
Citation: Jin, J.; Kim, M.

GPT-Empowered Personalized

eLearning System for Programming

Languages. Appl. Sci. 2023, 13, 12773.

https://doi.org/10.3390/app132312773

Academic Editors: Mourad Oussalah,

Zoi Nikiforidou and Jenny Pange

Received: 12 October 2023

Revised: 25 November 2023

Accepted: 25 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

GPT-Empowered Personalized eLearning System for
Programming Languages
Jennifer Jin 1 and Mira Kim 2,*

1 School of Computer Science and Engineering, California State University, San Bernardino, CA 92407, USA;
jennifer.jin@csusb.edu

2 Department of Computer Science, California State University, Fullerton, CA 92831, USA
* Correspondence: mira.kim@fullerton.edu; Tel.: +1-657-278-7778

Abstract: The eLearning approach to programming language instruction has gained widespread
acceptance due to advantages such as accessibility, temporal flexibility, and content reusability.
However, the current eLearning for programming predominantly employs the delivery of one-size-
fits-all content, engendering elevated costs in both the development of language coursework and
administration of eLearning sessions, which includes the labor-intensive task of grading student
submissions. A compelling research question to consider is how to construct an eLearning system
capable of delivering personalized, student-centric content, automating the generation of coursework
elements, and eliminating the need for instructor involvement in the management of eLearning
sessions. Our approach to delivering a definite solution to the question involves the utilization of a
suite of advanced software technologies: GPT to dynamically generate course contents/components,
prompt engineering to personalize course content for each individual student, and autonomous
computing to manage eLearning sessions without the need for human intervention. The research
results encompass the design of an eLearning framework covering all programming languages, a
fully functional Python-based implementation, seamless integration with ChatGPT for dynamic
content generation, a high degree of content personalization, and the elimination of manual effort
required for managing eLearning sessions.

Keywords: eLearning; programming languages; personalized learning; ChatGPT; near-zero effort

1. Introduction

Learning to write programs using languages such as C, C++, Java, Python, and C#
has become increasingly important for students at various levels and for developers in
information technology. The importance of learning programming in the U.S. and other
advanced countries has risen notably over the years, influenced by educational changes
and societal shifts that acknowledge the significance and versatility of coding abilities. For
example, the Ministry of Education in South Korea announced the Digital Talent Cultivation
Plan in August 2022, which mandates coding education in elementary schools [1].

eLearning refers to the use of digital resources to facilitate teaching and learning, often
delivered or facilitated via the Internet. It offers a self-paced, customizable approach to
learning, often accessible anytime, anywhere. It has been a common teaching approach in
higher education, and the recent pandemic notably accelerated the adoption of eLearning.
While eLearning for programming languages offers the benefits of accessibility, time flexi-
bility, and content reusability, the effort involved in creating and maintaining the content is
significant. This includes preparing the fundamentals of language constructs, providing
examples of using the constructs, designing coding exercise problems, and assessing coding
exercises submitted by students.

Building an eLearning system to teach various programming languages poses signifi-
cant challenges due to the following facts:

Appl. Sci. 2023, 13, 12773. https://doi.org/10.3390/app132312773 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app132312773
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312773?type=check_update&version=2

Appl. Sci. 2023, 13, 12773 2 of 27

• There are numerous programming languages that need to be taught.
• Each language has more than 10 distinct units, as appeared as chapters in books, to

teach elements such as variables, data types, operators, functions, control structures,
looping, class, and inheritance.

• Each unit of a language has about three to five topics to teach, such as for loop, while
loop, and repeat-until loop for the topic of ‘looping’.

• Each topic of a unit has four types of learning activities: teaching the foundations of
the topic, illustrative examples, exercise problems, and grading the exercise problems
by instructors. The foundational material includes coding constructs, their usage,
syntax, semantics, and guidelines. The task of generating coding exercise problems
can be daunting and the process of evaluating students’ exercise submissions demands
considerable effort.

Given these challenges, creating an eLearning system for programming languages necessi-
tates a substantial investment in both time and resources, underlining its technical intricacy.

On the other hand, a potent strategy for enhancing learning is to personalize the
learning contents to each student’s individual needs and characteristics. Personalized
learning offers numerous benefits compared to a one-size-fits-all conventional approach.
These benefits are especially pronounced when learning programming languages. Unlike
merely memorizing language constructs, programming requires creativity in the exercise
of coding. Personalized coding exercises for each student provide high effectiveness in
learning language constructs and promote applying creativity in coding. Therefore, person-
alizing learning materials, including examples and exercise problems, surely optimizes the
learning efficiency of each individual student.

The research questions we formulated include the following:

• How to construct an eLearning system that can cover all the major programming
languages, not just a specific one?

• How to deliver learning content that is effectively personalized to each student?
• How to automate the generation of personalized foundational content on the fly?
• How to automate the generation of coding exercise problems on the fly?
• How to automate both quantitative and qualitative assessments of student submissions

in coding exercises?
• How to automate the management of learning progress for students?
• How to achieve complete automation in the creation of eLearning content and classroom

management, thereby significantly eliminating the need for instructor involvement?

Our research objective was to design and implement an eLearning system that can
effectively teach a range of representative programming languages, generate learning
contents and coding exercise problems, personalizing these contents for each student, and
automate the evaluation of submitted coding exercises while significantly minimizing the
initial development effort and cost.

We achieve the goal by seamlessly integrating three modern technologies: (1) harness-
ing the Generative Pre-trained Transformer (GPT) model, (2) personalizing learning contents
for each student’s characteristics and performance, and (3) autonomously conducting end-to-
end course management using software agents.

The system configuration is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 29

Figure 1. Configuration of the personalized eLearning system for languages.

The target system performs all the system functions of eLearning except the genera‐

tion of learning content and evaluation of exercise submissions. Note that the GPT server

does not maintain application‐specific sessions; rather, its capability is limited to generat‐

ing the contents requested through GPT prompts. Hence, the eLearning system itself has

to provide application‐specific functionality and manage the system database.

This paper is organized as follows: Section 2 summarizes related works. Section 3

presents the system requirements. Section 4 presents the system architecture, design of

key components, algorithms, and design tactics. Section 5 presents a proof‐of‐concept im‐

plementation of the system and assessments of the experimental results.

2. Related Works

This section summarizes representative works on eLearning systems for program‐

ming languages and educational systems with GPT. The related works are grouped into

three categories: works on eLearning systems teaching programming, works on utilizing

GPT for education, and works on personalized eLearning.

2.1. Works on eLearning Systems for Programming Languages

There have been studies to design eLearning solutions for teaching programming

languages. Mustakerov et al. [2] presented an eLearning system for learning C program‐

ming with modules for learning content, tests, exercises, and Q&A. Bashir et al. [3] pro‐

posed a problem‐based eLearning model that integrates traditional problem‐based learn‐

ing with eLearning features for programming. Rehberger et al. [4] developed a web‐based

eLearning platform and affiliated teaching techniques, providing exercise programming

and modeling languages online and evaluating their usage for future findings about the

corresponding learning mechanisms. Wang et al. [5] designed and implemented a method

of eLearning for teaching C programming. It finds logic errors which are bugs and cannot

be discovered by compilers.

Matthew et al. [6] projected the extracted information to an interactive dashboard

and demonstrated its usefulness in allowing database systems professors and teaching

staff to quickly identify trends in students’ solutions. Harley et al. [7] developed an

eLearning and e‐assessment tool for a first‐year university course on computer program‐

ming. This tool presents questions to students and provides immediate feedback on the

students’ work regarding correctness and score. Dobesova et al. [8] presented an open

portal of eLearning for programming including visual programming languages. Hasany

et al. [9] devised eLearning for the first computer programming course, including tutoring

and assessment. Estévez et al. [10] implemented program coding scaffoldings to teach and

experiment with some basic mechanisms of AI systems to high school students using

Scratch.

Most of the works in this category proposed eLearning methods and systems for pro‐

gramming languages. However, they do not rely on the automatic generation of course

content but conventional ways of creating course content by instructors. And the person‐

alization of course content was not considered in these works.

Figure 1. Configuration of the personalized eLearning system for languages.

Appl. Sci. 2023, 13, 12773 3 of 27

The target system performs all the system functions of eLearning except the generation
of learning content and evaluation of exercise submissions. Note that the GPT server does
not maintain application-specific sessions; rather, its capability is limited to generating
the contents requested through GPT prompts. Hence, the eLearning system itself has to
provide application-specific functionality and manage the system database.

This paper is organized as follows: Section 2 summarizes related works. Section 3
presents the system requirements. Section 4 presents the system architecture, design of
key components, algorithms, and design tactics. Section 5 presents a proof-of-concept
implementation of the system and assessments of the experimental results.

2. Related Works

This section summarizes representative works on eLearning systems for programming
languages and educational systems with GPT. The related works are grouped into three
categories: works on eLearning systems teaching programming, works on utilizing GPT
for education, and works on personalized eLearning.

2.1. Works on eLearning Systems for Programming Languages

There have been studies to design eLearning solutions for teaching programming lan-
guages. Mustakerov et al. [2] presented an eLearning system for learning C programming
with modules for learning content, tests, exercises, and Q&A. Bashir et al. [3] proposed a
problem-based eLearning model that integrates traditional problem-based learning with
eLearning features for programming. Rehberger et al. [4] developed a web-based eLearning
platform and affiliated teaching techniques, providing exercise programming and modeling
languages online and evaluating their usage for future findings about the corresponding
learning mechanisms. Wang et al. [5] designed and implemented a method of eLearning
for teaching C programming. It finds logic errors which are bugs and cannot be discovered
by compilers.

Matthew et al. [6] projected the extracted information to an interactive dashboard and
demonstrated its usefulness in allowing database systems professors and teaching staff to
quickly identify trends in students’ solutions. Harley et al. [7] developed an eLearning and
e-assessment tool for a first-year university course on computer programming. This tool
presents questions to students and provides immediate feedback on the students’ work
regarding correctness and score. Dobesova et al. [8] presented an open portal of eLearning
for programming including visual programming languages. Hasany et al. [9] devised
eLearning for the first computer programming course, including tutoring and assessment.
Estévez et al. [10] implemented program coding scaffoldings to teach and experiment with
some basic mechanisms of AI systems to high school students using Scratch.

