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Abstract: The number of motor vehicles on the road is constantly increasing, leading to a rise in
the number of traffic accidents. Accurately identifying the factors contributing to these accidents is
a crucial topic in the field of traffic accident research. Most current research focuses on analyzing
the causes of traffic accidents rather than investigating the underlying factors. This study creates a
complex network for road traffic accident cause analysis using the topology method for complex
networks. The network metrics are analyzed using the network parameters to obtain reduced
dimensionality feature factors, and four machine learning techniques are applied to accurately
classify the accidents’ severity based on the analysis results. The study divides real traffic accident
data into three main categories based on the factors that influences them: time, environment, and
traffic management. The results show that traffic management factors have the most significant impact
on road accidents. The study also finds that Extreme Gradient Boosting (XGBoost) outperforms
Logistic Regression (LR), Random Forest (RF) and Decision Tree (DT) in accurately categorizing the
severity of traffic accidents.

Keywords: road traffic accidents; complex network; cause analysis; feature dimensionality reduction;
machine learning

1. Introduction

The rapid growth of motorized traffic has led to a significant increase in traffic acci-
dents, which are now a major threat to the quality of life and safety of people worldwide.
According to statistics from the World Health Organization’s 2018 Global Status Report
on Road Safety, approximately 1.35 million people die every year due to traffic accidents,
making them the eighth leading cause of death globally. In addition, hundreds of thou-
sands of people are left permanently disabled as a result of traffic accidents [1]. In many
developing countries, road traffic accidents have become the leading cause of death among
humans. As of 2021, there are more than 1.3 billion motor vehicles in the world, with every
family typically having at least one motor vehicle [2]. Compared to other forms of traffic
accidents, road traffic accidents have the highest impact on personal safety, property safety,
and material safety. When there is a multi-vehicle or large vehicle accident, the entire road
network will be brought to a standstill [3].

Therefore, it is crucial to identify the underlying factors contributing to road traffic
accidents, and correctly assess the severity of injuries sustained in such incidents. By
implementing the above measures, the factors affecting the occurrence of accidents can
be accurately found. The safety and accessibility of roads can be improved, thereby
greatly reducing the likelihood of road traffic accidents. At the same time, the severity of
accident injuries will be reduced, and the prediction range of accident injury severity will be
narrowed, thus improving the accuracy of accident collision prediction [4–6]. Governments,
traffic management departments, and researchers have been exploring various solutions to
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address this pressing issue [7]. With the rapid advancement of contemporary technologies,
data analysis, data mining, machine learning, deep learning, and other technologies have
become powerful tools for analyzing accidents’ causative factors, gaining insight into
potential laws, and correctly classifying accidents [8].

Traffic accidents are unpredictable and uncontrollable events that pose significant
challenges for traffic management departments. The analysis of accidents’ causes often
relies on expert judgment, which can be subjective and prone to errors. With the increasing
complexity of traffic networks in the 21st century, the accident causal network has become
more intricate, with higher interactive complexity, dynamic complexity, structural complex-
ity, and nonlinearity [9]. To address these challenges, complex network theory provides a
new perspective for analyzing the internal relations and topology of the network. Complex
networks integrate the edges connected between nodes in the network, revealing the under-
lying relationships among different factors and facilitating the analysis of the interactions
among multiple factors in traffic accidents [10]. By reducing the dimensionality of the
original data, complex networks can effectively solve the problem of feature redundancy
and dimension disaster caused by a large number of data features. Previous studies on
traffic causation analyses based on complex networks mainly focused on node metrics,
without conducting in-depth analysis of the downgraded features [11,12]. However, these
features hold significant research value and can be utilized to improve road traffic safety
and accident collision prediction.

The innovation of this article lies in that first, after analyzing the causes of accidents
based on complex networks, the most influential accident factors were identified. At the
same time, these factors were used as dimensionality reduced features. Finally, a machine
learning-based traffic accident injury severity classification model was constructed using di-
mensionality reduced features. This paper combines complex network theory with machine
methods to reveal a new approach that combines complex network principles with machine
learning methods. Through relevant experiments, it has been proven that this method can
solve the problem of high feature dimensionality leading to longer classification time for
accident injury severity. At the same time, the method proposed in this article effectively
utilizes the dimensionality reduction features after accident analysis, avoiding the prob-
lem of ineffective feature utilization. The use of complex networks for accident causation
analysis avoids the shortcoming of subjectivity due to traditional expert judgement. This
study aims to provide a more accurate and reliable method for analyzing traffic accidents’
causes and accurately dividing the severity of accident injuries. The effective application
of accident analysis results helps to improve road traffic safety and reduce the number of
accidents [13].

