore, GateNet [34] introduces gated mechanisms to control the information fusion
flow. Also, channel-wise attention and spatial-wise attention have been applied to weigh
the importance during the feature aggregation process [31–33]. MENet [37] designs a multi-
scale feature enhancement module to gradually aggregate and refine global or detailed
features by changing the size order of the input feature sequence.

To achieve high-quality saliency prediction with fine edge details, contour-based
methods attempt to explicitly regularize the contours of salient objects. This line of work
involves two aspects: network design and loss function design. Contour-aware networks
attempt to model contours explicitly [32,33,38,39]. Specifically, EGNet [38] proposes to
make the model predict saliency and contours simultaneously. Based on this, C2SNet [39]
adopts an alternating converting method between contour maps and saliency maps. Unlike
existing two-branch methods [33,38] that use one branch for the boundary and the other
one for the entire object, MENet [37] uses two parallel branches that learn internal regional
features and global features, respectively, so as to reduce the interference of inaccurate
boundary information with global features. Some other works design contour-aware loss
functions. The structural similarity index (SSIM) [40] and weighted BCE loss [41] are
introduced for more edge details in the saliency maps.

Our method aims to smoothen the learning process and improve the robustness of
SOD. We do not design a specific architecture or model contours for SOD explicitly. Instead,
our learning strategy is capable of working with all these methods without modifying
their networks.

2.2. Non-Fully Supervised Learning for SOD

To alleviate the burden of human efforts on pixel-level annotations, semi-/weakly-
supervised methods for SOD have been proposed. These methods require image-level [42–46],
scribble-level [47,48], or point-level annotations [49,50]. For example, FIN [42] leverages
the category labels and is jointly optimized with an FCN to capture potentially salient re-
gions. WS3A [47] uses scribbles annotation to do local supervision while utilizing auxiliary
edges to provide details. PSOD [49] uses point annotation to provide the locations of salient
objects to obtain pseudo labels to gain the first round of supervision, and then again uses
point annotation to suppress non-salient objects to obtain optimized pseudo labels for the
second round.

Recent years also witness the adoption of self-supervised learning for SOD, which
requires no human annotations. A2S [51] and A2Sv2 [52] employ large-scale unsupervised
pre-trained networks. They utilize a two-step approach where the first stage involves
constructing reliable pseudo labels and the second stage trains the final segmenter after
intermediate label processing. UNSS [53] introduces a top–down context guidance strategy
that extracts detailed signals for both global and local segmentation learning.

In this paper, the training of our method consists of two parts: the Self-Improvement
Training strategy (SIT) and Augmentation-based Consistent Learning. They are motivated
by self-supervised learning, but both of them utilize pixel-level annotations. Specifically,
SIT utilizes the SOD model, which uses pixel-level annotations, to generate smooth labels
to alleviate the training difficulty of itself. ACL adopts the CutOut augmentation to



Appl. Sci. 2023, 13, 12966 4 of 17

remove part of the image and forces the model to make the results of the augmented image
consistent with the results of the original image. The removed part is determined using
the ground truth, and thus, ACL cannot be treated as unsupervised. In essence, the aim of
ACL is to make the model robust instead of reducing human efforts on annotations.

3. Method

Salient object detection learns a function from an image to saliency predictions. Gener-
ally, an SOD network FSOD consists of an encoder E and a decoder D. Given an input RGB
image x ∈ RH×W×3 and its ground truth y ∈ {0, 1}H×W with the height H and width W,
encoder E extracts features and decoder D generates a saliency prediction p ∈ RH×W by
p = FSOD(x) = D(E(x)).

Next, we present our framework as illustrated in Figure 2a. We design the proposed
Self-Improvement Training strategy (SIT) in Section 3.1 and Augmentation-based Consistent
Learning scheme (ACL) in Section 3.2. Finally, we summarize the whole training procedure
in Section 3.3.

