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Abstract: Nonlinear effects in optical fiber frequency transfer have a significant impact on the
precision of frequency transfer. We investigate the main nonlinear effects, including the Brillouin
scattering and the Raman scattering, in optical fiber frequency transfer through theoretical and
simulation calculations in detail. The calculation results show that the threshold powers of the
Brillouin scattering and the Raman scattering decrease with the increase in the fiber length; however,
the fiber length has little to no impact on the threshold powers when the fiber length is greater than
10 km. The threshold powers, including the Brillouin scattering and the Raman scattering, increase as
the attenuation coefficient increases. Conversely, when it comes to the gain coefficients, the outcomes
exhibit a reverse trend. When the linewidth ∆vlaser of the laser source is from 1 Hz to 1 MHz, the
linewidth ∆vlaser does not affect the threshold powers of the Brillouin scattering. This study seeks to
offer design guidance aimed at mitigating nonlinear effects in optical fiber frequency transfer. The
calculated results hold considerable potential in guiding various applications reliant on Brillouin and
Raman scattering properties, such as laser technology and optical fiber sensing.

Keywords: optical fiber frequency transfer; nonlinear effects; Brillouin scattering; Raman scattering;
optical clock

1. Introduction

In recent years, the achievement of precision levels at 10−18 and the remarkable stabil-
ity of optical clocks have played a significant role in various research domains, including
navigation, fundamental physics, applied research, chronometric geodesy, and the quest for
dark matter [1–6]. The evolution of optical clocks has given rise to high-precision optical
frequency transfer methods. Fiber optic links have demonstrated exceptional performance
in transmitting optical frequencies with instabilities as low as 10−20 over distances spanning
hundreds to thousands of kilometers [7–13].

To accomplish remote optical clock frequency comparisons and enable long-distance
frequency reference distribution, there has been significant interest and comprehensive
research focused on high-precision optical frequency transfer through communication
fibers [7–10]. However, the transmission of signals in optical fibers is affected by nonlinear
effects, including Brillouin scattering, Raman scattering, and Rayleigh scattering, which
can cause additional noise in the optical fiber link, thereby affecting transmission perfor-
mance [14–18]. Nonlinear effects not only introduce noise into the optical fiber frequency
transfer system but also result in a form of nonlinear loss of the signal, thus limiting the
increase in input fiber power and reducing the optical signal-to-noise ratio of the optical
fiber frequency transfer system, thereby severely constraining the improvement of trans-
mission system performance [19–22]. Simultaneously, when the laser power injected into
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the optical fiber exceeds the threshold power of the scattering, the scattering occurs [19,23].
Scattering primarily affects the system by causing crosstalk between channels and energy
loss in the channels. The Brillouin frequency shift is approximately 10~11 GHz at 1550 nm.
When the channel spacing of the system matches the Brillouin frequency shift, it leads to
crosstalk between the channels [24]. Additionally, because scattering causes some channel
power to be transferred to noise, it affects power amplification.

Although there have been numerous studies on the threshold power of Brillouin scatter-
ing and Raman scattering in the context of laser and optical fiber sensing [20,24–28], there is
a relative scarcity of research on fiber optical frequency transfer, particularly in long-distance
and high-precision transmission [7,11–13]. Existing studies primarily focus on estimating the
threshold power for generating Brillouin scattering and Raman scattering using the optical
fiber length while neglecting other important parameters, such as the attenuation coefficient
and the gain coefficient. With the growing demand for large-scale scientific research projects,
like the “high precision ground-based timing system” in the national major scientific and tech-
nological infrastructure plan [12,13], it becomes crucial to investigate the impact of multiple
parameters on the threshold power for generating Brillouin scattering and Raman scattering.
This is because the parameters of optical fibers used in long-distance transmission differ
from those in laboratory settings. For instance, the attenuation coefficient of optical fibers in
the field is influenced by various factors, such as vibration and temperature, which differs
from the attenuation coefficient in the laboratory and affects the estimation of the threshold
power for generating Brillouin scattering and Raman scattering. Therefore, it is imperative to
conduct a detailed study on the influence of multiple parameters on the threshold power
for generating Brillouin scattering and Raman scattering in the context of long-distance and
high-precision field optical fiber frequency transfer.