Most of the works in this category proposed eLearning methods and systems for
programming languages. However, they do not rely on the automatic generation of
course content but conventional ways of creating course content by instructors. And the
personalization of course content was not considered in these works.

2.2. Works on Utilizing GPT for Education

There have been works on utilizing GPT for the education domain. Chen et al. [11] de-
signed a ChatGPT-powered programming tool to provide programming code explanations.
Hsiao et al. [12] explored a specific personalized guidance technology known as adaptive
navigation support. It guides students to appropriate questions in a Java programming
course and investigates the effect of personalized guidance. Kris et al. [13] investigated
the key motivating factors affecting learning among university undergraduate students
taking computer programming courses supported by an eLearning system. Chrysafiadi
et al. [14] devised an evaluation method that assesses the results of student modeling
in terms of student satisfaction, performance, progress, behavior, and state. Yusupova
et al. [15] analyzed the advantages of using eLearning in teaching students programming
languages. The authors elaborate on the analysis of collected data and the creation of a

Appl. Sci. 2023, 13, 12773 4 of 27

platform for online teaching of programming languages, the principles of its operation, and
the analysis of the results.

Yilmaz et al. [16] investigated the effect of programming education using ChatGPT
on students’ computational thinking skills, programming self-efficacy, and motivation.
Hosseini et al. [17] conducted a quantitative and qualitative analysis of received responses
to questions about the use of ChatGPT in various contexts as well as code discussions.
Refining scholarly text or making suggestions to improve existing texts were highlighted
among possible positive impacts. Oguz et al. [18] investigated the academic usability of
ChatGPT as well as its potential use in undergraduate study. The authors suggested that,
while it shows promising potential for academic research in the future, there is a need
for further development in certain aspects. Choi et al. [19] utilized ChatGPT to generate
answers for four real exams at a law school. Mhlanga et al. [20] analyzed OpenAI regarding
the educational sector in developing economies. Mehmet [21] demonstrated how artificial
intelligence technologies are integrated into learning management systems using real-world
examples, including examples of practical applications as well as integration steps.

Mhlanga [22] analyzed the ethics of using ChatGPT in education, including respect for
privacy, fairness and non-discrimination, and transparency in the use of ChatGPT. Biswas
et al. [23] asked ChatGPT questions regarding its uses for education to analyze and edit
the replies of ChatGPT. Grassini [24] explored the potential and problems associated with
applying advanced AI models in education. Kalla et al. [25] examined the advantages and
disadvantages of ChatGPT, as well as its limitations and features. Michel-Villarreal [26]
studied the unique challenge of the use of AI-generated text to cheat on assignments.
Su et al. [27] proposed a theoretical framework for educative AI in education, which
includes identifying the desired outcomes, determining the appropriate level of automation,
addressing ethical considerations, and evaluating effectiveness. Tlili et al. [28] examined
ChatGPT in education through a qualitative instrumental case study. Lo [29] suggested
that ChatGPT’s performance varied across subject domains, ranging from outstanding (e.g.,
economics) and satisfactory (e.g., programming) to unsatisfactory (e.g., mathematics).

Most of the works in this category explored the potential and feasibility of GPT
models for the purpose of education in various subject areas. They do not directly address
eLearning for programming languages.

2.3. Works on Personalizing Learning Content

There exist works on personalizing learning content for each student. Wu [30] pro-
posed a fuzzy tree-structured learning activity model, and a learner profile model to
comprehensively describe complex learning activities and learner profiles. They devel-
oped an eLearning recommender system based on a recommendation approach. Troussas
et al. [31] presented the instruction of computer programming using adaptive learning
activities considering students’ cognitive skills based on the learning theory of the Revised
Bloom Taxonomy. To achieve this, the system utilizes rule-based decision-making and
delivers adequate learning activities. Augstein et al. [32] presented an approach based
on the modeling of learners’ problem-solving activity sequences, and on the use of the
models in targeted, and ultimately automated clustering, resulting in the discovery of new,
semantically meaningful information about the learners. Murtaza et al. [33] proposed an
efficient framework that can offer personalized eLearning to each learner. Gaet et al. [34]
proposed a framework for adaptive learning modules and assessment. It describes how
personalization can be exploited in eLearning systems.

Rani et al. [35] designed an ontology-driven system to implement the Felder–Silverman
learning style model in addition to the learning content, to validate its integration with
the semantic web environment. Software agents are employed to provide personalization.
Zakrzewska et al. [36] proposed a system in which teaching paths as well as proper
layouts are customized to groups of students with similar preferences, created by the
application of clustering techniques. Huang et al. [37] described an approach based on
the evolvement technique through computerized adaptive testing (CAT). Baylari et al. [38]

Appl. Sci. 2023, 13, 12773 5 of 27

proposed a personalized multiagent eLearning system based on item response theory (IRT)
and artificial neural network (ANN) which presents adaptive tests (based on IRT) and
personalized recommendations (based on ANN). Cakula et al. [39] identified overlapping
points of knowledge management and eLearning phases to improve the structure and
transfer of personalized course knowledge. Milicevic et al. [40] described a recommendation
module of a programming tutoring system, which can automatically adapt to the interests
and knowledge levels of learners.

Kausar et al. [41] presented a clustering approach that partitions students into different
groups or clusters based on their learning behavior. Alhawiti et al. [42] proposed a personal-
ized eLearning framework, where learning objects are classified, and these learning objects
are offered to individual learners according to their personal preferences, skills, and needs.
Chen et al. [43] proposed a personalized eLearning system based on Item Response Theory
(PEL-IRT) which considers both course material difficulty and learner ability to provide
individual learning paths for learners. Chen et al. [44] presented a novel personalized
eLearning system with self-regulated learning assistance mechanisms that help learners
enhance their self-regulated learning abilities. Ciloglugil [45] implemented an adaptive
eLearning system in an “Introduction to Java Programming Language” course, using Learn
Square software.

Most of the works in this category proposed methods or systems for personalizing
learning content, not necessarily in programming but in general subject areas. And the
personalization in these works does not utilize prompt engineering but is custom-designed
for the given objectives and target learning subjects.

The related works presented in this section are summarized and compared to our
approach to building an eLearning system, as shown in Table 1.

Table 1. Comparative analysis of related works.

Study
Dynamic Generation of

Learning Content
with GPT

Coverage of All
Programming

Languages

Personalizing
Learning Content
for Each Student

Autonomous Course
Management

including Grading

Near-Zero Effort for
Course Creation

Works [2–10]
Partial

Teaching only
1 language

Partial
[5,6,8] supports

grading

Works [11–29] Yes
Partial

[21] for managing
courses

Partial

Works [30–45]
Partial

[31,40,45] for
only 1 language

Yes
But, not through

prompt engineering

Partial
[43,44]

Our Approach
Yes

With content generated by
GPT

Yes
All P.L. Content
trained in GPT

Yes
With prompt
engineering

Yes
With reinforcement

learning loop

Yes
Zero cost except

course profile

Our work is uniquely distinct from existing works in five aspects: (1) dynamically
creating specific learning contents on the fly through the GPT server, (2) scope of covering
virtually all programming languages available, (3) personalizing the learning content
for various student characteristics including age group, education level, and application
domain, (4) autonomously managing the whole learning process and its activities, and
(5) more significantly, the near-zero effort involved in creating learning content, evaluating
exercises, and operating the eLearning system.

3. Software Requirement Specification

This section defines the requirements for developing the target eLearning system.

Appl. Sci. 2023, 13, 12773 6 of 27

3.1. Registering Students

This functionality manages the profiles of students who are interested in learning
programming through the eLearning system. The profile includes the following attributes:
name, identification information, address, phone, email, affiliation, and level in school.

3.2. Registering Course Directors

This functionality manages the profiles of course directors who specify the profiles of
programming languages, courses, and course offerings. The profile includes the follow-
ing attributes: name, identification, affiliation, director certificate, address, phone, email,
department, and specialty.

3.3. Registering Programming Languages

This functionality manages the profiles of programming languages such as C, C++,
Java, and Python. The profile serves as a meta-description of a target programming
language. Language profiles are defined by course directors. It includes several attributes,
including language name, version, and standard document. Examples are ANSI C, Java 8,
Java 20, Python 2, and Python 3.

3.4. Registering Courses

This functionality manages the profiles of courses for each programming language. A
course here refers to a unit of teaching that covers a specific programming language over a
specified period such as a semester. There can be multiple courses for a given language
such as ‘Fundamental Java’ and ‘Advanced Java’ for Java 8. A course profile includes
several attributes, including:

o ‘Course Description’ includes course objectives, topics, and assessment methods like
tests, quizzes, assignments, and tests.
o ‘Duration’ such as a semester-long, an entire school year, or just a few weeks.
o ‘Level’ specifies the level of difficulty or prerequisites.
o Chapters and topics.

A course is organized into units and each unit is further organized into topics where a
topic represents a specific language construct within the unit’s main theme. For example,
the unit of ‘looping’ in C language includes three topics: for loop, while loop, and repeat-
while loop.

An example of a course profile for ‘Fundamental Java’ is shown in Table 2.
The comprehensiveness and accuracy of course profiles are of utmost importance as

they serve as the foundation for providing instructions to students.

3.5. Registering Offerings

This functionality manages the course offerings for a given course. An offering
refers to a specific instance or section of a course that is scheduled to be taught during
a particular academic term such as a semester or quarter. Therefore, a course offering is
often documented in the syllabus. For a given course, there can be multiple offerings for
different semesters, and also multiple offerings for multiple sections for the same semester.
For example, an offering for the course ‘Fundamental Java’ can be ‘CS105 for Fall 2023’.

An Offering Profile includes several attributes including Course Identifier, Instructor,
Class Schedule, Prerequisites, Credits, Course Format, Textbooks and Materials, Grading
Policy, and Office Hours.

The relationships among Language, Course, and Offering are shown in Figure 2.
Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 29

Figure 2. Relationships among language, course, and offering.

For a given programming language, there can be zero or more instances of Course.

Each course is defined with a distinct objective, teaching coverage, and chapter organiza‐

tion. For a course, there can be zero or more instances of Offering. Students register for a

specific offering for a given course.

3.6. Presenting the Foundations

This functionality presents the foundational material of the topics in a unit. The foun‐

dation consists of three elements: Introduction, Language Constructs, and Code Examples.