Augmentation

smooth labels 

SAM

ground-truth 

predictions encoder decoder

encoder decoder

feature maps

feature maps

predictions 

momentum updating

SIT

ACL

encoder decoder

(a) Our Framework

iteration 

initialization

iteration 

momentum updating

iteration 

momentum updating

   

   

  

(b) Progressively Updated Module (PUM)

Figure 2. The overview of our proposed framework. Our framework consists of two components,
the Self-Improvement Training strategy (SIT) and Augmentation-based Consistent Learning scheme
(ACL). The PUM Module of SIT generates smooth labels at training time, progressively improving the
SOD model in a momentum-updating manner. SIT relaxes the binary annotations with smooth labels,
reducing the learning difficulty. ACL enforces the consistency between raw images and augmented
images, regularizing the model at both feature level and prediction level.

3.1. Self-Improvement Training Strategy

In this work, we propose a Self-Improvement Training (SIT) strategy to reduce the
learning difficulty by relaxing the binary annotations with smooth labels. We decompose
SIT into two steps. First, we generate smooth labels with a proposed Progressively Updated
Module (PUM). Second, we design a Sample Adaptive Module (SAM) to weigh the balance
between binary and smooth labels.

3.1.1. PUM: Progressively Updated Module

Formally, we design a progressively updated module (PUM), denoted by FPUM, to
generate smooth labels. FPUM shares the same network structure with the SOD network
FSOD. Specifically, let the parameters of FSOD be θSOD, and the parameters of FPUM be
θPUM. First, we randomly initialize θSOD. Then, we initialize θPUM by

t = 0 : θ
(0)
PUM = θ

(0)
SOD, (1)

where t is the iteration of the training (Iteration t refers to a mini-batch training iteration
instead of an epoch). At this point, FPUM is identical to FSOD. They can only generate a
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random salient output before training. To progressively improve the quality of the smooth
labels, we update θPUM at a momentum coefficient η from θSOD as follows

t = 1 : θ
(1)
PUM = η · θ(0)PUM + (1− η) · θ(1)SOD,

t = 2 : θ
(2)
PUM = η · θ(1)PUM + (1− η) · θ(2)SOD,

...
...

t = T : θ
(T)
PUM = η · θ(T−1)

PUM + (1− η) · θ(T)SOD.

(2)

It is worth noting that only parameters θSOD are updated via backpropagation, whereas
parameters θPUM are updated progressively by θSOD at the training time of FSOD. The
momentum update in Equation (2) makes θPUM evolve more smoothly than θSOD. As
a result, the generated smooth labels are improved smoothly with the training of FSOD.
In this way, the PUM progressively integrates the parameter from the SOD network and
generates more informative supervisions for the output of the SOD network during training,
as illustrated in Figure 2b.

With PUM, we can obtain smooth labels z by feeding an input image x into FPUM as

z(t) = FPUM(x; θ
(t)
PUM), (3)

where predictions z are of the same size as ground truth y. While y is ∈ {0, 1}H×W , z is
∈ (0, 1]H×W

With smooth labels z, we regularize FSOD by

LPUM =
H

∑
i=1

W

∑
j=1

(p(t)i,j − z(t)i,j )
2, (4)

where p ∈ (0, 1]H×W are the predictions of FSOD, and z ∈ (0, 1]H×W are the obtained
smooth labels by FPUM.

3.1.2. SAM: Sample Adaptive Module

Although smooth labels z aim at providing more informative supervisions for the
output of the SOD network, they are noisy and unreliable at the beginning of the training.
Figure 3 shows that the quality of the smooth labels is getting better and better as the
training goes. To alleviate the noise incurred by smooth labels z, we introduce an adaptive
weight λ defined by