2. Related Work

Indeed, there have been numerous scholars who have employed various methods in
the field of road traffic accident cause analysis [14]. These methods range from simple statis-
tical analysis of historical accident data to more complex analysis using multi-dimensional
variable rough set, grey correlation, and other techniques. While econometric theory has
been used in some studies, it has limitations in terms of data completeness and is not widely
used. The use of econometric models requires high-quality data, which may not always be
available, and they can be sensitive to the choice of variables and the specification of the
model. Therefore, the development of data statistics and analysis is limited. In recent years,
there has been an increasing interest in using complex network theory or machine learning
techniques for traffic accident cause analysis. However, the large amount of redundancy
or high dimensionality of the data features cause excessive training time. These methods
have been applied to various fields, including ocean-going ship accidents, tunnel stability,
road traffic accidents, and three-wheeled motor vehicles. However, the combination of the
two approaches has not been effectively explored.
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In the field of ocean-going ship accidents, Yu et al. used complex network methods
to analyze the causes of accidents and identified key factors, such as ship collision, which
provided theoretical support for ship navigation safety supervision and risk prevention of
marine transportation systems [15]. Factors affecting tunnel stability were sorted out by
Wu et al. using TOPSIS, grey correlation analysis, and other analytical methods [16]. In
road traffic accidents, machine learning techniques have been widely used to predict the
severity of injury. Santos et al. compared over 25 different methods and found that Random
Forest was the best method for predicting the severity of injury in road traffic accidents [17].
In the domain of three-wheeled motor vehicles, Ijaz et al. proposed the use of the Decision
Jungle (DJ), Random Forest (RF), and Decision Tree (DT) techniques to investigate the
gravity of injuries resulting from traffic accidents, and DJ demonstrated the highest level
of accuracy among the three methodologies [18]. Based on complex network theory,
Zhao et al. established a new model for analyzing the causes of public urban logistics
accidents, and analyzed the accidents from a global perspective, identifying the main
causes [19]. Guo et al. proposed the use of the Extreme Gradient Boost (XGBoost) method
to analyze the influencing factors of pedestrian traffic accidents among the elderly and
identified driver characteristics, elderly characteristics, and vehicle movement as the most
important factors affecting the severity of accidents [20]. Hamim et al. used a combination
of Accimaps and STAMP-CAST methods, while also utilizing PCM, to analyze collision
investigations at railway intersections. The combination of these methods helps to provide
a comprehensive set of safety recommendations [21].

In the study of road traffic accidents, the traditional single-factor, single-type micro-
level causal analysis has been replaced by a more comprehensive and multi-faceted ap-
proach [22]. This new model takes into account multiple factors and levels of analysis,
including the micro and macro levels, to provide a more accurate representation of the
complex relationships among various factors that contribute to accidents. The traditional
fault tree model, which is a chain structure, is limited in its inability to represent inter-factor
correlations and the presence of subjective factors. However, the emergence of complex
networks has addressed these drawbacks to some extent. In this paper, a complex network
causation model is established from a multi-factor and multi-level perspective of accident
occurrence. This model takes into account the internal node indicators and extracts the
features of the most influential factors [23–25], providing a more comprehensive under-
standing of the causal relationship among factors. Additionally, a classification model of
accident injury severity based on machine learning is constructed to enhance the safety
and stability of road traffic passage. The findings offer an effective approach for the safety
enhancement of transport networks.

3. Methodology
3.1. A Framework for Analyzing the Causes of Road Traffic Accidents and Classifying Accidents
Based on Complex Networks

Complex networks offer a powerful approach for analyzing the causes of accidents [26].
By analyzing the structure and indicators of complex networks, the triggering factors of
traffic accidents can be better understood and analyzed. Using complex network theory
to analyze the correlations among various types of indicators, it is possible to reduce
high-dimensional features to low-dimensional features while the importance of the feature
variables remains the same. Machine learning algorithms learn the mapping relationships
among various feature variables in a dataset to achieve classification [27]. The combination
of complex networks and machine learning can effectively analyze the most influential
factors of road traffic accidents and construct accident injury severity classification models.
It provides a new idea for realizing the method of combining complex network theory
and machine learning. The occurrence of accidents is inevitably linked to many factors,
including time, environment, and traffic management factors [28,29]. The occurrence of
accidents is inevitably linked to one or more factors; the use of complex network theory to
extract the importance of accident factors is conducive to the analysis of the most influential
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factors, so as to build the classification model of the severity of injuries in road traffic
accidents according to the most influential factors [30,31]. The framework for analyzing
the causes of road traffic accidents and classifying accidents based on complex networks is
shown in Figure 1.
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Figure 1. Framework for analyzing the causes of road traffic accidents and classifying accidents
based on complex networks.

3.2. The Construction of Complex Networks

In this method, the feature vectors of the original dataset are used as the nodes of the
complex network, and the relationships among the feature vectors are used as the edges of
the complex network to construct the complex network [32,33]. The construction process is
shown as follows:
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(1) According to the co-occurrence frequency between the feature vectors in the dataset,
the co-occurrence matrix A1 is constructed. The formula is shown as follows:

A1 =
[
mij
]

(1)

where mij denotes the number of nodes i and j appearing at the same time. i, j ∈ 0~N, N
denotes the number of nodes in the network.

(2) According to the co-occurrence matrix A1, the adjacency matrix A2 is constructed.
The formula is shown as follows:

A2 =
[
nij
]

(2)

where: nij =

{
1, There is a co-occurrence relationship between node i and node j

0, There is no co-occurrence relationship between node i and node j
.