The Introduction is an initial overview or explanation that introduces the topic and its

significance within the programming language. Language Construct refers to a syntactical

element or feature provided by a programming language that allows developers to per‐

form specific tasks or operations within their code. These constructs are building blocks

that programmers use to create algorithms, define data structures, control program flow,

and perform various other functions. Code Examples demonstrate the usage of the lan‐

guage constructs.

The system also offers an interactive Q&A feature that simulates in‐class teaching.

As students delve into the foundational material, they can pose questions at any moment,

and the system promptly provides precise and relevant answers. For instance, if a student

inquires, “What is the difference between a For loop and a While loop?”, the system will

present a clear explanation of their distinctions.

3.7. Generating Personalized Coding Exercises

This functionality generates coding exercise problems that are personalized to each

user’s characteristics, such as age, group, occupation, place, level of language proficiency,

and the evaluation results of previous coding exercise submissions. The personalized cod‐

ing exercise caters to the individual needs, strengths, weaknesses, and learning styles of

each student. This tailored approach promotes deeper understanding and retention of

material, greater engagement, and often results in better academic outcomes. In contrast,

one‐way coding exercise problems apply a “one‐size‐fits‐all” model, which might not res‐

onate with all students and can leave some students behind.

3.8. Submitting Exercise Solutions

This functionality allows students to submit their exercise solutions. Once submitted

successfully, the system triggers the evaluation of the submission.

3.9. Evaluating Submissions of Coding Exercises

This functionality evaluates the submitted coding exercises. The system evaluates the

submitted program codes based on the given evaluation criteria. Initially, the set of eval‐

uation criteria consists of conformance, correctness, efficiency, and extensibility. How‐

ever, the criteria for evaluation can be altered by the course directors.

The system evaluates exercise submissions using either letter grades (A, B, C, D, and

F) or a numerical score ranging from 0 to 100. In addition, it provides feedback on neces‐

sary corrections, suggestions for improvement, and alternative approaches to writing the

code.

3.10. Generating Learning Progress Reports

This functionality generates Learning Progress Reports and Certificates of Comple‐

tion for students. The progress report provides comprehensive details of the training

Figure 2. Relationships among language, course, and offering.

Appl. Sci. 2023, 13, 12773 7 of 27

Table 2. Course profile of ‘Fundamental Java’.

Unit Title Topics

1 Introduction
to Java

• Overview of Java programming language
• Installing Java Development Kit (JDK)
• Installing Integrated Development Environment (IDE)
• Writing and running a simple Java program

2 Variables and
Data Types

• Primitive data types (e.g., int, double, Boolean)
• Variable declaration and initialization
• Type casting and conversion
• String manipulation

3 Control Structures
• Conditional statements (if, else if, else)
• Looping (for, while, do-while)
• Switch statements

4 Array
• Declaration, initialization, and manipulation of arrays
• Array traversal and manipulation
• Multidimensional arrays

5
Encapsulation

and
Information Hiding

• Encapsulation
• Information Hiding
• Object

6 Class, Constructor,
and Destructor

• Class
• Constructor and Destructor
• Static

7
Inheritance

and
Polymorphism

• Inheritance and Subclassing
• Overloading
• Overriding
• Dynamic Binding

8 Exception Handling

• Exception as Objects
• Handling and Throwing Exceptions
• Try-Catch Block
• Exception hierarchy
• Checked vs. Unchecked Exceptions

9 File Handling • Reading from and writing to files
• File input/output operations

10 Collections
• ArrayList
• LinkedList
• Other Collection Classes

For a given programming language, there can be zero or more instances of Course.
Each course is defined with a distinct objective, teaching coverage, and chapter organization.
For a course, there can be zero or more instances of Offering. Students register for a specific
offering for a given course.

3.6. Presenting the Foundations

This functionality presents the foundational material of the topics in a unit. The
foundation consists of three elements: Introduction, Language Constructs, and Code Examples.

The Introduction is an initial overview or explanation that introduces the topic and its
significance within the programming language. Language Construct refers to a syntactical
element or feature provided by a programming language that allows developers to perform
specific tasks or operations within their code. These constructs are building blocks that
programmers use to create algorithms, define data structures, control program flow, and
perform various other functions. Code Examples demonstrate the usage of the language
constructs.

The system also offers an interactive Q&A feature that simulates in-class teaching.
As students delve into the foundational material, they can pose questions at any moment,
and the system promptly provides precise and relevant answers. For instance, if a student
inquires, “What is the difference between a For loop and a While loop?”, the system will
present a clear explanation of their distinctions.

Appl. Sci. 2023, 13, 12773 8 of 27

3.7. Generating Personalized Coding Exercises

This functionality generates coding exercise problems that are personalized to each
user’s characteristics, such as age, group, occupation, place, level of language proficiency,
and the evaluation results of previous coding exercise submissions. The personalized
coding exercise caters to the individual needs, strengths, weaknesses, and learning styles
of each student. This tailored approach promotes deeper understanding and retention of
material, greater engagement, and often results in better academic outcomes. In contrast,
one-way coding exercise problems apply a “one-size-fits-all” model, which might not
resonate with all students and can leave some students behind.

3.8. Submitting Exercise Solutions

This functionality allows students to submit their exercise solutions. Once submitted
successfully, the system triggers the evaluation of the submission.

3.9. Evaluating Submissions of Coding Exercises

This functionality evaluates the submitted coding exercises. The system evaluates
the submitted program codes based on the given evaluation criteria. Initially, the set
of evaluation criteria consists of conformance, correctness, efficiency, and extensibility.
However, the criteria for evaluation can be altered by the course directors.

The system evaluates exercise submissions using either letter grades (A, B, C, D, and F)
or a numerical score ranging from 0 to 100. In addition, it provides feedback on necessary
corrections, suggestions for improvement, and alternative approaches to writing the code.

3.10. Generating Learning Progress Reports

This functionality generates Learning Progress Reports and Certificates of Completion
for students. The progress report provides comprehensive details of the training sessions
conducted. It encompasses the complete history of training sessions conducted for the
specific programming language, highlighting the exercises undertaken and the evaluation
results of code submissions.

A certificate confirms that the recipient has successfully completed all the required
training units and fulfilled the necessary criteria for certification. It is a concise, one-page
document that bears the official seal of the training institute.

3.11. Interaction with a GPT Server

As an artificial intelligence model designed for natural language processing tasks, GPT
can play a key role in generating learning content. We utilize a GPT as a backend engine for
generating the foundations of topics, generating exercise problems, and evaluating exercise
submissions. The initial version of our eLearning system utilizes ChatGPT, but the system
architecture is designed to utilize alternative GPTs such as Google Bard.

4. Design Specification

This section presents the design of the eLearning system. The system was designed
with the assumption of a client-server architecture for effective system maintenance and
web client support. Also, the design was conducted using an object-oriented paradigm
with UML to deliver high modularity and extensibility.

4.1. Schematic Architecture for GPT Interactions

The schematic architecture of a target system is a structured and visual representation
of structural elements, their roles, and relationships among the elements. The key elements
in a schematic architecture are tiers, layers, partitions within a layer, and their relationships.

The schematic architecture of the eLearning system is defined with three architecture
styles: tiered architecture, MVC, and Microservice, as shown in Figure 3.

Appl. Sci. 2023, 13, 12773 9 of 27

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 29

sessions conducted. It encompasses the complete history of training sessions conducted

for the specific programming language, highlighting the exercises undertaken and the

evaluation results of code submissions.

A certificate confirms that the recipient has successfully completed all the required

training units and fulfilled the necessary criteria for certification. It is a concise, one‐page

document that bears the official seal of the training institute.

3.11. Interaction with a GPT Server

As an artificial intelligence model designed for natural language processing tasks,

GPT can play a key role in generating learning content. We utilize a GPT as a backend

engine for generating the foundations of topics, generating exercise problems, and evalu‐

ating exercise submissions. The initial version of our eLearning system utilizes ChatGPT,

but the system architecture is designed to utilize alternative GPTs such as Google Bard.

4. Design Specification

This section presents the design of the eLearning system. The system was designed

with the assumption of a client‐server architecture for effective system maintenance and

web client support. Also, the design was conducted using an object‐oriented paradigm

with UML to deliver high modularity and extensibility.

4.1. Schematic Architecture for GPT Interactions

The schematic architecture of a target system is a structured and visual representa‐

tion of structural elements, their roles, and relationships among the elements. The key

elements in a schematic architecture are tiers, layers, partitions within a layer, and their

relationships.

The schematic architecture of the eLearning system is defined with three architecture

styles: tiered architecture, MVC, and Microservice, as shown in Figure 3.

Figure 3. Schematic architecture of the eLearning system.

The role of the Dispatcher tier is to replicate eLearning Servers to ensure high avail‐

ability and reliability, distributing the invocation load evenly among the replicas. The

eLearning Server tier is responsible for delivering the core functionality of the system,

while the Microservice tier is designed to represent externally developed and deployed

GPT servers.

The ‘Service Control Layer’ of the eLearning Server dynamically binds a compatible

microservice that provides a GPT language model. This design decision is needed to avoid

dependency on a particular GPT model since various large language models are available,

including OpenAI ChatGPT, Google Bard, and Meta Llama 2. Even newer and better GPT

models will appear in the future. Our default GPT model is set to ChatGPT, but the

Figure 3. Schematic architecture of the eLearning system.

The role of the Dispatcher tier is to replicate eLearning Servers to ensure high avail-
ability and reliability, distributing the invocation load evenly among the replicas. The
eLearning Server tier is responsible for delivering the core functionality of the system,
while the Microservice tier is designed to represent externally developed and deployed
GPT servers.

The ‘Service Control Layer’ of the eLearning Server dynamically binds a compatible
microservice that provides a GPT language model. This design decision is needed to avoid
dependency on a particular GPT model since various large language models are available,
including OpenAI ChatGPT, Google Bard, and Meta Llama 2. Even newer and better GPT
models will appear in the future. Our default GPT model is set to ChatGPT, but the ‘Service
Control Layer’ performs interface adaptation using the Adapter Pattern [46] and mediation
using the Mediator Pattern [46] when adopting other GPT models.

In addition, this schematic architecture is designed to offer the advantages of high
availability, fault tolerance [47], and dynamic adaptation of GPT models.

4.2. Modeling the System Functionality

A use case diagram captures the key functionality of the system, which becomes the
basis for deriving functional components. The whole system functionality was modeled
as a set of use cases, and Figure 4 shows the essential part of the use case diagram for the
eLearning system.