λ = exp(−ζ · (y · log z(t) + (1− y) · log(1− z(t)))), (5)

where y is the ground truth, z(t) are the smooth labels at training iteration t, and ζ is a
hyperparameter. The definition of λ implies that λ is always positive, and that when z is
significantly different from y, which means the quality of the smooth labels is bad, λ will
be close to zero. In this way, instead of directly enforcing FSOD to mimic the output from
FPUM, our Sample Adaptive Module (SAM) measures the quality of generated smooth
labels and strikes a balance between ground truth and the smooth labels. As a result, the
overall loss function of SIT is

LSIT = LSOD + λ · LPUM, (6)

where LPUM is defined in Equation (4), and LSOD is the commonly used SOD loss function
defined by

LSOD =
H

∑
i=1

W

∑
j=1

(yi,j · log pi,j + (1− yi,j) · log(1− pi,j)). (7)

At the beginning of training, z is noisy, which leads to a very small λ to punish the impact
of LPUM. As the training goes, the quality of z will be better and better and λ will be larger,
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which makes the impact of LPUM more significant. In other words, as the quality of smooth
labels becomes better, FSOD will learn more from FPUM.

Figure 3. The visualization of the smooth labels generated via the Progressively Updated Mod-
ule (PUM) at different training epochs. GT: Ground truth.

3.2. Augmentation-Based Consistent Learning

We design an augmentation-based consistent learning (ACL) scheme to keep the
model’s robustness for the salient-related data augmentation. By regularizing the model
at both the prediction level and feature level, ACL helps the SOD model to capture more
discriminative contextual information and improve the robustness.

3.2.1. Regularizing with Prediction Consistency

We first augment the raw image x with task-specific augmentation methods (detailed
in Section 4.1.3) and obtain its augmentations x̂ and its corresponding saliency predic-
tion p̂. Next, we regularize the prediction consistency between the raw image and its
augmentations by

Llogit =
H

∑
i=1

W

∑
j=1

(p(t)i,j − p̂(t)i,j )
2, (8)

where p is the prediction of x and p̂ is the prediction of x̂.

3.2.2. Regularizing with Feature Consistency

Moreover, we introduce a multiscale feature consistency loss Lfeature to regularize the
feature consistency for each layer of encoder Ei between the raw image x and augmented
image x̂ by

Lfeature =
N

∑
i=1

∥∥∥Ei(x; θ
(t)
SOD)− Ei(x̂; θ

(t)
SOD)

∥∥∥2

F
, (9)

where N is the number of feature levels in encoder E, Ei(x) are the features of x at the
i-th layer of E, Ei(x̂) are the features of x̂ at the i-th layer, and ‖ · ‖F is the Frobenius norm
of the matrix.

3.3. The Training Procedure

Finally, we put all things together and train FSOD in an end-to-end manner. The total
loss Ltotal is defined as

Ltotal = LSIT + Llogit + Lfeature. (10)

The optimization procedure of our proposed method is summarized in Algorithm 1. It is
worth noting that our method is orthogonal to the network architectures; thus, it can work
as a plug-and-play module to boost the existing methods.
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Algorithm 1 SIT and ACL training strategy at the t iteration
Input: x, an input images; y, its ground-truth
Networks: FSOD(·; θSOD), an SOD network with its parameters; FPUM(·; θPUM), a PUM
network with its parameters
Output: θSOD, θPUM.

1: Initialization: θ
(0)
PUM ← θ

(0)
SOD

2: for t = 1 to T do
// SIT Self-Improvement Training Strategy

3: p = FSOD(x; θ
(t−1)
SOD ) // Obtain saliency prediction

4: z = FPUM(x; θ
(t−1)
PUM ) // Obtain smooth label

5: Compute the SIT loss LSIT defined in Equation (6)

// ACL Augmentation-based Consistent Learning
6: x̂ = Augment(x) // Get augmentation
7: p̂ = FSOD(x̂; θ

(t−1)
SOD ) // Obtain saliency prediction

8: Compute Llogit and Lfeature // defined in Equations (8) and (9)

// Network Optimization
9: Compute the total loss Ltotal defined in Equation (10)

