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Abstract: Narcotics should be strictly controlled as they can cause great disruption to society. Nar-
cotics mostly flow into ports from major narcotic makers via transit points and through cargo
containers. To prevent narcotic entry through smuggling, airports use animals or detect narcotics
through X-rays. However, the use of animals in ports is not practical, and the method using X-rays
sometimes does not detect substance narcotics with low atomic numbers. In this paper, we aimed
to detect and classify narcotics using ion mobility spectrometry (IMS) data generated by inhaling
air inside the container. To classify narcotic IMS data consisting of time-series data, the perfor-
mance was improved using a time-series classification machine learning algorithm instead of the
threshold method previously used. To this end, K-nearest neighbor, time-series forest, and random
convolutional kernel algorithms were applied to the proposed algorithm considering the features of
narcotic IMS data. The results demonstrate that the proposed algorithm outperforms the existing
algorithm, and it reduces the classification performance processing time up to 5 s with more than 0.9
accuracy level.

Keywords: IMS; ports; containers; narcotic detection; machine learning; embedded; classification

1. Introduction

According to the 2022 Narcotic Crime White Paper published by the Supreme Prose-
cutors’ Office of the Republic of Korea, as shown in Table 1, the total number of narcotic
offenders in 2022 was 18,395, an increase of 13.9% from the previous year (16,153) [1]. Of
these 18,395 people, only 4 were caught for illegal manufacturing, and the rest were caught
for smuggling, trafficking, and narcotic use. In this regard, it can be judged that narcotics are
brought into the country from overseas through social networking services and the Internet
(Dark Web) distribution channels rather than domestic manufacturing. Therefore, narcotic
detection at ports, airports, and import/export facilities is of increasing importance.

To detect narcotics, narcotic detection devices are prepared and intensively managed
at ports and airports. However, despite these controls, smuggling methods continue to
become more sophisticated. Therefore, studies are conducted to detect hidden narcotics.
One representative method for detecting narcotics involves dogs, as shown in [2] and as
can be easily seen at airports. However, this method faces difficulties when applied in ports.
In addition to the method using animals, a method based on X-ray images according to the
atomic number of a material is used. Herein, support vector machine is applied to X-ray
images based on the extraction of direction fractal-dimension texture features [3]. Mean-
while, one study proposed a method for detecting narcotics and explosives through nuclear
quadrupole responses [4]. In addition, another method applies ion mobility spectrometry
(IMS) [5].
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Table 1. Narcotic crime status in Republic of Korea.

Illicit
Manufacture Smuggling Illicit Trade Illicit

Cultivating

Number of
occurrences 4 1392 3492 1714

Occupation rate (%) 0 7.6 19 9.3

Injection Possession Others Sum

Number of
occurrences 8489 1032 2272 18,395

Occupation rate (%) 46.1 5.6 12.4 100

Recently, machine learning and deep neural network algorithms, which have been
studied in the past, can be easily implemented because of the development of hardware and
are being applied to a wide range of areas, showing sufficient performance [6,7]. Therefore,
this paper intends to classify and detect narcotics by applying a time-series classification
algorithm to IMS data represented by time-series data. In the case of ports, there should
be no bottlenecks as they are important gateways for imports and exports. For smooth
port operation, smart port research has been conducted, such as incorporating simulations
for efficient port operation [8–10]. In line with this trend, this paper seeks to swiftly
classify data acquired using a portable narcotics IMS data classifier from a separate intake
port of a port container by applying an algorithm with low computational complexity.
For this purpose, machine learning algorithms with low computational complexity were
applied in various ways. Afterward, classification performances and operation times were
compared and analyzed to find algorithms that satisfy the required classification accuracy
and processing speed.

Therefore, this paper proposes an algorithm to classify a total of nine types of data,
including eight types of narcotic data acquired from the above portable IMS detector and
under general conditions. Through this study, we were able to secure high detection
performance even for low atomic numbers as an alternative to the X-ray method in drug
detection. By classifying the IMS data using machine learning techniques instead of Thresh-
old method, we were able to achieve a groundbreaking improvement in detection and
classification performance. In the following, we look at the time-series data classification
algorithm in Section 2. In Section 3, we look at the features of the narcotic IMS steam data
as these data are not a benchmark dataset. In Sections 4–7, we examine the preprocessing
and classification algorithms and experimental results for applying the algorithm. Section 8
presents the conclusion.