Each use case is given a two-digit identifier for its functional group, followed by
a sequential number such as ‘FT01. Get Instruction Scope’. The figure shows only the
essential use cases, including use cases for interacting with the GPT model.

Note that we employ three actors of software agent type: Teaching Agent, Exercise Agent,
and Evaluation Agent. A software agent in use case diagrams does not model human users
or hardware devices; rather, it models a background-running daemon process that invokes
its relevant use cases [48]. This type of actor is utilized to eliminate instructors’ efforts in
managing eLearning sessions and even grading student submissions.

From the use case diagram, functional components can be identified by grouping a set
of relevant use cases. Then, the components are allocated to the schematic architecture of
the system as shown in Figure 5.

Appl. Sci. 2023, 13, 12773 10 of 27

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 29

‘Service Control Layer’ performs interface adaptation using the Adapter Pattern [46] and

mediation using the Mediator Pattern [46] when adopting other GPT models.

In addition, this schematic architecture is designed to offer the advantages of high

availability, fault tolerance [47], and dynamic adaptation of GPT models.

4.2. Modeling the System Functionality

A use case diagram captures the key functionality of the system, which becomes the

basis for deriving functional components. The whole system functionality was modeled

as a set of use cases, and Figure 4 shows the essential part of the use case diagram for the

eLearning system.

Figure 4. Part of the use case diagram for the eLearning system. Figure 4. Part of the use case diagram for the eLearning system.

Appl. Sci. 2023, 13, 12773 11 of 27

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 29

Each use case is given a two‐digit identifier for its functional group, followed by a

sequential number such as ‘FT01. Get Instruction Scope’. The figure shows only the essen‐

tial use cases, including use cases for interacting with the GPT model.

Note that we employ three actors of software agent type: Teaching Agent, Exercise

Agent, and Evaluation Agent. A software agent in use case diagrams does not model human

users or hardware devices; rather, it models a background‐running daemon process that

invokes its relevant use cases [48]. This type of actor is utilized to eliminate instructors’

efforts in managing eLearning sessions and even grading student submissions.

From the use case diagram, functional components can be identified by grouping a

set of relevant use cases. Then, the components are allocated to the schematic architecture

of the system as shown in Figure 5.

Figure 5. Functional components of the eLearning system.

Note that the three functional components of the Service Control Layer interact with a

GPT Server to generate learning content.

4.3. Persistent Dataset Modeling

The persistent datasets of the system are modeled as entity‐type classes, which map

to tables of a relational database. Figure 6 shows the persistent object model in a class

diagram.

This class diagram captures three types of persistent datasets: (1) programming lan‐

guage‐related classes in blue color, (2) classes of sessions in red color, i.e., logs of learning

activities, and (3) classes of generated learning content in green color.

Among the session‐related classes, the class ‘Learning Session’ is defined as an ag‐

gregation of six other classes. This class is essential not only for keeping track of current

progress but also for autonomously managing the eLearning sessions.

The persistent datasets are maintained in a database through object‐relational map‐

ping, and the stored session information is further utilized to enhance the quality of sys‐

tem services.

Figure 5. Functional components of the eLearning system.

Note that the three functional components of the Service Control Layer interact with a
GPT Server to generate learning content.

4.3. Persistent Dataset Modeling

The persistent datasets of the system are modeled as entity-type classes, which map
to tables of a relational database. Figure 6 shows the persistent object model in a class
diagram.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 29

Figure 6. Class diagram modeling persistent object classes.

4.4. Autonomous Management of System Behavior

The main control flow of a system specifies the whole runtime behavior of the system.

Figure 7 shows the entire control flow of the eLearning system using an activity diagram.

After login, the system runs seven tasks in parallel. Thread 1 handles a menu for the

functionality with explicit invocation. Thread 2 handles the generation of foundational

materials for given topics in the current unit. Thread 3 handles the generation of person‐

alized exercise problems for the current unit. Thread 4 requests the GPT model to evaluate

the exercise solutions submitted by students. Threads 2, 3, and 4 rely on the GPT model

in providing their functionalities. This is enabled by constructing and transmitting cus‐

tomized GPT prompts, and its logic is specified in Algorithm 1. The submission of exercise

solutions by students is handled by an action of ‘Manage Submission’ in thread 1.

Threads 5 and 6 handle the generation of periodical and on‐demand reports. Thread

7 handles the interaction with students, i.e., Q&A sessions. The parallel processing with

the seven threads allows students to navigate the various options of learning activities

flexibly. For example, a student may stop learning a topic and switch to another topic or

unit by using a web service interface. The ‘Manage Submission’ action in the activity dia‐

gram (noted as ‘8’ in the figure), is used to submit students’ coding exercise solutions.

Figure 6. Class diagram modeling persistent object classes.

Appl. Sci. 2023, 13, 12773 12 of 27

This class diagram captures three types of persistent datasets: (1) programming
language-related classes in blue color, (2) classes of sessions in red color, i.e., logs of
learning activities, and (3) classes of generated learning content in green color.

Among the session-related classes, the class ‘Learning Session’ is defined as an ag-
gregation of six other classes. This class is essential not only for keeping track of current
progress but also for autonomously managing the eLearning sessions.

The persistent datasets are maintained in a database through object-relational mapping,
and the stored session information is further utilized to enhance the quality of system
services.

4.4. Autonomous Management of System Behavior

The main control flow of a system specifies the whole runtime behavior of the system.
Figure 7 shows the entire control flow of the eLearning system using an activity diagram.
Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 29

Figure 7. System control flow in an activity diagram.

Figure 7. System control flow in an activity diagram.

Appl. Sci. 2023, 13, 12773 13 of 27

After login, the system runs seven tasks in parallel. Thread 1 handles a menu for
the functionality with explicit invocation. Thread 2 handles the generation of founda-
tional materials for given topics in the current unit. Thread 3 handles the generation of
personalized exercise problems for the current unit. Thread 4 requests the GPT model to
evaluate the exercise solutions submitted by students. Threads 2, 3, and 4 rely on the GPT
model in providing their functionalities. This is enabled by constructing and transmitting
customized GPT prompts, and its logic is specified in Algorithm 1. The submission of
exercise solutions by students is handled by an action of ‘Manage Submission’ in thread 1.

Threads 5 and 6 handle the generation of periodical and on-demand reports. Thread 7
handles the interaction with students, i.e., Q&A sessions. The parallel processing with the
seven threads allows students to navigate the various options of learning activities flexibly.
For example, a student may stop learning a topic and switch to another topic or unit by
using a web service interface. The ‘Manage Submission’ action in the activity diagram
(noted as ‘8’ in the figure), is used to submit students’ coding exercise solutions.

4.5. GPT Prompt Engineering for Content Personalization

Prompt engineering for GPT entails the design and optimization of input queries to
achieve specific and accurate model outputs. This practice is crucial for personalizing
content for eLearning systems. By fine-tuning the structure and vocabulary of the prompts,
practitioners can enhance model efficiency, reduce computational overhead, and improve
accuracy [49].

Each of the threads 2, 3, and 4 in the activity diagram includes an action for prompt
engineering. The prompt is customized for each student’s characteristics, performance in
learning, and learning effectiveness, as follows:

• Level of Compactness

There exists a right level of instruction detail that fits well with each student’s educa-
tion level, familiar domain, and language proficiency. Beginners would prefer to have an
instruction that fully elaborates the topics to be learned, while advanced learners would
prefer to have an instruction that only presents the essential content of the topic.

• Types of Examples and Coding Exercises

There typically exist application domains of the examples and exercise problems that
each student is familiar with. Hence, the system should generate examples and exercise
problems for the domains for effective learning.

• Number of Exercise Problems

There exists a right number of incrementally challenging exercises that fit well with
each student’s education level and language proficiency. Beginners may prefer a large
number of incrementally challenging exercises, while advanced learners may prefer a small
number of relatively challenging exercises.

Based on these observations, we devise design tactics for personalizing the instruc-
tional content from a GPT server.

• Domains of Interest

This tactic determines the application domains that a learner is familiar with for the
examples and coding exercises. This information can automatically be inferred by analyzing
student profiles or can explicitly be specified by students. An attribute domain_list maintains
an ordered list of domains.

• Education Level

This tactic determines the educational level which will be used for the personaliza-
tion. This information can automatically be inferred by reviewing the affiliation or school
information in the student profiles.

• Language Proficiency

Appl. Sci. 2023, 13, 12773 14 of 27

This tactic determines the proficiency of students in the target language, which will
be utilized in providing personalized learning. An attribute, lang_level, is defined to be
an integer between 1 and 5, where level 1 represents beginner-level and level 5 represents
expert-level. A new attribute, compound_level, is used to indicate the compound proficiency
level of students. It is measured as the sum of Edu_Level and Lang_Level, and the sum will
be on a scale of between 1 and 10. The compound level is then utilized in generating GPT
prompts.

The process for personalizing learning content for each student is modeled using a
data flow diagram as shown in Figure 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 29

Figure 8. Process of personalizing learning content.

The system generates a feature vector for each student by reading the student profile

and evaluation results on submitted exercises. Then, the vector is transformed into nu‐

meric values that are appropriate for customizing learning content. Then, a GPT prompt

is automatically generated based on the customization values. By sending the prompt to

the GPT server, the system acquires learning content and formats the content for students.

4.6. Foundation Manager Algorithm

The Foundation Manager component configures the personalized foundational con‐

tent for the topics to learn by consulting the GPT server and presents the content on the

screen. The system first determines the unit and its topic to learn for each student by re‐

ferring to the ‘Table of Learning Progress’ as shown in Figure 9.

Figure 9. Table of ‘Learning Progress’.

Figure 8. Process of personalizing learning content.

The system generates a feature vector for each student by reading the student profile
and evaluation results on submitted exercises. Then, the vector is transformed into numeric
values that are appropriate for customizing learning content. Then, a GPT prompt is
automatically generated based on the customization values. By sending the prompt to the
GPT server, the system acquires learning content and formats the content for students.

4.6. Foundation Manager Algorithm

The Foundation Manager component configures the personalized foundational content
for the topics to learn by consulting the GPT server and presents the content on the screen.
The system first determines the unit and its topic to learn for each student by referring to
the ‘Table of Learning Progress’ as shown in Figure 9.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 29

Figure 8. Process of personalizing learning content.