10: θ
(t)
SOD ← Adam(Ltotal, θ

(t−1)
SOD ) // Optimize SOD network

11: θ
(t)
PUM ← η · θ(t−1)

PUM + (1− η) · θ(t)SOD // Update PUM
12: end for
13: return θSOD, θPUM

4. Experiment

In this section, we evaluate our method. First, we describe the experiment setup in
Section 4.1. Next, we conduct a series of ablation studies to demonstrate the impact of each
component in our proposed framework and compare our method with others in Section 4.2.
Furthermore, we carry out a detailed analysis of different design choices of our proposed
SIT and ACL in Section 4.3. Finally, we present a visual comparison in Section 4.4.

4.1. Experiment Setup
4.1.1. Datasets

We evaluate our method on five popular datasets as shown in Table 1, including
ECSSD [10] with 1000 images, PASCAL-S [8] with 850 images, DUT-OMRON [9] with
5168 images, HKU-IS [11] with 4447 images, and DUTS [42] with 15,572 images. All datasets
are human-labeled with pixel-wise ground truth for quantitative evaluations. DUTS is
currently the largest SOD dataset, which is divided into 10,553 training images (DUTS-TR)
and 5019 testing images (DUTS-TE). We follow [40,54] to use DUTS-TR as the training
dataset and the others as the testing datasets.

Table 1. The datasets we use. Only part of DUTS is used at training time and the rest are used at testing.

Datasets Training Images Testing Images

DUTS [42] 10,533 5019

ECSSD [10] – 1000
DUT-OMRON [9] – 5168
HKU-IS [11] – 4447
PASCAL-S [8] – 850
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4.1.2. Evaluation Metrics

For all the experiments, we use four evaluation metrics to measure the performance,
including the Mean Absolute Error (MAE), Mean F-measure (mF), structural similarity
measure (Sα, α = 0.5) [55], and E-measure (Eξ) [56].

First, MAE is a metric that computes the average absolute difference between the pre-
dicted saliency map p and its corresponding ground-truth map y pixel-by-pixel as follows

MAE =
1

H ×W

H

∑
i=1

W

∑
j=1
|pi,j − yi,j|, (11)

where H and W are the height and width of p correspondingly. Second, the F-measure,
termed mF, is a metric that evaluates both precision and recall comprehensively, and we
provide the mean F-measure using varying fixed (0–255) thresholds. Next, the S-measure,
termed Sα, is a metric that consists of the region-aware (Sr) and object-aware (So) structural
similarity:

Sα = α · So + (1− α) · Sr, (12)

where α is set to 0.5 to weigh the balance. Finally, the E-measure, termed Eξ , is a metric
that takes both the image-level mean value and local pixel matching information into
consideration to evaluate the similarity between the prediction and the ground truth.

4.1.3. Implementation Details

Our framework is implemented via PyTorch. As our goal is to design a general model
independent framework, we choose three state-of-the-art SOD algorithms: F3Net [57],
MINet [58], and GateNet [34] as baselines and integrate our methods into these different
baselines. ResNet-50 [59], pre-trained on ImageNet, is used as the backbone network for all
the three baselines. For training the hyperparameters’ setting, we follow different baseline’s
implementation details according to their paper. For the data augmentation method in
ACL, we use CutOut [60]. Specifically, we will conduct Cutout on the image area where
there are no salient objects.

4.2. Ablation Study

First, we carry out ablation experiments to validate the effectiveness of our proposed
SIT strategy and ACL scheme. Then, we integrate the proposed framework into different
SOD baseline models. Since our method is orthogonal to the network architectures, we
conduct all ablation studies on the basis of F3Net due to its flexibility and effectiveness
without a loss of generality.

4.2.1. Effectiveness of SIT

The integration of SIT (the second row in Table 2) gives performance gains of 0.7%,
0.3%, and 0.2%, in terms of mF, Sα, and Eξ on the DUTS-TE dataset over the F3Net baseline,
respectively. Such results validate that the SIT strategy serves as a useful way to reduce the
learning difficulty and improve the performance.