2. Related Research

Time-series data are a series of data constructed along the time axis [11]. Examples of
time-series data include stock prices, temperature, and sensor data from industrial sites.
Classification, prediction, and outlier detection are performed in various industries based
on time-series data [6,7]. Time-series data generate noise from the collection sensor and
errors in the storage process [12]. Additionally, statistical features of time-series data and
kernel-based feature extraction algorithms are studied rather than applying the original
data to the model as it is [13,14].

Time-Series Data Classification Algorithm

There are various methodologies for classifying time-series data. K-nearest neighbor
(KNN) is an algorithm that performs classification by referring to k-nearest data based
on the distribution of time-series data [15]. It is used in various fields because it has a
simple and powerful performance [16,17]. Meanwhile, random forest is an algorithm that
constructs multiple decision trees to perform final inference using an ensemble technique
for values inferred from each tree [18]. Another algorithm also performs classification by
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extracting data features rather than using the given data as is: the time-series forest (TSF)
algorithm constructs a decision tree by extracting data features for each window section [19].
Random convolutional kernel (ROCKET) creates a feature map by performing a convolution
operation with a random kernel on time-series data and performs classification using the
Ridge regression classifier CV [20]. As an algorithm using a deep neural network (DNN),
the recurrent neural network shows good performance, and time-series classification
algorithms using long short-term memory and transformers have been studied since
then [21,22]. Another method for classifying time-series data is the convolutional neural
network (CNN), an image processing algorithm that performs well by converting time-
series data into images and classifying them through the Gramian angular field algorithm
and Markov transition field. Meanwhile, the recurrence plot algorithm, which converts
time-series data into images, is also being studied [23–26]. With the advent of the electric
era, technologies to predict the precise remaining useful life (RUL) of lithium-ion batteries
are emerging, including the application of the PF-BiGRU-TSAM algorithm [27]. In addition
to this method, there are cases where the CNN-GRU model has been applied [28].

3. IMS Data Characteristics

This chapter describes the fact that narcotic IMS data are not a benchmark dataset and
that applying an algorithm considering data characteristics is an important process when
classifying and predicting time-series data.

3.1. Narcotic IMS Data Types

The narcotic IMS data used in this paper obtained from the IMS detector of the target
sample and the data consists of nine different types: eight types of narcotics and one normal
type in which no narcotic exists. Various types of narcotics include amphetamine (Amp),
morphine hydrochloride (Mor), fentanyl (Fen), alfentanil hydrochloride (Alf), MDMA
hydrochloride (MDMA), ketamine hydrochloride (Ket), diazepam (Dia), and codeine
phosphate hydrate (Cod). For all narcotics except alfentanil hydrochloride and standby
state, data were acquired at 100 ng; for alfentanil hydrochloride, data were acquired at
300 ng. To acquire IMS data, one measurement was performed for 10 s. Data from one
measurement consisted of one csv file. The number of data that made up all CSV files
regardless of the narcotic type was 162,580. Looking at the reference of the IMS data graph
in Table 2, there was a peak where the value of IMS data increased rapidly. The peak was a
reactant ion peak (RIP), which was a separate ion signal, such as nitrogen that existed in
large numbers in the air but did not correspond to the dangerous substance to be detected
and occurred repeatedly during the data acquisition process. RIP was the criterion for
dividing narcotic IMS data into multiple data [29].

Table 2. Narcotic IMS data count, reference, and actual response data.

Target Sample Concentration (ng) Number
(Times)

Reference
Response

Amphetamine 100 50
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3.2. Features of Narcotic IMS Data
3.2.1. Narcotics IMS Data Composed of RIP2RIP

The narcotic IMS data consisted of about 40 RIP2RIPs (the section from a random RIP
to the next RIP) in one csv file. There was a difference in the number of RIP2RIP depending
on the data. Additionally, there were cases where RIP reacted less than other RIPs, as shown
in Figure 1. This is the reason for applying the classification algorithm to the embedded
board and then adding a process to check the number of data constituting RIP2RIP in the
application of the classification model.
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Figure 1. Data with low RIP.