The system generates a feature vector for each student by reading the student profile

and evaluation results on submitted exercises. Then, the vector is transformed into nu‐

meric values that are appropriate for customizing learning content. Then, a GPT prompt

is automatically generated based on the customization values. By sending the prompt to

the GPT server, the system acquires learning content and formats the content for students.

4.6. Foundation Manager Algorithm

The Foundation Manager component configures the personalized foundational con‐

tent for the topics to learn by consulting the GPT server and presents the content on the

screen. The system first determines the unit and its topic to learn for each student by re‐

ferring to the ‘Table of Learning Progress’ as shown in Figure 9.

Figure 9. Table of ‘Learning Progress’.
Figure 9. Table of ‘Learning Progress’.

Appl. Sci. 2023, 13, 12773 15 of 27

This table keeps track of the learning progress, and it is created for each registered
offering. The system enters the date of completion when a student completes a learning
activity. For example, the whole of unit 1 is completed, including exercise submission and
its grading. A student finished studying all four topics in unit 2 but did not start the rest
of the activities. The student started learning the first two topics in unit 3, even before
completely finishing unit 2.

The control flow of ‘Foundation Manager’ is specified in Algorithm 1.

Algorithm 1: Control Flow of ‘Foundation Manager’

Input: Table of Progress
Output: Content of Foundation for the Learning Scope
1:genereate_Foundation() {
2: //Step 1. Generate the scope to learn.
3: LANG := get_PL(); //Retrieve the target language to learn
4: If (Auto-Resume) then SCOPE := get_scope() //From Progress Table
5: else
6: SCOPE := get_scope_from_Student(); //A student enters the scope.
7: compound_level:= compute_compound_level();
8: //Step 2. Generate a personalized GPT prompt
9: PROMPT := “A student wants to learn about <SCOPE> of a programming language <LANG>.”;
10: PROMPT += “Generate an instructional material for the given topics in the following order:”;
11: PROMPT += “(1) Introduction to the given topics,”;
12: PROMPT += “(2) syntax of the relevant language constructs,”
13: PROMPT += “(3) examples of using the syntax, and”;
14: PROMPT += “(4) additional guidelines for utilizing the language constructs.”
15: PROMPT += “Personalize the learning contents for this student who has the following features;”
16: PROMPT += “The student’s age is ” + toString(current_Student.getAge());
17: PROMPT += “Applications of interest are in the order of ” + toString(domain_list);
18: PROMPT += “The student’s language proficiency level is ” + toString(compound_level);
19: //Step 3. Submit the prompt to and receive the response from GPT server.
20: RESPONSE := GPT_Server.chat(PROMPT);
21: RESPONSE := verify_Foundation(RESPONSE);
22: //Step 4. Display the learning foundation
23: foundation_content := format(RESPONSE);
24: display(foundation_content);
25: //Step 5. Store the current session on database.
26: store_session(LANG, SCOPE, PROMPT, RESPONSE);
27:END

Note that the GPT prompt for generating the foundation to learn is personalized with
student-specific features such as age, domain, and proficiency level, as shown in step 2.

5. Implementation and Experiments
5.1. Proof-of-Concept Implementation

We implemented a proof-of-concept system with its design. The development environ-
ment includes Python 3.1, Ubuntu operating system, MySQL for the database, and Django
for the web framework.

We implemented the eLearning system utilizing the ChatGPT 4.0 API (GPT-4-0613).
The primary classes of the API employed in our implementation encompass ChatGPT-
Client for handling API authentication and session management, ChatSession for managing
chat sessions and conversation states, Message for representing messages sent to and re-
ceived from the model, CompletionRequest for encapsulating parameters for generating text
completions, and FilteringOptions for specifying content filtering settings.

All the functional components, data components, main control flow, Foundation Man-
ager algorithm, and design for personalizing GPT prompts have been fully implemented
as specified. The user interface for the main menu is shown in Figure 10.

Appl. Sci. 2023, 13, 12773 16 of 27Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 29

Figure 10. User interface of the eLearning system.

The user interface keeps displaying the current topics such as ‘Unit 7 → Topic 1 →
Inheritance and Subclassing’ and it offers tabs for choosing an option among the four ac‐

tivities: Foundation, Exercises, Submission, and Evaluation.

The system displays the foundational content of the current topic in the content

frame. Upon completing the foundations, students proceed to choose the Exercises tab,

which will trigger the generation of exercise problems. Upon completing coding exercises,

students can submit their solutions by using the Submission Table. Students can view the

results of the evaluation on their submissions by using the Evaluation tab.

The PREV and NEXT buttons allow students to freely navigate through units and

topics within each unit. A click on the NEXT button brings up the next topic in the unit

and continues displaying the learning content. However, a click on the NEXT button while

studying the last topic in the unit will trigger a generation of exercise problems for the

student.

5.2. Assessment through Personalized Content

We conducted a number of experiments to evaluate the delivered eLearning system.

The implemented eLearning system is provided as a cloud service and hence the only

environmental constraint for accessing the system is the use of a web browser.

5.2.1. Experiment of Personalizing Foundations for Different Proficiency Levels

This experiment generates foundational material for a topic for a student at level 1,

i.e., novice, and for another student at level 10, i.e., subject expert. The foundational ma‐

terial generated from GPT for the student at level 1 is shown in Figure 11.

Figure 10. User interface of the eLearning system.

The user interface keeps displaying the current topics such as ‘Unit 7→ Topic 1→
Inheritance and Subclassing’ and it offers tabs for choosing an option among the four
activities: Foundation, Exercises, Submission, and Evaluation.

The system displays the foundational content of the current topic in the content frame.
Upon completing the foundations, students proceed to choose the Exercises tab, which will
trigger the generation of exercise problems. Upon completing coding exercises, students
can submit their solutions by using the Submission Table. Students can view the results of
the evaluation on their submissions by using the Evaluation tab.

The PREV and NEXT buttons allow students to freely navigate through units and
topics within each unit. A click on the NEXT button brings up the next topic in the unit
and continues displaying the learning content. However, a click on the NEXT button while
studying the last topic in the unit will trigger a generation of exercise problems for the
student.

5.2. Assessment through Personalized Content

We conducted a number of experiments to evaluate the delivered eLearning system.
The implemented eLearning system is provided as a cloud service and hence the only
environmental constraint for accessing the system is the use of a web browser.

5.2.1. Experiment of Personalizing Foundations for Different Proficiency Levels

This experiment generates foundational material for a topic for a student at level 1, i.e.,
novice, and for another student at level 10, i.e., subject expert. The foundational material
generated from GPT for the student at level 1 is shown in Figure 11.

Appl. Sci. 2023, 13, 12773 17 of 27Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 29

Figure 11. Foundational material from GPT for a student at level 1.

As shown in the figure, the foundation only includes a preliminary concept of ‘loop’

constructs including ‘for’ loop. This content is self‐explanatory, and the example is easy

to understand and intuitive.

Now, the foundational material generated from GPT for the student at level 10 is

shown in Figure 12.

Figure 12. Foundational material from GPT for a student at level 10.

The generated foundation presents a summary of basic constructs including ‘for’,

while’, and ‘break’. And it also presents advanced techniques for using loop constructs,

and understanding the given example requires some basic proficiency in Python lan‐

guage. This foundational content should reasonably challenge students at level 10 but will

be too challenging for beginners to understand.

Through the two contents of foundational material generated for different levels of

students, we can clearly observe that the GPT content for the foundations is well person‐

alized for each proficiency level.

Figure 11. Foundational material from GPT for a student at level 1.

As shown in the figure, the foundation only includes a preliminary concept of ‘loop’
constructs including ‘for’ loop. This content is self-explanatory, and the example is easy to
understand and intuitive.

Now, the foundational material generated from GPT for the student at level 10 is
shown in Figure 12.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 29

Figure 11. Foundational material from GPT for a student at level 1.

As shown in the figure, the foundation only includes a preliminary concept of ‘loop’

constructs including ‘for’ loop. This content is self‐explanatory, and the example is easy

to understand and intuitive.

Now, the foundational material generated from GPT for the student at level 10 is

shown in Figure 12.

Figure 12. Foundational material from GPT for a student at level 10.

The generated foundation presents a summary of basic constructs including ‘for’,

while’, and ‘break’. And it also presents advanced techniques for using loop constructs,

and understanding the given example requires some basic proficiency in Python lan‐

guage. This foundational content should reasonably challenge students at level 10 but will

be too challenging for beginners to understand.

Through the two contents of foundational material generated for different levels of

students, we can clearly observe that the GPT content for the foundations is well person‐

alized for each proficiency level.

Figure 12. Foundational material from GPT for a student at level 10.

The generated foundation presents a summary of basic constructs including ‘for’,
while’, and ‘break’. And it also presents advanced techniques for using loop constructs,
and understanding the given example requires some basic proficiency in Python language.
This foundational content should reasonably challenge students at level 10 but will be too
challenging for beginners to understand.

Appl. Sci. 2023, 13, 12773 18 of 27

Through the two contents of foundational material generated for different levels
of students, we can clearly observe that the GPT content for the foundations is well
personalized for each proficiency level.

5.2.2. Experiment of Personalizing Examples for Different Domains

This experiment generates examples of looping for a student in the academic domain
and for another student in the finance domain. The examples of looping generated from
GPT for the student in academia are shown in Figure 13.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 29

5.2.2. Experiment of Personalizing Examples for Different Domains
This experiment generates examples of looping for a student in the academic domain

and for another student in the finance domain. The examples of looping generated from
GPT for the student in academia are shown in Figure 13.

Figure 13. Generated example for a student in academia.

As shown in the screen dump, the example of computing the total and average of
some numbers is simple enough for any student to understand.

Now, the foundation generated from GPT for the student in the finance domain is
shown in Figure 14.

Figure 13. Generated example for a student in academia.

As shown in the screen dump, the example of computing the total and average of
some numbers is simple enough for any student to understand.

Now, the foundation generated from GPT for the student in the finance domain is
shown in Figure 14.

Appl. Sci. 2023, 13, 12773 19 of 27Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 29

Figure 14. Generated example for a student in finance.

The generated example uses a loop for calculating the total amount of deposits made

on bank accounts. This example is intuitive and easy to understand for users in the finance

domain.

Through the two contents of examples generated for different domains, we can

clearly observe that the GPT content for generated examples is well personalized for each

domain of interest.