Table 2. Ablation study for SIT and ACL on the F3Net [57] baseline on the DUTS-TE dataset. SIT:
Self-Improvement Training. ACL: Augmentation-based Consistent Learning. ↑ and ↓ indicate that
the larger and smaller scores are better, respectively. The best results are highlighted in bold.

SIT ACL MAE ↓ mF ↑ Sα ↑ Eξ ↑
— — 0.035 0.840 0.888 0.902
X — 0.035 0.847 0.891 0.904
— X 0.035 0.845 0.888 0.905
X X 0.034 0.846 0.891 0.904
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4.2.2. Effectiveness of ACL

As shown in the third row of Table 2, simply embedding the ACL scheme into the
F3Net baseline also helps improve the performance on both mF and Eξ on the DUTS-TE
dataset by 0.5% and 0.3%, respectively. It reveals that the robustness of the model is
improved by enforcing consistency regularization for augmented images in ACL. The
visual effects of ACL are illustrated in Figure 4. We can see that ACL helps effectively
suppress the distracting background and accurately locate the salient objects because the
richer contextual information can be captured via the consistency learning process.

Figure 4. Visual comparisons for showing the benefits of the proposed methods. GT: Ground truth;
ACL: Augmentation-based Consistent Learning scheme.

4.2.3. The Whole Framework

To demonstrate the effectiveness of the proposed methods, we compare it against 13 state-
of-the-art SOD algorithms, including AFNet [33], BASNet [40], CPD-R [54], BMPM [24],
R3Net [61], PiCA-R [23], DGRL [22], TDBU [62], PoolNet [63], PAGE [32], RAS [64],
C2SNet [39], and F3Net [57]. As shown in Table 3, the performances of these baselines are
boosted considerably by being integrated with our proposed framework.

Compared with the baselines, the mF results of our method on the DUTS-TE dataset
are improved by 0.6%, 0.6%, and 0.2% based on three different baselines, respectively. In
addition, Figure 5 shows the standard PR curves and the F-measure curves of the aforemen-
tioned baselines on the DUTS dataset, which can evaluate the performance of the models
comprehensively. From these curves, we can observe that the models trained with our
framework consistently outperform all corresponding baselines under different thresholds,
which means that our framework has an excellent capability to detect salient regions and
generate accurate saliency maps. All of these reveal that the proposed framework is effec-
tive on different SOTA methods and achieves a clearly better-averaged performance gain
without modifying any architecture.
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Table 3. Performance comparison with 12 state-of-the-art methods over five datasets. MAE (smaller is better), mean F-measure (mF, larger is better), S-measure (Sα,
larger is better), and E-measure (Eξ , larger is better) are utilized to evaluate the model’s performance. ↑ and ↓ indicate that the larger and smaller scores are better,
respectively. The best results are highlighted in red. Our model ranks first on most datasets and metrics.

Algorithm
ECSSD PASCAL-S DUTS-TE HKU-IS DUT-OMRON

MAE ↓ mF ↑ Sα ↑ Eξ ↑ MAE ↓ mF ↑ Sα ↑ Eξ ↑ MAE ↓ mF ↑ Sα ↑ Eξ ↑ MAE ↓ mF ↑ Sα ↑ Eξ ↑ MAE ↓ mF ↑ Sα ↑ Eξ ↑