(3) According to A1 and A2, the Jaccard index matrix A3 is constructed. The Jaccard
index is the co-occurrence rate between two nodes. The expression of the co-occurrence
rate is shown as follows:

Jij =
mij

mi + mj −mij
(3)

where Jij is the co-occurrence rate of node i and node j, which is the degree of correlation,
ranging from 0 to 1. mi and mj are the occurrence frequency between nodes i and j. The
above A1, A2, and A3 are symmetric matrices.

The target matrix is entered into the Gephi platform and adjusted to form a complex
network model using uniform layout. At the same time, the weights of nodes and edges
are assigned accordingly.

3.3. Complex Network Evaluation Index

The node evaluation index in complex networks is a specific representation of the
topological relationship between nodes and edges in the network. Accurate analysis of the
evaluation index can provide a better understanding of the characteristics of the network
and the interaction between nodes [34]. In this paper, seven characteristic parameters,
namely, degree of node, network diameter, average path length, clustering coefficient,
intermediary centrality, closeness centrality, and comprehensive importance evaluation
were selected as node indexes of complex networks for analysis, which can be seen in
Table 1.

Table 1. Node evaluation index of complex networks.

Network Evaluation Index Specific Description

Degree of node (D) Indicates the number of edges by which a node
connects to other nodes.

Network diameter (S) Represents the maximum distance between any
two nodes.

Average path length (L) Represents the average length of the shortest
path between all node pairs.

Clustering coefficient (C) Indicates the degree of aggregation of the node
in the network

Intermediary centrality (B) Indicates the adjustment ability and transfer
function of the node between other nodes.

Closeness centrality (M) Indicates the proximity of the node to
other nodes

Comprehensive importance evaluation (O) Indicates the comprehensive importance of
nodes from a global perspective
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(1) Degree of node Di, which represents the number of edges by which the node is
connected to other nodes. The higher the degree of the node, the more significant the node
is [35]. The calculation formula is shown as follows:

Di = ∑
j∈N

eij (4)

where Di denotes the degree of a node and N denotes the number of nodes in the network,
respectively. eij is the number of edges between nodes i and j.

(2) Network diameter S, which represents the maximum distance between any two
nodes in the network.

The calculation formula is shown as follows:

S = max
i,j∈N

(
dij
)

(5)

where dij denotes the distance between nodes i and j, which is expressed as

dij =
√(

xi − xj
)2

+
(
yi − yj

)2.

(3) Average path length L, which indicates the average value of the distance between
any two nodes in the network. The calculation formula is shown as follows:

L =

∑
i 6=j

dij

1
2 N(N − 1)

(6)

(4) Clustering coefficient Ci. It indicates the probability that two nodes adjacent to
node i in the network are also adjacent, reflecting the level of clustering of nodes in the
network. The larger the clustering coefficient, the closer the connection between nodes
is [36]. The calculation formula is shown as follows:

Ci =
2E(i)

Di(Di − 1)
(7)

where E(i) denotes the number of edges that actually exist between node i and adja-
cent nodes.

(5) Intermediary centrality Bi. It refers to the shortest path number passing through
the node, emphasizing the adjustment ability and transit function of the node between
other nodes. Its normalized expression can be seen as follows:

Bi =

2 ∑
s 6=i 6=t∈N

ls,t(i)
ls,t

(N − 1)(N − 2)
(8)

where ls,t is the number of shortest paths between nodes s and t, and ls,t(i) is the number of
shortest paths passing through node i between nodes s and t. Nodes i, j, s, and t denote any
node in a complex network, and denote four independent nodes.

(6) Closeness centrality Mi, which represents the proximity of nodes in the network to
other nodes [37]. The normalized expression is shown as follows:

Mi =

∑
y

d(y, x)

N − 1


−1

(9)

where ∑
y

d(y, x) is the sum of the distances from node i to all other nodes in the network.
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3.4. Construction of a Comprehensive Importance Evaluation Model

The node index in complex networks can provide valuable insights into the relation-
ships among nodes. However, evaluating the importance of node indicators from a single
perspective has limitations. Therefore, a comprehensive importance evaluation model
of complex networks was constructed to consider the importance of nodes from a global
perspective. To achieve this, the four indexes of node degree, clustering coefficient, inter-
mediary centrality, and closeness centrality were selected to construct a comprehensive
importance evaluation model. The comprehensive importance is represented by the O
value, which reflect the node’s overall influence, indicating its relative importance in the
network. In other words, a node with a larger O value has a greater impact on the network’s
function. The construction process of the model is shown as follows:

(1) When there are m nodes in the complex network and each node has n feature
indexes, the feature index matrix Y is constructed as follows:

Y =

y11 . . . y1n
...

...
...

ym1 . . . ymn

 (10)

where ymn denotes the n-th index of the m-th node.
(2) The values of the above characteristic indicators differ significantly; to ensure the

reliability of the data and to mitigate the influence of these values on the results, the above
characteristic index matrix Y is normalized. The normalized calculation formula is shown
as follows:

Zmn =
ymn − ymin
ymax − ymin

(11)

where Zmn is the element in the normalized matrix. ymax and ymin denote the largest and
smallest element in Y, respectively.