3.2.2. Narcotics IMS Data with Reduced Level of Response

The narcotic IMS data generated about 40 RIP2RIPs during the suction time of 0 to 10 s.
In RIP2RIP, each narcotic had a different response interval, as shown in Table 2. In the
inhaled data, the degree of response in the response section showed differences depending
on the state of the hardware. Figure 2 shows that in RIP2RIP_NUM_14, which was the
initial stage of suction from the one-time measurement data, the response degree reacted
at 600 to 700 ion drift index on the x-axis. However, in RIP2RIP_NUM_36, repetition
12 RIP2RIP, the degree of response decreased. The problem of showing a difference in
the degree of response, even in the same data acquisition file, required consideration in
synthesizing classification prediction values for multiple RIP2RIPs when constructing a
narcotic IMS data classification algorithm.
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3.2.3. Narcotic IMS Data Other Than the Difference between Response Sections

From Table 2 and according to the IMS data for narcotics, the response sections
overlapped for diazepam, codeine phosphate hydrate, and morphine, but other narcotics
had different response sections. Taking advantage of this, a window was previously applied
to the response section to classify it as a specific narcotic when it exceeded the threshold.
However, in this paper, the features of the data before the response section of the narcotic
IMS data were noted. Figure 3 shows different responses for each set of narcotic IMS data.
These features are believed to be usable in time-series classification algorithms.
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3.2.4. Diverse Data Quantity Configurations in RIP2RIP

Figure 4 shows that the total number of data obtained when IMS data are acquired for
0 to 10 s is the same as 162,580 but the number of data constituting one RIP2RIP is different.
This means that the data that constitute the response section are different. In this regard,
the classification method involving the setting of the response section, which is an existing
classification algorithm, has application difficulties.
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4. Narcotic IMS Data Noise Removal Algorithm

Figure 5 shows that the narcotic IMS data used in this paper added noise to the
raw data because of hardware factors. Various noise cancellation algorithms, such as
smoothing techniques which reduce data variability, constraints that limit the range of
signal adjustments, and statistical algorithms that utilize probabilistic models to filter noise,
effectively enhance signal clarity [30]. However, in this paper, the moving average (MA)
(which is relatively simple but has strong performance in that it is applied to narcotic
detection systems in ports) and the speed constraint algorithm were applied to narcotic
IMS data and compared [31]. First, MA set a window and took average values. The median
value was taken in the window section considering that there were less than 10 noises in
the narcotic IMS data and that there was a trend rather than a sudden change in the section
excluding RIP in the reference. The window sizes were set to 5, 10, and 15 and compared.
The second method used the speed constraint algorithm, which replaced the size difference
of adjacent data in the window with the average value of both data when it exceeded the
set value. If there was a value exceeding 70 in the time-series data measuring the Celsius
temperature, it may be considered an outlier. Then, the value of 70 was corrected on the
basis of the values before and after the time index of 70. In this paper, the experiment was
conducted by setting the speed constraint threshold to 100,000 based on the reference and
data trends.
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The experimental results using MA and speed constraint are shown in Figures 6 and 7,
respectively. Accordingly, MA removed noise regardless of the window size when the
window sizes of 5, 10, and 15 were set. This was probably because, by taking the median,
results showing the trend of the original data could be obtained without including noise,
which was an abnormal measurement. Meanwhile, the speed constraint algorithm included
some noise compared with the MA algorithm but was able to remove a large number
of noises.
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However, the speed constraint could not respond to noise that occurred without
exceeding the threshold. Through experiments on the above preprocessing process, this
paper took the MA-based median value in the classification algorithm before applying
the narcotic IMS data to the machine learning time-series classification model. The MA
algorithm was set with window_size = 10, min_period = 1, and set value = median value.

5. Narcotic IMS Data Classification Algorithm

In this paper, KNN, TSF, and ROCKET algorithms were used to classify narcotic IMS
data. The algorithm in this paper required high accuracy to classify narcotic IMS data inside
the container but used a machine learning algorithm with low computational complexity
for smooth port operation.

5.1. KNN

KNN is used for time-series classification and is widely used for time-series data
classification because of its simplicity and high performance. The KNN algorithm puts
training data into the KNN model and measures similarity when test data are received
and classified [15]. Methods for measuring similarity include the Euclidean algorithm and
dynamic time warping (DTW) [32]. The Euclidean algorithm compares the time index in
one-to-one correspondence. This method has the disadvantage of not being able to respond
to the distortion of the time axis. DTW, which improves the time axis shortcomings of
the Euclidean algorithm, has strengths in time axis distortion but has the disadvantage
of high computational complexity. The important k of KNN is a factor that determines
how much data to refer to for classification as a hyperparameter, where the performance
changes depending on the k setting value [33].