C2SNet 0.059 0.853 0.882 0.906 0.086 0.761 0.822 0.835 0.066 0.710 0.817 0.841 0.051 0.839 0.873 0.919 0.079 0.664 0.780 0.817
RAS 0.055 0.890 0.894 0.916 0.102 0.782 0.792 0.832 0.060 0.750 0.838 0.861 0.045 0.874 0.888 0.931 0.063 0.711 0.812 0.843
R3Net 0.051 0.883 0.910 0.914 0.101 0.775 0.809 0.824 0.067 0.716 0.837 0.827 0.047 0.853 0.894 0.921 0.073 0.690 0.819 0.814
PiCA-R 0.046 0.886 0.917 0.913 0.075 0.798 0.849 0.833 0.051 0.759 0.869 0.862 0.043 0.870 0.904 0.936 0.065 0.717 0.832 0.841
BMPM 0.044 0.894 0.911 0.914 0.073 0.803 0.840 0.838 0.049 0.762 0.861 0.859 0.039 0.875 0.906 0.937 0.063 0.698 0.809 0.839
DGRL 0.043 0.903 0.906 0.917 0.074 0.807 0.834 0.836 0.051 0.764 0.846 0.863 0.037 0.881 0.896 0.941 0.063 0.709 0.810 0.843
PAGE 0.042 0.906 0.912 0.920 0.077 0.810 0.835 0.841 0.052 0.777 0.854 0.869 0.037 0.882 0.903 0.940 0.062 0.736 0.824 0.853
AFNet 0.042 0.908 0.913 0.918 0.070 0.821 0.844 0.846 0.046 0.792 0.867 0.879 0.036 0.888 0.905 0.942 0.057 0.738 0.826 0.853
TDBU 0.041 0.880 0.918 0.922 0.071 0.779 0.844 0.852 0.048 0.767 0.865 0.879 0.038 0.878 0.907 0.942 0.061 0.739 0.837 0.854
PoolNet 0.039 0.915 0.921 0.924 0.074 0.822 0.845 0.850 0.040 0.809 0.883 0.889 0.032 0.899 0.916 0.949 0.055 0.747 0.835 0.863
BASNet 0.037 0.880 0.916 0.921 0.076 0.775 0.832 0.847 0.048 0.791 0.866 0.884 0.032 0.895 0.909 0.946 0.056 0.756 0.836 0.869
CPD-R 0.037 0.917 0.918 0.925 0.072 0.824 0.842 0.849 0.043 0.805 0.869 0.886 0.034 0.891 0.905 0.944 0.056 0.747 0.825 0.866

PoolNet 0.039 0.915 0.921 0.924 0.075 0.810 0.836 0.847 0.040 0.809 0.883 0.889 0.033 0.893 0.913 0.946 0.056 0.747 0.836 0.863
PoolNet+ours 0.039 0.918 0.922 0.924 0.074 0.815 0.841 0.848 0.039 0.814 0.884 0.892 0.031 0.899 0.915 0.950 0.052 0.752 0.838 0.870

F3Net 0.033 0.925 0.924 0.927 0.062 0.840 0.855 0.859 0.035 0.840 0.888 0.902 0.028 0.910 0.917 0.953 0.053 0.766 0.838 0.870
F3Net+ours 0.032 0.930 0.927 0.929 0.061 0.837 0.855 0.861 0.034 0.846 0.891 0.904 0.027 0.916 0.921 0.955 0.052 0.769 0.842 0.870

MINet 0.033 0.924 0.925 0.927 0.063 0.829 0.850 0.851 0.037 0.828 0.884 0.898 0.029 0.909 0.919 0.953 0.055 0.755 0.833 0.865
MINet+ours 0.033 0.926 0.925 0.927 0.059 0.835 0.857 0.859 0.036 0.834 0.887 0.901 0.029 0.910 0.920 0.954 0.054 0.756 0.834 0.869

GateNet 0.040 0.916 0.920 0.924 0.067 0.819 0.851 0.851 0.040 0.807 0.885 0.889 0.033 0.899 0.915 0.949 0.055 0.746 0.838 0.861
GateNet+ours 0.038 0.915 0.924 0.924 0.065 0.820 0.856 0.857 0.039 0.808 0.888 0.891 0.031 0.901 0.921 0.951 0.055 0.746 0.839 0.862
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Figure 5. Performance comparison with baseline models and our method on the DUTS dataset. The
first column shows comparison of precision–recall curves. The second column shows comparison
of F-measure curves over different thresholds. As a result, our method improve the performance of
different baseline models.