The normalized matrix is represented by Z as follows:

Z = zij =
1
m

Z11 . . . Z1n
...

...
...

Zm1 . . . Zmn

 (12)

(3) Calculate the distance D+
i and D−i of each metric of the complex network from

the positive and negative ideal solutions, respectively. The calculation formula is shown
as follows:

D+
i =

√√√√[ n

∑
j=1

(
zij − Z+

j

)2]
(13)

D−i =

√√√√[ n

∑
j=1

(
zij − Z−j

)2]
(14)

where, Z+
j = max(Z1i, Z2i, Z3i, . . . , Zmi); Z−j = min(Z1i, Z2i, Z3i, . . . , Zmi). D+

i denotes the

distance between any index and Z+
j , and D−i denotes the distance between any index and

Z−j . zij denotes the elements in the normalized matrix Z.
(4) Construct a comprehensive importance evaluation model for complex networks.

Oi denotes the comprehensive importance of node i. It can be expressed by the follow-
ing expression:

Oi =
D−i

D+
i + D−i

(15)
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3.5. Construction of an Accident Injury Severity Classification Model

To evaluate the comprehensive importance of nodes in a network, we first constructed
a comprehensive importance evaluation model based on the four characteristic indicators.
Afterwards, we screened out features with higher overall importance and removed unim-
portant features to reduce the dimensionality of data features. Finally, a classification model
of accident injury severity was constructed based on the features after dimensionality
reduction, and we evaluated the model’s performance using precision rate, recall rate,
F1-score value and ROC (receiver operating characteristic curve) as evaluation indicators.
At the same time, we conducted sensitivity testing on the classification model. Four models
from the machine learning algorithm were selected to construct the traffic accident injury
severity classification model. They are Extreme Gradient Boosting (XGBoost), Logistic
Regression (LR), Random Forest (RF), and Decision Tree (DT). The use of machine learning
algorithms can accurately classify the severity of traffic accident injuries, and after complex
network dimensionality reduction, the training process will shorten the training time. The
model construction process and evaluation index formula are shown as follows:

yi= F(xi ) (16)

where F(x) represents different classification models. xi and yi denote the reduced dimen-
sional inputs of different models and their corresponding classification results, respectively.

Precision:
P =

TP
TP + FP

(17)

where P represents the precision rate, which means the probability of actually positive
samples in all predicted positive samples. TP and FP denote the number of positive and
negative classes predicted to be positive classes, respectively.

Recall:
R =

TP
TP + FN

(18)

where R represents the recall rate, which is the probability predicted as a positive sample
in the actual positive sample. FN denotes False Negative Class and indicates the number of
positive classes predicted as negative classes.

F1-score:

F1 =
2(P× R)
(P + R)

(19)

where F1 represents the harmonic mean of precision and recall. P and R represent the
precision and recall rate, respectively.

ROC uses FPR (specificity) as the abscissa and TPR (sensitivity) as the ordinate to
evaluate the performance of the classification model. When the ROC curves of multiple
models are in the same plane, the closer the ROC curve to the upper left corner, the better
the performance of the model. The AUC value represents the area of the graph surrounded
by the abscissa and ordinate below the ROC curve, ranging from 0 to 1. The closer the AUC
value is to 1, the better the performance of the model.

4. Case Studies
4.1. Data Preparation and Analysis

The case data used in this paper are derived from the National Traffic Accidents Data
Set, which covers 49 states in the United States from 2016 to 2023 and uses several APIs that
provide streaming traffic accident data. Figure 2 shows the current data distribution over
all the states. These APIs broadcast traffic data collected by a variety of entities, including
U.S. and state departments of transportation, law enforcement agencies, traffic cameras,
and traffic sensors on the roadway network [38,39].

From Figure 2, it can be seen that the higher frequency of accidents is located on
the west coast, and in the south and southeast of the United States, such as California,
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Texas, and Florida, while the regions with lower frequency of accidents are located in the
central and eastern regions of the United States, such as Wyoming, South Dakota, and
North Dakota. After deleting null values and outliers, a total of 1,014,682 valid accident
data were obtained. We combined the same influences and similar influences. Finally,
47 influencing factors of road traffic accidents were selected, as shown in Table 2. The
47 influencing factors were grouped into three categories, namely, time factors, environ-
mental factors, and traffic management factors. These factors included the time of day,
day of the week, and season in which the accidents occurred, the range of road lengths
affected by the accidents, the relative location of the road where the accidents occurred, the
ambient temperature, humidity, and visibility at the time of the accidents, and the weather
at the time of the accidents, road conditions in the vicinity of the accidents, for example
the presence conditions of intersections, speed humps, speed signs, railways, road safety
measures, stations, and stop signs.
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Table 2. Road traffic accident influencing factors set.