5.2. TSF Algorithm

The TSF algorithm is a time-series classification algorithm that uses section features of
time-series data [19]. The extracted section features are the (1) mean, (2) standard deviation,
and (3) slope of the least squares regression.

Based on these three features, the TSF algorithm, which extracted features for each
section, was restored and extracted with bootstrap to a random forest. Entrance gain was
used as a criterion for data segmentation in the construction of random forest. Entrance
gain is an element that reflects the division criteria when constructing a decision tree, along
with the entropy gain and the distance to existing data.

5.3. ROCKET Algorithm

The ROCKET algorithm extracts features existing in time-series data by multiplying
multiple kernels consisting of random values to the original data, similar to a previous
study (where the convolution operation through kernel showed excellent performance
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in extracting features in the image processing field from CNN) and constructs a linear
classifier on this basis [20]. The kernel has the same size and padding as those of CNN, but
the ROCKET has a random size and padding.

5.4. System Application Algorithm

In this paper, the characteristic where the degree of response decreases over time, as
mentioned in Section 3.2.2, was used to classify narcotic IMS data. Therefore, this paper
proposes an algorithm shown in Figure 8. Herein, IMS data measured by the IMS device
are saved in the form of a csv file on the embedded board and go through window median-
based noise removal and RIP-based data segmentation. Thereafter, the data divided by
RIP2RIP are imported from the csv file one by one and checked whether the number
of data making up RIP2RIP was more than N. The reason for adding this process was
that there were cases where the find_peaks algorithm of Scipy, which was used as an
RIP-based data segmentation algorithm, could not accurately find RIP2RIP in the process
of finding peaks based on the threshold set by the user. After checking the number of
data constituting RIP2RIP in this way, the data were input into the classification model.
Afterward, the performance of the model could be determined using the hyperparameter
C of the inference probability of the label inferred from the model. When inference was
completed on all RIP2RIP data, the algorithm output the most detected narcotics as the
input narcotics.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 14 
 

 
Figure 8. System algorithm. 

6. Experiment Preparation and Results 
6.1. Dataset Composition 

To evaluate the classification accuracy performance of each model for narcotic IMS 
data, all types of narcotic IMS data were trained in the KNN, TSF, and ROCKET 
algorithms except the threshold, and experiments were conducted in the threshold 
algorithm except for amphetamines, diazepam, and morphine, which had overlapped 
response sections. For fitting data, 20 pieces of fitting data were used from all narcotic IMS 
data, and the rest were used as test data given that the MDMA HCI of the narcotic IMS 
data was 35, which was the smallest number as shown in Table 2. In the case of the 
threshold algorithm, because the learning process was not required, only test data were 
used (i.e., without training data) for equal comparison. As mentioned in Section 4, in the 
preprocessing process, the window section was set to 10, the median value was taken, and 
Scipy’s find_peaks was used to divide the data consisting of one csv file into RIP2RIP. 
Therefore, in one csv file, about 800 RIP2RIPs were obtained for each sample, and a total 
of 7200 data in nine types of states were trained in the model. For the training and testing 
data lengths for classification, data with a data index of up to 1500 points were used, 
referring to the data time index of Alfentanil HCI, which had the largest response section 
data index in Figure 1 (from 850 to 1000 points). The number of csv files and RIP2RIP used 
for test data are shown in Tables 3 and 4, respectively. 

  

Figure 8. System algorithm.



Appl. Sci. 2023, 13, 12769 9 of 13

6. Experiment Preparation and Results
6.1. Dataset Composition

To evaluate the classification accuracy performance of each model for narcotic IMS
data, all types of narcotic IMS data were trained in the KNN, TSF, and ROCKET algorithms
except the threshold, and experiments were conducted in the threshold algorithm except
for amphetamines, diazepam, and morphine, which had overlapped response sections. For
fitting data, 20 pieces of fitting data were used from all narcotic IMS data, and the rest were
used as test data given that the MDMA HCI of the narcotic IMS data was 35, which was the
smallest number as shown in Table 2. In the case of the threshold algorithm, because the
learning process was not required, only test data were used (i.e., without training data) for
equal comparison. As mentioned in Section 4, in the preprocessing process, the window
section was set to 10, the median value was taken, and Scipy’s find_peaks was used to
divide the data consisting of one csv file into RIP2RIP. Therefore, in one csv file, about
800 RIP2RIPs were obtained for each sample, and a total of 7200 data in nine types of
states were trained in the model. For the training and testing data lengths for classification,
data with a data index of up to 1500 points were used, referring to the data time index
of Alfentanil HCI, which had the largest response section data index in Figure 1 (from
850 to 1000 points). The number of csv files and RIP2RIP used for test data are shown in
Tables 3 and 4, respectively.