4.3. Analysis on Design Choices

We analyze the design choices of our method from three aspects. First, we explore
the updating strategy of PUM. Second, we conduct an ablation study of the selection of
momentum coefficient. Finally, we show the effectiveness of the proposed SAM.

4.3.1. Updating Strategy of PUM

To obtained smooth labels in SIT, we need to update the PUM module from the SOD
network. A straightforward updating strategy is to update the PUM module only once per
epoch, which is similar to the Π model [65]. In this paper, we adopt a momentum-updating
manner to integrate models of different steps to the PUM module progressively. From
Table 4, we can see that all the momentum-updating strategy settings outperform the
epoch-based updating strategy setting. With the momentum coefficient η in the range
of 0.9 to 0.9999, the momentum-updating strategy could achieve a stable performance
improvement, exceeding the epoch-based updating strategy on average by 1.1% on mF and
0.8% in Sα.

Table 4. The effect of different updating strategies of PUM in our proposed SIT on the DUTS-TE
dataset. ‘Epoch-based’ denotes updating θPUM only once per epoch. ‘Iteration-based’ denotes
updating θPUM by Equation (2). η denotes the momentum coefficient. ↑ and ↓ indicate that the larger
and smaller scores are better, respectively. The best results are highlighted in bold.

Updating Strategy η MAE ↓ mF ↑ Sα ↑ Eξ ↑
Epoch Based — 0.038 0.833 0.882 0.895
Iteration Based 0.9 0.035 0.843 0.891 0.901
Iteration Based 0.99 0.034 0.846 0.891 0.904
Iteration Based 0.999 0.035 0.846 0.889 0.903
Iteration Based 0.9999 0.035 0.841 0.888 0.902
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4.3.2. The Selection of Momentum Coefficient η

As described in Section 3.1, the momentum coefficient η determines the update speed
of θPUM. Our model’s sensitivity to η is shown in Table 4. When η is set to 0.99, the model
can achieve the best performance on all metrics. We have revised this part to present our
results more clearly.

4.3.3. Effect of Sample Adaptive Module

In this Sample Adaptive Module (SAM), we introduce an adaptive weight to dynami-
cally tune the loss contribution between ground truth and smooth labels. To demonstrate
the effectiveness of our SAM, we compared our dynamic adaptive weight strategy with
a fixed weight strategy. We choose three different fixed weights, which are 0.3, 0.5, and
0.7, respectively. From Table 5, we can observe that our SAM method exceeds all the fixed
weight settings. Compared with the best fixed weight setting (λ = 0.3), the mF of our SAM
method exceeds it by 0.5%, which illustrates the effectiveness of SAM.

Table 5. The effect of the fixed λ compared with the adaptive λ in SAM on the DUTS-TE dataset.
↑ and ↓ indicate that the larger and smaller scores are better, respectively. The best results are
highlighted in bold.

λ MAE ↓ mF ↑ Sα ↑ Eξ ↑
0.3 0.035 0.841 0.889 0.901
0.5 0.036 0.838 0.885 0.899
0.7 0.040 0.829 0.883 0.891
SAM 0.034 0.846 0.891 0.904

The hyperparameter ζ in Equation (5) is used to modulate the loss contribution of
the PUM module. Thus, we conduct a series of experiments to evaluate the effect of
hyperparameter ζ. As shown in Table 6, setting ζ to 70 makes the model learn well from
the PUM module and obtain the best performance with 0.846 on mF.

Table 6. The effect of the scale factor ζ in the SAM module on the DUTS-TE dataset. ↑ and ↓ indicate
that the larger and smaller scores are better, respectively. The best results are highlighted in bold.