Factor Categories Numbering Influencing Factors

Time factor

r1 The accidents happened at daytime

r2 The accidents happened at night

r3 The accidents happened on Monday

r4 The accidents happened on Tuesday

r5 The accidents happened on Wednesday

r6 The accidents happened on Thursday

r7 The accidents happened on Friday

r8 The accidents happened on Saturday

r9 The accidents happened on Sunday

r10 The accidents happened in spring

r11 The accidents happened in summer

r12 The accidents happened in autumn

r13 The accidents happened in winter



Appl. Sci. 2023, 13, 12963 10 of 23

Table 2. Cont.

Factor Categories Numbering Influencing Factors

Environmental factor

r14 The length of the road affected by the accidents was shorter

r15 The length of the road affected by the accidents was longer

r16 The accidents occurred on the left side of the road

r17 The accidents occurred on the right side of the road

r18 The environmental temperature during the accidents was low temperature

r19 The environmental temperature during the accidents was moderate temperature

r20 The environmental temperature during the accidents was high temperature

r21 The environmental humidity during the accidents was dry

r22 The environmental humidity during the accidents was humid

r23 The environmental humidity during the accidents was wetter

r24 The visibility of the display during the accidents was generally clear

r25 The visibility of the display during the accidents was relatively clear

r26 clear sky

r27 cloudy

r28 foggy sky

r29 rainy day

r30 snowy day

r31 sandstorm

r32 hailstone

r33 Other weather

Traffic
management factors

r34 There was an intersection near the accidents

r35 There was no intersection near the accidents

r36 There was a reducer belt near the accidents

r37 There was no reducer belt near the accidents

r38 There was a deceleration sign near the accidents

r39 There was no deceleration sign near the accidents

r40 There was a railway near the accidents

r41 There was no railway near the accidents

r42 There was a road safety measure near the accidents

r43 There was no road safety measure near the accidents

r44 There was a station near the accidents

r45 There was no station near the accidents

r46 There was a stop sign near the accidents.

r47 There was no stop sign near the accidents

The current accident dataset was classified for injury severity based on the U.S. road
traffic accident injury severity classification standard KABCO. Among them, K represents
dead, A represents incapacitating injury, B represents non-incapacitating injury, C repre-
sents possible injury, and O represents no injury [40]. Based on the data used in this paper,
deaths are categorized as Major accidents; incapacitating injuries and non-incapacitating
injuries are categorized as Serious accidents; and possible injuries and no injuries are
categorized as Ordinary accidents. The severity of injuries as shown in Table 3.
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Table 3. Traffic accident injury severity type set.

Numbering Severity of Injuries

a1 Ordinary accidents
a2 Serious accidents
a3 Major accidents

4.2. The Construction of a Road Traffic Accident Cause Analysis Network

Taking the accidents’ influencing factors and the severity of injury as nodes in the net-
work, the relationships among influencing factors and the relationship between influencing
factors and injury severity are regarded as the edge of the network. The steps are shown
as follows:

(1) The co-occurrence matrix A1 is constructed as follows:

A1 =



r1 r2 r3 . . . a2 a3
r1 0 0 128, 441 . . . 233, 527 2324
r2 0 0 47, 639 . . . 96, 820 1462
r3 128, 441 47, 639 0 . . . 52, 903 614
...

...
...

... . . .
...

...
a2 233, 527 96, 820 52, 903 . . . 0 0
a3 2324 1462 614 . . . 0 0


where r1~r47 represents the influencing factors of the accidents. a1~a3 represent the severity
of injury in the accidents.

(2) According to the co-occurrence matrix A1, the adjacency matrix A2 is constructed
as follows [41]. If there is a co-occurrence relationship between influencing factors and
between influencing factors and injury severity, it is marked as 1, and if there is no co-
occurrence relationship, it is marked as 0.

A2 =



r1 r2 r3 . . . a2 a3
r1 0 0 1 . . . 1 1
r2 0 0 1 . . . 1 1
r3 1 1 0 . . . 1 1
...

...
...

... . . .
...

...
a2 1 1 1 . . . 0 0
a3 1 1 1 . . . 0 0


(3) A Jaccard index matrix is constructed by A1 and A2 to describe the degree of

correlation between nodes. The higher the co-occurrence rate, the higher the degree of
association between the two nodes [42]. The Jaccard index matrix A3 is shown below.

A3 =



r1 r2 r3 . . . a2 a3
r1 0.000 0.000 0.164 . . . 0.280 0.003
r2 0.000 0.000 0.118 . . . 0.190 0.005
r3 0.164 0.118 0.000 . . . 0.117 0.003
...

...
...

... . . .
...

...
a2 0.280 0.190 0.117 . . . 0.000 0.000
a3 0.003 0.005 0.003 . . . 0.000 0.000


The complex network model for analyzing the causes of road traffic accidents is shown

in Figure 3. The size of each node represents the relative weight. The larger the node,
the more significant the factor it represents, while the thicker the edge, the stronger the
connection between the two nodes. In this study, we simplify the complex network to
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an undirected network, focusing on the relationship between the nodes rather than the
directions of causality [43].
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Figure 3. Complex network model for causal analysis of road traffic accidents.