5.2.3. Experiment of Personalizing Coding Exercises for Domains of Interests

This experiment generates coding exercises using ‘inheritance’ for a student in the

eCommerce domain and for another student in the finance domain. The coding exercise

for the student in eCommerce is shown in Figure 15.

Figure 14. Generated example for a student in finance.

The generated example uses a loop for calculating the total amount of deposits made
on bank accounts. This example is intuitive and easy to understand for users in the finance
domain.

Through the two contents of examples generated for different domains, we can clearly
observe that the GPT content for generated examples is well personalized for each domain
of interest.

5.2.3. Experiment of Personalizing Coding Exercises for Domains of Interests

This experiment generates coding exercises using ‘inheritance’ for a student in the
eCommerce domain and for another student in the finance domain. The coding exercise for
the student in eCommerce is shown in Figure 15.

As shown in the exercise problem, the three classes, Product, ElectroicsProducts, and
ClothingProduct are entities in the eCommerce domain. In addition, the methods of each
class are the common operations, such as display_product_info(), commonly used in the
eCommerce domain. Hence, users in the eCommerce domain should feel comfortable
understanding the exercise.

Now, the coding exercise generated for the student in the finance domain is shown in
Figure 16.

Appl. Sci. 2023, 13, 12773 20 of 27Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 29

Figure 15. Generated coding exercises for a student in eCommerce.

As shown in the exercise problem, the three classes, Product, ElectroicsProducts, and
ClothingProduct are entities in the eCommerce domain. In addition, the methods of each
class are the common operations, such as display_product_info(), commonly used in the
eCommerce domain. Hence, users in the eCommerce domain should feel comfortable un-
derstanding the exercise.

Now, the coding exercise generated for the student in the finance domain is shown
in Figure 16.

Figure 15. Generated coding exercises for a student in eCommerce.

The generated coding exercise is about managing banking accounts, including a
savings account and a checking account. And, the methods of each class, such as deposit()
and withdraw(), are common operations in banks. Hence, this exercise problem is intuitive
and easy to understand for users in the finance domain.

Through the two contents of coding exercises generated for different domains, we can
clearly observe that the GPT content for generated coding exercises is well personalized for
each domain of interest.

5.3. Assessment through Experiments

Evaluating the quality of educational content and its associated eLearning system
cannot be adequately measured using quantitative metrics. Instead, a qualitative approach,
such as feedback from users, is more appropriate.

We utilize two criteria for this evaluation: effectiveness of learning and cost of devel-
oping and operating the system. These criteria are aligned with our formulated research
objectives and questions.

Appl. Sci. 2023, 13, 12773 21 of 27Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 29

Figure 16. Generated coding exercises for a student in finance.

The generated coding exercise is about managing banking accounts, including a sav-
ings account and a checking account. And, the methods of each class, such as deposit()
and withdraw(), are common operations in banks. Hence, this exercise problem is intui-
tive and easy to understand for users in the finance domain.

Through the two contents of coding exercises generated for different domains, we
can clearly observe that the GPT content for generated coding exercises is well personal-
ized for each domain of interest.

5.3. Assessment through Experiments
Evaluating the quality of educational content and its associated eLearning system

cannot be adequately measured using quantitative metrics. Instead, a qualitative ap-
proach, such as feedback from users, is more appropriate.

We utilize two criteria for this evaluation: effectiveness of learning and cost of devel-
oping and operating the system. These criteria are aligned with our formulated research
objectives and questions.

5.3.1. Evaluating the Effectiveness of Learning
This criterion evaluates the effectiveness of learning based on feedback from users.

We created a questionnaire with 10 questions by considering the objectives of the system
as shown in Table 3.

Figure 16. Generated coding exercises for a student in finance.

5.3.1. Evaluating the Effectiveness of Learning

This criterion evaluates the effectiveness of learning based on feedback from users.
We created a questionnaire with 10 questions by considering the objectives of the system as
shown in Table 3.

The first three questions, Q1, Q2, and Q3, evaluate the content coverage of a target
programming language’s constructs. The next three questions, Q4, Q5, and Q6, evaluate the
extent to which the foundational content, examples, and coding exercises are personalized
for each student. The next three questions, Q7, Q8, and Q9, evaluate the quality of evalua-
tion, i.e., grading of the submitted exercise solutions. The last question, Q10, evaluates the
usability of the systems.

The main user groups of the system are identified as faculty, students, and industry
developers. Faculty members would use the system to generate the content for teaching
and coding exercises, students would use the system to learn programming skills, and
industry developers would use the system to learn the language from scratch or improve
their language proficiency.

Accordingly, we formed three distinct participant groups for the experiment: the
faculty group, the student group, and the industry developer group. Each group used
tailored evaluation criteria. The faculty group assessed the system from an instructor’s
perspective, comparing the provided learning content to their personal lecture materials and
teaching experiences. The student group evaluated the system from a learner’s perspective,
reflecting on the effectiveness and productivity of their learning experiences. Meanwhile,

Appl. Sci. 2023, 13, 12773 22 of 27

the developer group judged from a practitioner’s standpoint, focusing on the practicality
of the learning experience with the eLearning system.

Table 3. Assessment questionnaire for evaluating learning effectiveness.

Category Questions
Coverage of PL Constructs

Q1 Does the entire foundation content represent the essential features and constructs of the
target programming language?

Q2 Does the entire example content align with the provided foundational content?
Q3 Does the entire exercise content align with the provided foundational content?

Personalization of Contents
Q4 Is the entire foundational content tailored to your background and proficiency level?
Q5 Is the entire example content tailored to your background and domains of your interest?
Q6 Is the entire exercise content tailored to your background and proficiency level?

Evaluation of Exercise Submissions
Q7 Is the overall assessment of your exercise submissions conducted accurately?
Q8 Is the overall explanatory feedback on assessments both reasonable and comprehensive?

Q9 Is the overall assessment of exercise submissions consistent and equitable for all
students?

Usability of the System

Q10 Revised: Does the system offer high usability through its user interface and
functionality?

The experiment was conducted with a total of 73 participants. The student group
consisted of 42 freshman and sophomore undergraduate students in Computer Science
from our universities in California and a university in Korea. The faculty group consisted of
six university professors who are currently teaching or have taught programming courses.
The industry group consisted of 25 software developers and programmers from software
development companies.

Each participant took at least one course, mostly Java or Python. Each participant
engaged in all learning activities including attending online classes and completing the
exercise problems. Participants allocated an average duration of approximately 3.5 months
for course completion.

Consequently, the experiment required considerable time and effort from the partici-
pants. This requirement made the recruitment of additional subjects a practical challenge.
Additionally, it imposed a significant logistical burden on the research team.

The questionnaire items were rated on a scale of 1 to 5, with ‘5’ indicating the highest
level of satisfaction and ‘1’ indicating significant dissatisfaction. The results of experiments
using the survey form are shown in Figure 17.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 29

The questionnaire items were rated on a scale of 1 to 5, with ‘5’ indicating the highest

level of satisfaction and ‘1’ indicating significant dissatisfaction. The results of experi‐

ments using the survey form are shown in Figure 17.

Figure 17. Evaluation of learning effectiveness.

From the evaluation results, we make the following observations:

 The faculty group gave the highest overall rating of 4.67, equivalent to 93.4%, while

the student group gave the lowest at 4.4, translating to 88%.

 The capability of personalizing learning contents was rated the highest at 4.72, equiv‐

alent to 94.4%. This suggests that the system’s personalization feature, specifically

ChatGPT, is highly effective.

 The evaluation quality of coding exercise submissions received the lowest rating of

4.43, which translates to 87%. Nonetheless, as academic authors, we fully understand

the challenges associated with grading coding exercises and ensuring consistent eval‐

uation across student submissions. Therefore, this rating of 87% should be regarded

as commendably high.

 The cumulative average for learning effectiveness across the three groups is 4.55 out

of 5.0, or 91%. This overall rating of 91% is much higher than the authors’ initial an‐

ticipation. This suggests that GPT‐based personalized eLearning is viable and holds

potential for official implementation in university courses.

The experimental results are visualized in a line chart, shown in Figure 18.

Figure 17. Evaluation of learning effectiveness.

From the evaluation results, we make the following observations:

Appl. Sci. 2023, 13, 12773 23 of 27

• The faculty group gave the highest overall rating of 4.67, equivalent to 93.4%, while
the student group gave the lowest at 4.4, translating to 88%.

• The capability of personalizing learning contents was rated the highest at 4.72, equiv-
alent to 94.4%. This suggests that the system’s personalization feature, specifically
ChatGPT, is highly effective.

• The evaluation quality of coding exercise submissions received the lowest rating of
4.43, which translates to 87%. Nonetheless, as academic authors, we fully understand
the challenges associated with grading coding exercises and ensuring consistent eval-
uation across student submissions. Therefore, this rating of 87% should be regarded
as commendably high.

• The cumulative average for learning effectiveness across the three groups is 4.55 out
of 5.0, or 91%. This overall rating of 91% is much higher than the authors’ initial
anticipation. This suggests that GPT-based personalized eLearning is viable and holds
potential for official implementation in university courses.

The experimental results are visualized in a line chart, shown in Figure 18.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 29

The questionnaire items were rated on a scale of 1 to 5, with ‘5’ indicating the highest

level of satisfaction and ‘1’ indicating significant dissatisfaction. The results of experi‐

ments using the survey form are shown in Figure 17.

Figure 17. Evaluation of learning effectiveness.

From the evaluation results, we make the following observations:

 The faculty group gave the highest overall rating of 4.67, equivalent to 93.4%, while

the student group gave the lowest at 4.4, translating to 88%.

 The capability of personalizing learning contents was rated the highest at 4.72, equiv‐

alent to 94.4%. This suggests that the system’s personalization feature, specifically

ChatGPT, is highly effective.

 The evaluation quality of coding exercise submissions received the lowest rating of

4.43, which translates to 87%. Nonetheless, as academic authors, we fully understand

the challenges associated with grading coding exercises and ensuring consistent eval‐

uation across student submissions. Therefore, this rating of 87% should be regarded

as commendably high.

 The cumulative average for learning effectiveness across the three groups is 4.55 out

of 5.0, or 91%. This overall rating of 91% is much higher than the authors’ initial an‐

ticipation. This suggests that GPT‐based personalized eLearning is viable and holds

potential for official implementation in university courses.

The experimental results are visualized in a line chart, shown in Figure 18.

Figure 18. Evaluation of learning effectiveness in a line chart.