ζ MAE ↓ mF ↑ Sα ↑ Eξ ↑
30 0.035 0.843 0.889 0.901
70 0.034 0.846 0.891 0.904
110 0.037 0.839 0.885 0.898

4.4. Visualization Analysis
4.4.1. Visualization of Smooth Labels

In this part, we show the smooth labels generated via the PUM at different training
iterations. As shown in Figure 3, we can observe that the PUM gradually improves the
quality of the smooth labels. As the learning process progresses, the smooth labels not only
obtain a sharper boundary but also suppress the distractors in the background.

4.4.2. Visualization of Feature Attention Maps

To further demonstrate the effectiveness of our framework, we visualize some attention
maps in Figure 6. It can be observed that even if the squirrel has very low contrast with the
ground (see the second column), by using our framework, the high contrast between the
object region and the background is always maintained, thereby making the salient objects
be effectively distinguished. In addition, our framework can effectively suppress distraction
objects (see the fifth column). The people in the corner of the image are suppressed well in
the feature attention map.
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Figure 6. Visualization of attention of feature maps. The last row represents attention map for
intermediate feature. Best viewed in colors.

4.4.3. Visual Comparison with Baseline Methods

To evaluate the robustness and effectiveness of our framework, we visualize some
saliency maps and exhibit some typical images from the public test dataset of saliency
detection in Figure 7.

In the first, second, and fifth rows, the complex backgrounds. such as seats and
windows in the first row, stacked boxes in the second row, and books in the fifth row, are
suppressed in ours but highlighted in all other baselines. Especially for the first and second
rows, the backgrounds are suppressed well. Presumably, it is because the color of these
backgrounds’ objects are similar. Thus, our method can accurately locate and suppress
all of them. In the third row, the baseline methods are severely affected by the gray box.
Our framework can not only better pick out the salient objects accurately, but it also well
suppresses these distractors. In the fourth and sixth row, the baseline methods fail to
capture complete salient objects, such as the person on the left in the fourth row and the
elephant on the right in the sixth row. However, our framework can accurately locate these
salient objects.

In a word, our proposed framework can possess good robustness and effectiveness in
detecting various salient objects.

4.5. Discussion

In this part, we will discuss the strengths and weaknesses of our method. Let us
review the visual comparison in Figure 6. The third column shows a sailing boat. Our
method misses its hull. The fourth column is a squirrel. Our method misses its paw. The
fifth column is a dog. Our method misses its forelegs. These errors have a common point:
the method misses their spatial details.

That being said, our method can predict results with spatial details as shown in
the first row of Figure 7. In this case, all of our models (F3Net+ours, MINet+ours, and
GateNet+ours) can detect the contour of the person’s feet. However, by looking at the
pictures more carefully, one can find that the detection of the foot’s contour should be
attributed to the baseline models (F3Net, MINet, and GateNet). F3Net+ours has a similar
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foot’s contour as F3Net. Similar results can be found in MINet vs. MINet+ours and GateNet
vs. GateNet+ours.

Figure 7. Salient object detection examples on several popular datasets. F3Net+ours, MINet+ours,
and GateNet+ours indicate the original architectures trained with our proposed SIT and ACL. SIT
and ACL provide more reasonable smooth labels for the model and reduce the effect of distractors.

Our method aims to alleviate the learning difficulty and improve the robustness of
the SOD methods. We do not design specific contour-based techniques to improve the
performance, but these techniques are orthogonal and complementary to our work.

5. Conclusions

In this paper, we present a learning framework to reduce the learning difficulty for the
SOD task. A novel self-improvement training (SIT) strategy is designed to generate smooth
labels, which alleviates the learning difficulty. Moreover, by regularizing the prediction
consistency and multi-level feature consistency in augmentation-based consistent learning
(ACL), the robustness of the model can be further improved. Comprehensive benchmarks
on several popular datasets illustrate the advantage of the proposed framework. A further
ablation study shows the effectiveness of each method of our framework. Briefly, our
framework can play a plug-and-play role to be easily embedded in the existing SOD net-
works to achieve a promising performance gain, without any modification of the network
architecture.
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