4.3. The Evaluation Index of the Road Traffic Accident Cause Analysis Network
4.3.1. The Degree of Node of Network

To investigate the influence of different factors, the top five highest degrees of node
values in each factor stratum were selected, as shown in Figure 4.
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Figure 4. Dividing the top five nodes with the highest degree of node according to the influencing factors.

As demonstrated in Figure 4, the degrees of the nodes of daytime, nighttime, and
seasonal factors are predominant among the time factors. In terms of environmental factors,
the shorter length of road impacted by the accidents, the relative accident location, and
the visibility are significant. Finally, the presence of intersections, speed reduction signs,
railways, and safety measures in the vicinity of the accidents are relatively significant
among the traffic management factors.

4.3.2. Network Diameter and Average Path Length

The diameter of the road traffic accident cause analysis network is 2, indicating that
the shortest distance between any two points in the network is 2. The average path length
of 1.07686 means that nodes can interact with each other in an average of 1 step. It indicates
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that the connectivity paths between individual nodes in this network are short. Therefore,
the key is to improve road traffic safety to quickly cut off the connected path in the network,
or to stop the next node from acting before one node acts.

4.3.3. The Clustering Coefficient of the Network

After calculating the clustering coefficient of each node, the average clustering co-
efficient of the road traffic accident causation network is 0.92. The larger the clustering
coefficient, the closer the connection between nodes is. The top five nodes with the highest
clustering coefficients based on the influence of factor layer are shown in Figure 5.
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Figure 5. Dividing the first five nodes with the highest clustering coefficient according to the
influencing factors.

From the perspective of the time factor, the clustering coefficient on Tuesday, Thursday,
Friday, Saturday, and Sunday is higher. In terms of environmental factors, the clustering
coefficient is higher for severe weather such as sandstorms and hailstone, as well as clear
sky and cloudy and foggy sky. In terms of traffic management factors, the presence
of road safety measures, stations, and speed bumps was highly correlated with other
accident factors.

4.3.4. The Intermediary Centrality of the Network

The intermediary centrality of a complex network represents the adjustment ability
and transit role of the node between other nodes. The top five highest node intermediary
centrality in each factor stratum were selected as shown in Figure 6.
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Figure 6. Dividing the first five nodes with the highest intermediary centrality according to the
influencing factors.

From Figure 6, it appears that the day, night, and season hold a high level of inter-
mediary centrality in terms of time factors. With respect to environmental factors, the
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intermediary centrality of environmental humidity and visibility during accidents is high.
Among traffic management factors, intersections, stop signs, and no deceleration signs
have a high degree of intermediary centrality.

4.3.5. The Closeness Centrality of the Network

Figure 7 illustrates the distribution of the top five highest closeness centrality in each
influence factor layer. The closeness centrality indicates the importance of nodes in a
network and its effect on network structure and information dissemination [44].
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From Figure 7, it can be seen that in terms of time factors, the closeness centrality of
day and night, Tuesday, spring, and summer is relatively high. Among environmental
factors, the range of roads affected by accidents, the relative location of accidents, and the
visibility have a high closeness centrality. At the level of traffic management, the presence
or absence of intersections, deceleration signs, railways, and safety measures have a high
closeness centrality.

4.4. Comprehensive Importance Analysis of the Road Traffic Accident Cause Analysis Network
4.4.1. Construction of a Comprehensive Important Evaluation Model

The comprehensive importance evaluation model can measure the importance of
nodes in complex networks from a global perspective. The construction process of the
model is shown as follows:

(1) When there are 50 nodes in the complex network of road traffic accident cause
analysis, and each node has three features. The feature index matrix Y is constructed
as follows:

Y =



98 0.002 0.980
98 0.002 0.980
88 0.002 0.893
...

...
...

94 0.002 0.943
85 0.001 0.877


(2) Normalize the above feature index matrix Y. The normalized matrix is shown

as follows:

Z = zij =
1
m



Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

...
...

...
Zm−1 1 Zm−1 2 Zm−1 3

Zm1 Zm2 Zm3


=



0.020 0.020 0.020
0.020 0.020 0.020
0.012 0.015 0.011

...
...

...
0.017 0.015 0.016
0.010 0.006 0.009
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(3) Calculate the distance D+
i and D−i between each index of the complex network

and positive ideal solution and negative ideal solution. The calculation formula is shown
in Equations (13) and (14) above.

(4) Construct a comprehensive importance evaluation model for complex networks.
The calculation formula is shown in Equation (15) above. Oi represents the comprehensive
importance of node i. The comprehensive importance of each node is shown in Figure 8.
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4.4.2. Comparative Experiment of the Comprehensive Importance Evaluation Model

Different node evaluation indicator inputs will result in different evaluation models.
To explore the optimal performance of the model, we input various evaluation indicators
for comparative experiments. The experiment comprised three groups. In Experiment
A, we included the degree and clustering coefficient of nodes in the model to obtain
comprehensive importance. In Experiment B, the model incorporated degree of node,
intermediary centrality, and closeness centrality. Similarly, in Experiment C, the model took
node degree, clustering coefficient, intermediate centrality and tight centrality as inputs.
The results of the three experiments are compared in Figure 9.
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It can be seen from the Figure 9 that the peaks of Experiment A and Experiment C
are lower than the peaks of Experiment B, and the troughs are higher than the troughs
of Experiment B. It can show that Experiment B can highlight the overall characteristics
of the comprehensive importance model of complex network synthesis compared with
Experiment A and Experiment C. Experiment B has a higher degree of completion. When
the degree of nodes, intermediate centrality, and closeness centrality are used as inputs
for the comprehensive importance evaluation model, the model exhibits better perfor-
mance. Therefore, Experiment B is taken as the analysis object of comprehensive important
evaluation model.