The chart visualizes the difference between the three groups. The faculty group,
having professional experience and in-depth knowledge of programming languages, gave
the highest overall evaluation. The student group, who began to acquire knowledge of
the programming language and coding experience, gave the lowest overall evaluation.
The developer group, having rich programming experience, gave a relatively high level of
evaluation.

5.3.2. Evaluating the Cost of Developing the Learning Content

This criterion evaluates the cost associated with creating content to teach, i.e., the
foundational content, examples, and coding exercises.

We posed a question to the six faculty members in the experimental group regarding
the cost of creating learning content for a programming language. From their feedback, we
could summarize the average efforts as the following:

o Average number of units in a programming language: 12 units/P.L.;
o Average number of topics per unit: 3 topics/unit;
o Average time spent creating foundational content per topic: 3.5 hours/topic;

Appl. Sci. 2023, 13, 12773 24 of 27

o Average number of students in a programming class: 28 students/class;
o Average number of coding exercises per unit: 3.5;
o Average time spent creating a personalized coding exercise: 0.5 h;
o Average time to grade an exercise submission: 0.25 h.

The time required for operating a conventional eLearning system is the following:

• The total time for creating all of the foundational content for a language is computed
as follows: Time_for_Foundation_Content = 12 × 3 × 3.5 = 126 h

• The total time for creating personalized coding exercise problems for a language is
computed as follows: Time_for_Coding_Exercises = 28 × 12 × 3.5 × 0.5 = 588 h

• The total time for evaluating exercise submissions for a language is computed as
follows: Time_for_Evaluating_Exercises = 28 × 12 × 3.5 × 0.25 = 294 h

Hence, the total time for creating learning content for a programming language and
operating the class with personalized exercise problems and grading exercise submissions
is computed as (126 + 588 + 294) which amounts to just 1008 h.

Now, the time required for operating a ChatGPT-empowered eLearning system is the
following:

• The total time for creating all the foundational content for a language is nearly zero,
except for the effort to create a course profile as described in Section 3.4.

• Time_for_Foundation_Content = 0 h
Time_for_Course_Profile = 2 h

• The total time for creating personalized coding exercise problems for a language is
computed as follows:
Time_for_Coding_Exercises = 0 h

• The total time for evaluating exercise submissions for a language is computed as
follows:
Time_for_Evaluating_Exercises = 0 h

• Hence, the total time for creating learning content for a programming language and
operating the class by utilizing ChatGPT is computed as (0 + 2 + 0 + 0) which amounts
to just 2 h.

The difference in total effort for generating the learning content and evaluating exercise
submissions between conventional eLearning and GPT-based eLearning is substantial:
1008 h versus 2 h. This significant disparity serves as a compelling indicator of the feasibility
and potential of GPT-based eLearning.

6. Concluding Remarks

While eLearning for programming languages offers benefits such as accessibility,
temporal flexibility, and content reusability, it also exposes limitations of delivering a pre-
fixed one-size-fits-all content to all students, engendering high costs for developing course
contents and managing eLearning sessions including grading student submissions.

Our research was motivated by the need to construct an eLearning system capable of
delivering personalized, student-centric content, automating the generation of coursework
content for all programming languages, and eliminating the need for instructor involvement
in the management of eLearning sessions.

Our strategy and software methodology was to build the system by applying a suite
of advanced software technologies. (1) We utilize GPT to dynamically generate all course
components, (2) apply GPT prompt engineering to personalize course content for each
individual student, and (3) apply the closed loop of autonomous computing to automate
eLearning sessions.

The research results encompass the design of an eLearning framework covering all pro-
gramming languages, a fully functional Python-based implementation, seamless integration
with ChatGPT for dynamic content generation, a high degree of content personalization,
and the elimination of manual effort required for managing eLearning sessions.

Appl. Sci. 2023, 13, 12773 25 of 27

The PoC implementation of this eLearning system was deployed on Amazon AWS
for experiments. The experiment was conducted with faculty members, students, and
developers and demonstrated a learning effectiveness of 91%. Moreover, the effort required
to operate eLearning for programming languages was reduced by 99.8%.

The usefulness of our proposed eLearning system may be summarized as follows:

• GPT models can generate comprehensive course content for programming languages.
The dynamically generated course contents for a language are comparable to the
course contents created by a highly professional university instructor with years of
experience in teaching programming languages.

• The content generated by GPT is highly responsive to the prompts provided by client
applications. Consequently, crafting precise GPT prompts plays a crucial role in
personalizing course content.

• The control loop inherent in autonomous computing finds practical application in
automating the administration of eLearning systems. By seamlessly integrating au-
tonomous control with GPT’s grading capabilities for student exercise submissions, it
becomes feasible to entirely replace the need for human instructors.

• A single development of this eLearning system can be used to teach an array of
programming languages. This is in contrast to the conventional eLearning system
where instructors have to create course content for every programming language.

The only limitation we observed at this time was the occasional latency ranging
from 3 to 8 s in the generation of course content and the grading of student submissions.
The latency is attributable to the network-based interaction with the GPT server, and the
processing time incurred during peak usage of the GPT server.

Through this research, we observe several ethical issues in using GPT in education.
These include the potential for bias and fairness concerns, as GPT models inherit and
amplify biases present in their training data. Accountability is essential, with a need for clear
guidelines on who is responsible for evaluating submitted coding exercises. Additionally,
there is a risk of over-dependence on GPT technology, which might impact the development
of critical thinking and creativity of programming language instructors.

We believe that our personalized eLearning approach for programming sets the stage
for configuring cost-effective, personalized programming education. More specifically, we
propose to utilize this eLearning system in programming classes at the college level. The
system can also be used in various existing eLearning systems of programming languages
for the public.

7. Future Works

Our plan for extending this research comprises three aspects: (1) supporting more
types of learning schemes, (2) technical advancement of this eLearning system with ma-
chine learning, and (3) comprehensive quality assessments involving a significantly larger
number of instructors and students.

For the learning schemes, the current eLearning system supports learning schemes of
studying foundational materials and examples, solving exercise problems, and reviewing
the graded exercise solutions. We plan to add two more useful learning schemes: generating
pop-quiz problems and generating personalized programming laboratories.

For the technical advancement, our plan involves training a multi-variable multi-
class deep learning model to generate student- and context-specific feature values for
foundational concepts, examples, and exercise problems. We anticipate that personalizing
GPT prompts with feature values from this deep learning model will outperform our
current rule-based approach to prompt personalization.

Regarding the quality-in-use assessment of the system, we intend to enlist a larger
cohort of students and instructors from a minimum of 10 universities. This endeavor is
expected to demand significant effort and time, based on our past experiences. Additionally,
we plan to formally offer a programming course at the freshman or sophomore levels in
computer science at our universities. At the end of the semester, we will gather valuable

Appl. Sci. 2023, 13, 12773 26 of 27

evaluations from the students and instructors and compare their learning effectiveness and
course preparation costs with conventional in-classroom teaching.

Author Contributions: Conceptualization, J.J. and M.K., methodology, J.J.; software, J.J.; formal anal-
ysis, J.J. and M.K.; investigation, J.J. and M.K.; resources, M.K.; data curation, J.J.; writing—original
draft preparation, J.J.; writing—review and editing, J.J. and M.K.; visualization, M.K.; supervision,
M.K.; project administration, J.J. and M.K.; funding acquisition, M.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ministry of Education. Digital Talent Cultivation Plan; South Korean Government: Seoul, Republic of Korea, 2022.
2. Mustakerov, I.; Borissova, D. A Framework for Development of e-learning System for computer programming: Application in the

C programming Language. J. e-Learn. Knowl. Soc. 2017, 13, 89–101.
3. Bashir, G.M.M.; Hoque, A.S.M.L. An effective learning and teaching model for programming languages. J. Comput. Educ. 2016, 3,

413–437. [CrossRef]
4. Rehberger, S.; Frank, T.; Vogel-Heuser, B. Benefit of e-learning teaching C-programming and software engineering in a very large

mechanical engineering beginners class. In Proceedings of the 2013 IEEE Global Engineering Education Conference (EDUCON),
Berlin, Germany, 13–15 March 2013; pp. 1055–1061.

5. Wang, J.; Chen, L.; Zhou, W. Design and Implementation of an Internet-Based Platform for C Language Learning. In Proceedings
of the International Conference on Web-Based Learning 2008, Jinhua, China, 20–22 August 2008; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 5145, pp. 187–195.

6. Weston, M.; Sun, H.; Herman, G.L.; Benotman, H.; Alawini, A. Echelon: An AI Tool for Clustering Student-Written SQL Queries.
In Proceedings of the 2021 IEEE Frontiers in Education Conference (FIE), Lincoln, NE, USA, 13–16 October 2021; pp. 1–8.

7. Harley, E.; Harley, Z. E-learning and E-assessment for a Computer Programming Course. In Proceedings of the Third International
Conference on Education and New Learning Technologies, Barcelona, Spain, 4–6 July 2011; pp. 2074–2080.

8. Dobesova, Z. E-learning for visual programming language. In Proceedings of the 2014 IEEE 12th International Conference on
Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, Slovakia, 4–5 December 2014; pp. 103–108.

9. Hasany, S.N. E-Learning Student Assistance Model for the First Computer Programming Course. Int. J. Integr. Technol. Educ.
2017, 6, 1–7. [CrossRef]

10. Estévez, J.; Garate, G.; Grana, M. Gentle Introduction to Artificial Intelligence for High-School Students Using Scratch. IEEE
Access 2019, 7, 179027–179036. [CrossRef]

11. Chen, E.; Huang, R.; Chen, H.; Tseng, Y.; Li, L. GPTutor: A ChatGPT-powered programming tool for code explanation. In
Proceedings of the 2023 International Conference on Artificial Intelligence in Education, Tokyo, Japan, 3–7 July 2023.

12. Hsiao, I.; Sosnovsky, S.; Brusilovsky, P. Guiding students to the right questions: Adaptive navigation support in an E-Learning
system for Java programming. J. Comput. Assist. Learn. 2010, 26, 270–283. [CrossRef]

13. Law, K.M.Y.; Lee, V.C.S.; Yu, Y.T. Learning motivation in e-learning facilitated computer programming courses. Comput. Educ.
2010, 55, 218–228. [CrossRef]

14. Chrysafiadi, K.; Virvou, M. PeRSIVA: An empirical evaluation method of a student model of an intelligent e-learning environment
for computer programming. Comput. Educ. 2013, 68, 322–333. [CrossRef]

15. Yusupova, S.B.; Sultanov, O.R.; Baltayev, R.S.; Bekchanov, F.A. The Advantage of Using e-Learning in Teaching Students
Programming Languages. In Proceedings of the IEEE International Multi-Conference on Engineering, Computer and Information
Sciences (SIBIRCON), Yekaterinburg, Russia, 11–13 November 2022; pp. 1910–1913.