Table 3. Number of testing csv files.

Alf Amp Cod Dia Fen Ket MDMA Mor Normal

Number of testing
CSV (times) 35 30 25 54 37 32 35 15 32

Table 4. Number of testing RIP2RIP data.

Alf Amp Cod Dia Fen Ket MDMA Mor Normal

Number of testing
RIP2RIP 1538 1255 1123 2308 1604 1424 1505 653 1467

In this paper, a total of four algorithms were used: threshold, Python package Pyts’
KNN, TSF, and Python package sktime’s ROCKET [34,35]. First, in the case of the threshold
algorithm, an experiment was conducted by setting the response section by reflecting the
heat map of the data and setting the median value in the response section as the threshold.
The standards for the threshold are shown in Table 5.

Table 5. Standards for the threshold.

ALF COD FEN KET MDMA Normal

Data index 800–950 575–625 625–800 425–525 350–425 —
Threshold 4,050,000 4,400,000 4,400,000 4,700,000 4,600,000 —

KNN was used in an experiment by increasing the value of K (an important factor in
data classification) from 1 to 4. In the case of the TSF algorithm, the number of decision
trees that made up a random forest was set to 500, the window size for extracting features
was set to 150 (10% of the input data), and Entropy was used as the division criterion. In the
ROCKET algorithm, the number of kernels was set to 1000. The remaining hyperparameters
were set to default. In this experiment, the classification performance indicators were
compared using two system algorithms that applied the model considering the features of
the narcotic IMS data, as shown in Figure 8, and the experiment that applied the data to
each algorithm.
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6.2. Experiment Results

The experimental results show the classification results for each RIP2RIP through the
threshold, KNN, TSF, and ROCKET algorithms in Table 6. Meanwhile, Table 7 shows the
results of applying the system-adapted algorithm (SAA), which was proposed considering
the characteristics of narcotic IMS data. The average values of accuracy, precision, recall,
and F1_score were used as comparative performance indicators.

Table 6. Accuracy, precision, recall and F1_score evaluation results of each algorithm when SAA is
not applied.

Classifier Accuracy Precision Recall F1_score

Threshold 0.362 0.667 0.362 0.415 (8)
KNN (k = 1) 0.881 1 0.881 0.936 (2)
KNN (k = 2) 0.813 1 0.813 0.896 (3)
KNN (k = 3) 0.754 1 0.754 0.858 (4)
KNN (k = 4) 0.713 1 0.713 0.831 (5)
TSF (c = 0.9) 0.41 1 0.41 0.572 (7)
TSF (c = 0.8) 0.56 1 0.56 0.731 (6)

ROCKET 0.953 1 0.953 0.974 (1)

Table 7. Accuracy, precision, recall and F1_score evaluation results of each algorithm when SSA
is applied.

Classifier Accuracy Precision Recall F1_score

SAA(KNN (k = 1)) 0.970 1 0.970 0.989 (3)
SAA(KNN (k = 2)) 0.975 1 0.975 0.986 (5)
SAA(KNN (k = 3)) 0.970 1 0.970 0.988 (4)
SAA(KNN (k = 4)) 0.984 1 0.984 0.991 (2)
SAA(TSF (c = 0.9)) 0.913 1 0.913 0.953 (7)
SAA(TSF (c = 0.8)) 0.972 1 0.972 0.985 (6)

SAA (ROCKET) 0.993 1 0.993 0.996 (1)

In Table 6, in the case of the threshold algorithm, the accuracy of classification per-
formance for each RIP2RIP was 0.362, and the F1_score, which was the harmonic mean
of precision and recall, was 0.415, indicating the lowest performance among the applied
algorithms. Meanwhile, the KNN had an accuracy of 0.7 or more regardless of the value of
k, and the accuracy performance decreased as the number of k increased. The TSF algo-
rithm’s performance was improved as the confidence level decreased. Lastly, the ROCKET
algorithm showed an accuracy of 0.953 and had the best performance among the com-
pared algorithms. Through this, it was confirmed that the KNN, which classifies through
similarity, and the ROCKET algorithm, which classifies through kernels, showed good clas-
sification performance despite the time-series data deformation, which is a characteristic of
the narcotic IMS data mentioned in Section 3.