From Figures 8 and 9 we can see that 80% of the comprehensive importance of each
influencing factor in Experiment B is between 0.5–1. It can be seen that most factors are
closely related to the occurrence of accidents. When the comprehensive importance O value
is 1, it shows that this factor must relate to the occurrence of the accidents.

4.5. Construction of an Injury Severity Classification Model for Road Traffic Accidents

The aforementioned accident impact characteristics, obtained through complex net-
work analysis, address the issue of feature redundancy and the overwhelming number
of data features. The reduced features have significant research implications for accident
injury severity classification. Consequently, the dimension-reduced features were utilized
as input to build a model for classifying damage severity. According to Figures 8 and 9, the
time of the accidents was selected as day or night, also selected were the relative position of
the accidents, the temperature and humidity of the environment, the visibility, the length of
the road range affected by the accidents, the existence of speed bumps, the existence of rail-
ways, the existence of stations, the existence of safety measures, and the existence of traffic
signs. A total of 11 characteristics were used to construct the classification model of the
severity of the accident injury by using the method of machine learning [45]. The machine
learning methods selected include Logistic Regression (LR), Random Forest (RF), Decision
Tree (DT), and Extreme Gradient Boosting (XGBoost). The models were constructed and
the performance of the models was compared.

4.5.1. Data Normalization Processing

Due to the presence of numerical data and Boolean data in the original data, it was
necessary to convert Boolean data into numerical data before constructing a classification
model. Factors such as the accident occurring in daytime, the presence of road facilities,
and the accident occurring on the left side of the road were all marked as 1. Factors such as
the accident occurring at night, the absence of road facilities, and the accident occurring on
the right side of the road were all marked as 0.

4.5.2. Model Construction and Analysis

The machine learning methods used included Logistic Regression (LR), Random
Forest (RF), Decision Tree (DT), and Extreme Gradient Boosting (XGBoost). The specific
configuration of the machine learning model is shown in Table 4. The dataset was divided
into a 75% training set and a 25% test set. A classification model of road traffic accident
injury severity was constructed, and the ROC curves of the four methods were compared,
as shown in Figure 10.

As shown in Figure 10, it can be seen that the Extreme Gradient Boosting (XGBoost)
curve is closer to the upper left corner than the other three model curves. It means that
Extreme Gradient Boosting (XGBoost) has a larger AUC value, and its performance is
also better than the other three methods. Therefore, the performance of Extreme Gradient
Boosting (XGBoost) is superior to that of the other three models.
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Table 4. Specific configuration of machine learning models.

Model Specific Configuration Model Specific Configuration

Logistic
Regression (LR)

Regularization type L2

Random Forest
(RF)

Number of trees 100

Regularization intensity 1 Node splitting rules Gini

Maximum number
of iterations 100 Minimum number

of samples for leaf nodes 1

Iteration termination
error range 0.001 Minimum number of

samples contained in
internal nodes

2

Optimizer Ibfgs

Decision Tree (DT)

Maximum depth 8

Extreme
Gradient
Boosting

(XGBoost)

Evaluating indicator Mlogloss

Minimum number of
samples for leaf nodes 1 Learning rate 0.3

Minimum number of
samples contained in

internal nodes
2 Maximum depth 6

Node splitting rules Information
entropy Sampling ratio 1

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22 
 

4.5.1. Data Normalization Processing 

Due to the presence of numerical data and Boolean data in the original data, it was 

necessary to convert Boolean data into numerical data before constructing a classification 

model. Factors such as the accident occurring in daytime, the presence of road facilities, 

and the accident occurring on the left side of the road were all marked as 1. Factors such 

as the accident occurring at night, the absence of road facilities, and the accident occurring 

on the right side of the road were all marked as 0. 

4.5.2. Model Construction and Analysis 

The machine learning methods used included Logistic Regression (LR), Random For-

est (RF), Decision Tree (DT), and Extreme Gradient Boosting (XGBoost). The specific con-

figuration of the machine learning model is shown in Table 4. The dataset was divided 

into a 75% training set and a 25% test set. A classification model of road traffic accident 

injury severity was constructed, and the ROC curves of the four methods were compared, 

as shown in Figure 10. 

Table 4. Specific configuration of machine learning models. 