16. Yilmaz, R.; Yilmaz, F.G.K. The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking
skills, programming self-efficacy and motivation. Comput. Educ. Artif. Intell. 2023, 4, 100147. [CrossRef]

17. Hosseini, M.; Gao, C.A.; Liebovitz, D.M.; Carvalho, A.M.; Ahmad, F.S.; Luo, Y.; MacDonald, N.; Holmes, K.L.; Kho, A. An
exploratory survey about using ChatGPT in education, healthcare, and research. PLoS ONE 2023, 18, e0292216. [CrossRef]

18. Oguz, F.E.; Ekersular, M.N.; Sunnetci, K.M.; Alkan, A. Can Chat GPT be Utilized in Scientific and Undergraduate Studies? Ann.
Biomed. Eng. 2023. advance online publication. [CrossRef]

19. Choi, J.H.; Hickman, K.E.; Monahan, A.; Schwarcz, D.B. ChatGPT Goes to Law School. J. Leg. Educ. 2023. [CrossRef]
20. Mhlanga, D. ChatGPT in Education: Exploring Opportunities for Emerging Economies to Improve Education with ChatGPT.

SSRN Electr. J. 2023. [CrossRef]

https://doi.org/10.1007/s40692-016-0073-2
https://doi.org/10.5121/ijite.2017.6101
https://doi.org/10.1109/ACCESS.2019.2956136
https://doi.org/10.1111/j.1365-2729.2010.00365.x
https://doi.org/10.1016/j.compedu.2010.01.007
https://doi.org/10.1016/j.compedu.2013.05.020
https://doi.org/10.1016/j.caeai.2023.100147
https://doi.org/10.1371/journal.pone.0292216
https://doi.org/10.1007/s10439-023-03333-8
https://doi.org/10.2139/ssrn.4335905
https://doi.org/10.2139/ssrn.4355758

Appl. Sci. 2023, 13, 12773 27 of 27

21. Firat, M. Integrating AI Applications into Learning Management Systems to Enhance e-Learning. Instr. Technol. Lifelong Learn.
2023, 4, 1–14. [CrossRef]

22. Mhlanga, D. Open AI in Education, the Responsible and Ethical Use of ChatGPT towards Lifelong Learning; FinTech and Artificial
Intelligence for Sustainable Development. Sustainable Development Goals Series; Palgrave Macmillan: Cham, Switzerland, 2023.

23. Biswas, S. Role of Chat GPT in Education. J. ENT Surg. Res. 2023, 1, 1–3.
24. Grassini, S. Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational

Settings. Educ. Sci. 2023, 13, 692. [CrossRef]
25. Kalla, D.; Smith, N. Study and Analysis of Chat GPT and its Impact on Different Fields of Stud. Int. J. Innov. Sci. Res. Technol.

2023, 8.
26. Michel-Villarreal, R.; Vilalta-Perdomo, E.; Salinas-Navarro, D.E.; Thierry-Aguilera, R.; Gerardou, F.S. Challenges and Opportuni-

ties of Generative AI for Higher Education as Explained by ChatGPT. Educ. Sci. 2023, 13, 856. [CrossRef]
27. Su, J.; Yang, W. Unlocking the Power of ChatGPT: A Framework for Applying Generative AI in Education. ECNU Rev. Educ. 2023,

6, 1–12.
28. Tlili, A.; Shehata, B.; Adarkwah, M.; Bozkurt, A.; Hickey, D.; Huang, R.; Agyemang, B. What if the devil is my guardian angel:

ChatGPT as a case study of using chatbots in education. Smart Learn. Environ. 2023, 10, 15. [CrossRef]
29. Lo, C.K. What Is the Impact of ChatGPT on Education? A Rapid Review of the Literature. Educ. Sci. 2023, 13, 410. [CrossRef]
30. Wu, D.; Lu, J.; Zhang, G. A Fuzzy Tree Matching-Based Personalized E-Learning Recommender System. IEEE Trans. Fuzzy Syst.

2015, 23, 2412–2426. [CrossRef]
31. Troussas, C.; Krouska, A.; Sgouropoulou, C. A Novel Teaching Strategy Through Adaptive Learning Activities for Computer

Programming. IEEE Trans. Educ. 2021, 64, 103–109. [CrossRef]
32. Augstein, M.; Paramythis, A. Activity sequence modelling and dynamic clustering for personalized e-learning. User Model.

User-Adapt. Interact. 2011, 21, 51–97.
33. Murtaza, M.; Ahmed, Y.; Shamsi, J.; Sherwani, F.; Usman, M. AI-Based Personalized E-Learning Systems: Issues, Challenges, and

Solutions. IEEE Access 2022, 10, 81323–81342. [CrossRef]
34. Gaeta, M.; Miranda, S.; Orciuoli, F.J.; Paolozzi, S.; Poce, A. An Approach to Personalized e-Learning. J. Educ. Inform. Cyber. 2013,

11, 15–21.
35. Rani, M.; Vyas, O. An Ontology-based Adaptive Personalized E-learning System, Assisted by Software Agents on Cloud Storage.

J. Knowl.-Based Syst. 2015, 90, 33–48. [CrossRef]
36. Zakrzewska, D. Cluster Analysis in Personalized E-Learning Systems. Intell. Syst. Knowl. Manag. 2009, 252, 229–250.
37. Huang, M.; Huang, H.; Chen, M. Constructing a personalized e-learning system based on genetic algorithm and case-based

reasoning approach. J. Expert Syst. Appl. 2007, 33, 551–564. [CrossRef]
38. Baylari, A.; Montazer, G.A. Design a personalized e-learning system based on item response theory and artificial neural network

approach. Expert Syst. Appl. 2009, 36, 8013–8021. [CrossRef]
39. Cakula, S.; Sedleniece, M. Development of a Personalized e-learning Model Using Methods of Ontology. Procedia Comput. Sci.

2013, 26, 113–120. [CrossRef]
40. Milicevic, A.; Vesin, B.; Ivanovic, M.; Budimac, Z. E-Learning personalization based on hybrid recommendation strategy and

learning style identification. Comput. Educ. 2011, 56, 885–899. [CrossRef]
41. Kausar, S.; Xu, H.; Hussain, I.; Wenhao, Z.; Zahid, M. Integration of Data Mining Clustering Approach in the Personalized

E-Learning System. IEEE Access 2018, 6, 72724–72734. [CrossRef]
42. Alhawiti, M.; Abdelhamid, Y. A Personalized e-Learning Framework. J. Educ. e-Learn. Res. 2019, 4, 15–21. [CrossRef]
43. Chen, C.; Lee, H.; Chen, Y. Personalized E-Learning System Using Item Response Theory. Comput. Educ. 2005, 44, 237–255.

[CrossRef]
44. Chen, C.; Huang, T.; Li, T.; Huang, C. Personalized E-Learning System with Self-Regulated Learning Assisted Mechanisms

for Promoting Learning Performance. In Proceedings of the Seventh IEEE International Conference on Advanced Learning
Technologies, Niigata, Japan, 18–20 July 2007; pp. 637–638.

45. Ciloglugil, B.; Inceoğlu, M. User Modeling for Adaptive E-Learning Systems. In Computational Science and Its Applications (ICCSA
2012); Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7335, pp. 550–561.

46. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley:
Boston, MA, USA, 1994.

47. ISO 9126; Information Technology—Software Product Evaluation—Quality Characteristics and Guidelines for Their Use. Interna-
tional Organization for Standardization: Geneva, Switzerland, 1991.

48. Smith, J.; Williams, R. Software Engineering Principles: From Requirements to Deployment; Chapter 7, Use Case Diagrams and
Software Agents; Academic Press: Cambridge, MA, USA, 2018.

49. Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM Comput. Surv. 2023, 55, 1–35. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.52911/itall.1244453
https://doi.org/10.3390/educsci13070692
https://doi.org/10.3390/educsci13090856
https://doi.org/10.1186/s40561-023-00237-x
https://doi.org/10.3390/educsci13040410
https://doi.org/10.1109/TFUZZ.2015.2426201
https://doi.org/10.1109/TE.2020.3012744
https://doi.org/10.1109/ACCESS.2022.3193938
https://doi.org/10.1016/j.knosys.2015.10.002
https://doi.org/10.1016/j.eswa.2006.05.019
https://doi.org/10.1016/j.eswa.2008.10.080
https://doi.org/10.1016/j.procs.2013.12.011
https://doi.org/10.1016/j.compedu.2010.11.001
https://doi.org/10.1109/ACCESS.2018.2882240
https://doi.org/10.20448/journal.509.2017.41.15.21
https://doi.org/10.1016/j.compedu.2004.01.006
https://doi.org/10.1145/3560815

	Introduction
	Related Works
	Works on eLearning Systems for Programming Languages
	Works on Utilizing GPT for Education
	Works on Personalizing Learning Content

	Software Requirement Specification
	Registering Students
	Registering Course Directors
	Registering Programming Languages
	Registering Courses
	Registering Offerings
	Presenting the Foundations
	Generating Personalized Coding Exercises
	Submitting Exercise Solutions
	Evaluating Submissions of Coding Exercises
	Generating Learning Progress Reports
	Interaction with a GPT Server

	Design Specification
	Schematic Architecture for GPT Interactions
	Modeling the System Functionality
	Persistent Dataset Modeling
	Autonomous Management of System Behavior
	GPT Prompt Engineering for Content Personalization
	Foundation Manager Algorithm

	Implementation and Experiments
	Proof-of-Concept Implementation
	Assessment through Personalized Content
	Experiment of Personalizing Foundations for Different Proficiency Levels
	Experiment of Personalizing Examples for Different Domains
	Experiment of Personalizing Coding Exercises for Domains of Interests

	Assessment through Experiments
	Evaluating the Effectiveness of Learning
	Evaluating the Cost of Developing the Learning Content

	Concluding Remarks
	Future Works
	References