Table 7 shows the result of applying each algorithm to machine-learning-based classi-
fication in the proposed system algorithm considering the characteristics of narcotic IMS
data. When the SAA was applied, the average accuracies of 0.9 for KNN, 0.94 for TSF, and
0.99 for ROCKET were obtained. The algorithm with the highest performance was the
ROCKET algorithm. Thus, the proposed algorithm for detecting the most inferred drugs
from the data measured once was confirmed to have good performance.

7. Embedded Board Application and Time Required

In this section, we checked the data processing time by applying the algorithm to
an embedded board to confirm the purpose of quickly inferring using machine learning
instead of the DNN method, which has high time complexity, to classify narcotic IMS data.
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Embedded Board Specifications and Operating Time

The embedded board for classifying narcotic IMS data was operated on a board
equipped with NVIDIA’s TX2. The algorithms operated were KNN, TSF, and ROCKET
applied to the system application algorithm. Looking at Table 8, the KNN method showed
an average operation time of 2.7 s, which was the fastest performance. Meanwhile, the TSF
algorithm had an average operating time of about 5 s, whereas the ROCKET algorithm had
an average operating time of about 30 s due to convolution operations. In this regard, KNN
can construct a system with an accuracy of 0.98 within 2 s on average when k is set to 4.

Table 8. Algorithm running time.

Algorithm Max (s) Min (s) Average (s)

KNN (k = 1) 2.2 1.8 2.17 (4)
KNN (k = 2) 2.2 1.9 2.09 (1)
KNN (k = 3) 2.2 1.9 2.12 (3)
KNN (k = 4) 2.2 1.9 2.10 (2)

TSF 9.5 4.3 4.98 (5)
ROCKET 33 31 31.7 (6)

8. Conclusions

This paper proposed a method for classifying narcotic data using IMS in port con-
tainers. Related research on classification algorithms, KNN, machine learning, and deep
learning methods through air intake in port containers were examined. After that, the
features of the narcotic IMS data were examined, considering that narcotic IMS data are
not a widely used benchmark dataset. Based on these features, a preprocessing method
that takes the median value using the window was taken, and the threshold, KNN, TSF,
and ROCKET algorithms were applied. The classification performance index using only
the model was somewhat low; thus, to apply it to the system to change the degree of
reaction in the response section shown in the narcotic IMS data, one csv file was divided
into RIP2RIP data, and most output from the inference label for each RIP2RIP was set
as a prediction label. Through the above methodology, results of improved performance
indicators in all algorithms can be obtained. Moreover, the recall indicators were all 1 in
the performance indicators. In this respect, there was no case of misclassification. This
can gain confidence in the system from port operators who operate narcotic IMS detectors,
and this can eliminate unnecessary fatigue of the operators. In terms of time, absolute
time reduction was confirmed by applying the created system to the embedded board,
and it was confirmed that it operated in less than a minute even on the embedded board.
The most suitable algorithm for processing port narcotics IMS data was the KNN (k = 4)
algorithm. In this way, by comparing the performances of narcotic IMS steam data using
the machine learning algorithm and using the features of the data, a system that detects a
total of eight types of narcotics using the air inside the actual container may be expected.
Moreover, this study utilized IMS data acquired from samples of 100ng and 300ng. This is
promising as it indicates that even if only ten-millionths of the substance is present when
air inside a container—where drugs are transported in kilogram units—is inhaled, trace
amounts of drugs can be detected. In this study, we have confirmed significant performance
by conducting classification based on data acquired in a limited experimental environment.
However, since the data used in the experiment were obtained in a restricted environment,
further experiments are required with data collected from actual containers. Furthermore,
to address the limitations of IMS data, such as the necessity of a reference library and the
inability to measure mixtures, we intend to conduct additional research on augmented
learning and data feature extraction algorithms [36].
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