Model Specific Configuration Model Specific Configuration 

Logistic  

Regression 

(LR) 

Regularization type L2 

Random For-

est (RF) 

Number of trees 100 

Regularization intensity 1 Node splitting rules Gini 

Maximum number of iterations 100 
Minimum number of samples 

for leaf nodes 
1 

Iteration termination error range 0.001 Minimum number of samples 

contained in internal nodes 
2 

Optimizer Ibfgs 
 

Decision Tree 

(DT) 

Maximum depth 8 

Extreme Gra-

dient Boost-

ing (XGBoost) 

Evaluating indicator Mlogloss 

Minimum number of samples for 

leaf nodes 
1 Learning rate 0.3 

Minimum number of samples 

contained in internal nodes 
2 Maximum depth 6 

Node splitting rules 
Informatio

n entropy 
Sampling ratio 1 

 

Figure 10. ROC curves of the four models. Figure 10. ROC curves of the four models.

The different indicators of the four models in different accident injury severities are
shown in Figures 11–13 and Table 5. The sensitivity test is shown in Figure 14 below.
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Table 5. Evaluation indexes of different machine learning methods on different accident categories.

Method Model Evaluating Indicator Ordinary Accidents Serious Accidents Major Accidents

Logistic
Regression (LR)

Precision 0.68 0.54 0.13
Recall 0.97 0.08 0.02

F1-score 0.80 0.14 0.04

Decision
Tree (DT)

Precision 0.73 0.56 0.12
Recall 0.87 0.36 0.00

F1-score 0.80 0.44 0.00

Random
Forest (RF)

Precision 0.74 0.53 0.19
Recall 0.83 0.41 0.05

F1-score 0.78 0.46 0.07

Extreme Gradient
Boosting (XGBoost)

Precision 0.74 0.56 0.25
Recall 0.86 0.38 0.01

F1-score 0.80 0.45 0.02

From the above Figures 11–13, we can see that the precision rate, recall rate, and
F1-score value of the four models are larger in Ordinary accidents and Serious accidents.
The reason is that the number of Ordinary accidents and Serious accidents in the original
data accounts for a large proportion. It can be seen that when considering the safety
triggering factors, it is possible to focus on the influencing factors of both Ordinary and
Serious accidents.

From the sensitivity test in Figure 14, it can be seen that all four models can effectively
and correctly classify accidents in Ordinary accidents. In Serious accidents, the classification
performance of Extreme Gradient Boosting (XGBoost) and Random Forest (RF) is higher
than that of Logistic Regression (LR) and Decision Tree (DT). In Major accidents, the
classification performance of the four models for accidents is relatively low, due to the
small amount of data for Major accidents and the insufficient learning depth of the models
for various features.

From Table 5 it can also be found that the evaluation index values of the Logistic
Regression (LR) model in different types of accidents are lower than those of the other three
models, indicating that the classification performance of the Logistic Regression (LR) model
is poorer than that of the other three models. The Decision Tree (DT) has a higher evaluation
index value in Ordinary accident types, indicating that it is suitable for classifying Ordinary
accidents, but not Serious and Major accidents. The evaluation index values of Random
Forest (RF) in Serious and Major accidents are generally higher than those of the other three
types of models, but the evaluation index values in Ordinary accidents are lower. Therefore,
Random Forest (RF) is suitable for classifying Serious and Major accidents. Finally, Extreme
Gradient Boosting (XGBoost) has a good performance in the evaluation metrics in all three
types of accident. Based on the above situation, the performance of the Extreme Gradient
Boosting (XGBoost) model is better than the other three types of models, and it can have a
good classification effect for the severity of injuries in road traffic accidents.

5. Conclusions

In this paper, data on road traffic accidents in various states of the United States in
recent years were selected to construct an accident causation analysis model based on
complex networks. Each feature indicator in the model was extracted and analyzed, and
an accident classification model was constructed based on the features after dimensionality
reduction. The following conclusions were drawn:

(1) The complex network model for road traffic accident causation analysis belongs
to the scale-free network structure. In the network the nodes are clustered to a higher
degree, while the degree of distribution of the nodes is not uniform, and the clustering
phenomenon is more obvious. The nodes are more closely connected and have a faster
propagation speed; it is easier to connect with other nodes through one node.
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(2) Through the extraction and analysis of node indicators in the network, traffic
management factors are the main influencing factors of road traffic accidents. Key factors
influencing the occurrence of accidents include no intersections on the road, no deceleration
signs, no railways, and no safety measures. At the same time, a comprehensive importance
evaluation model of complex networks for accident causation analysis was constructed.
It was found that having more input indexes in the model did not necessarily make its
performance better. When the node degree, intermediary centrality, and closeness centrality
were used as the input of the model, the performance of the model was better.

(3) Four different machine learning classification models were constructed using
feature covariates after dimensionality reduction by the complex network method as inputs.
By comparing the precision rate, recall rate, F1-score value, and sensitivity test of the
models, it was found that the performance of Extreme Gradient Boosting (XGBoost) was
better than the other three models.

(4) Other categories of influencing factors could be included in subsequent studies,
such as driver characteristics, vehicle characteristics, and traffic flow, which can increase
the intrinsic characteristics of the complex network and the training dimension of the
model, and can better demonstrate the specific environment in which accidents occur. At
the same time, other classes of machine learning or deep learning methods can also be
applied. Innovating on the original and analyzing the few most influential features is a
way to reduce the cost of model training while improving model performance.
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