In this study, we comprehensively investigate nonlinear effects in optical fiber fre-
quency transfer through theoretical and simulation calculations. We specifically focus on
two primary nonlinear effects: Brillouin scattering and Raman scattering. Generally, the
threshold power for Brillouin scattering is two orders of magnitude lower than that for
Raman scattering. Our calculations reveal that the threshold powers for both Brillouin and
Raman scattering decrease with increasing fiber length. However, these threshold powers
remain relatively constant when the fiber length exceeds 10 km. When the fiber length L
is kept constant, the threshold power for both Brillouin and Raman scattering decreases
as the gain coefficients increase. Conversely, this trend reverses for the attenuation coeffi-
cient. Furthermore, when the fiber length is predetermined, and the linewidth of the laser
source ranges from 1 Hz to 1 MHz, the linewidth of the laser source does not impact the
threshold powers required to generate Brillouin scattering. To the best of our knowledge,
this study represents the first comprehensive exploration of nonlinear effects with multiple
parameters in optical fiber frequency transfer. Our work aims to offer valuable design guid-
ance for mitigating nonlinear effects in optical fiber frequency transfer and, in particular,
long-distance and high-precision field fiber optical frequency transmission. The calculation
results hold significant potential for guiding various applications utilizing Brillouin and
Raman scattering characteristics, such as laser technology and optical fiber sensing.

This paper is structured as follows. We present the fundamental principle, including
the high-precision optical frequency signal transmission, the Brillouin scattering, and the
Raman scattering, in Section 2. In Section 3, the calculation results of the threshold powers
for the Brillouin scattering and the Raman scattering, including the forward and backward
scattering, are presented. The conclusions are summarized in Section 4.

2. Fundamental Principle

Figure 1 illustrates the system schematic of high-precision optical frequency signal
transmission based on a fiber optic link. The optical frequency signal is generated by a
laser that can output continuous laser light and is injected into the fiber optic link. At the
transmitter end of the system, the optical signal is split into two paths, with one path serving
as the reference light and the other path being modulated by Bi-Actuator 1 before being
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transmitted through the fiber optic link to the remote end, where it is further modulated
by Bi-Actuator 2. At the remote end, a portion of the optical signal is reflected back to
the transmitter end by a reflective mirror along the same path, while another portion is
provided to the user. The light that is reflected back and the reference light at the transmitter
end undergo beat frequency comparison to extract phase noise information introduced by
the transmission system. This information is then subjected to noise suppression through a
noise feedback control system to ensure that the transmitted light at the user end exhibits
the same characteristics as the light source.
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Figure 1. Schematic of the basic principle of optical frequency transmission via fiber with the active phase-
noise compensation system. Laser Source and Phase-Servo System represent continuous laser light and
the active phase-noise compensation system, respectively. Bi-Actuator denotes bidirectional modulator.

As shown in Figure 2, laser signals transmitted in optical fibers can result in nonlinear
effects due to non-elastic collisions [24,29,30]. Depending on the optical intensity, two
different nonlinear effects can occur: stimulated Raman scattering and stimulated Brillouin
scattering. Both of these nonlinear effects are intensity dependent, but the optical intensity
threshold for stimulated Brillouin scattering is significantly lower compared to Raman
scattering. Even at lower power levels, Brillouin scattering can occur spontaneously, as it is
driven by the scattering of phonons generated thermally. Higher input optical power leads
to the generation of a large number of phonons, and when two counter-propagating optical
waves in the fiber intersect, they create a moving refractive index grating. The greater the
reflected optical power, the stronger the grating, resulting in higher effective reflectivity.
When the incident optical power exceeds a certain threshold, stimulated Brillouin phonons
can scatter a significant portion of the incident optical power back to the input end of the
optical fiber. For silica optical fibers, the material itself exhibits relatively weak nonlinear
effects, but the combination of a small effective mode area and long propagation length in
the optical fiber greatly enhances these nonlinear effects.
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λ0 is the center wave length of the transmitted light.

The frequency of the reflected beam generated by stimulated Brillouin scattering is
slightly lower than that of the incident beam. It corresponds to the frequency vB of phonons,
and the corresponding frequency shift is called the Brillouin frequency shift. The frequency
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shift is determined by the phase matching condition, and it can be calculated using the
refractive index n, the speed of sound va = 6 × 103 m/s, and the vacuum wavelength λ0.
The frequency vB can be expressed as [24,32,33]:

vB =
2nva

λ0
(1)

The Brillouin frequency shift depends on the material composition and, to some
extent, the temperature and pressure of the medium. For silica optical fibers, the Brillouin
frequency shift is approximately 11 GHz. The intrinsic bandwidth of Brillouin gain is
typically between 10 and 100 MHz, and the linewidth ∆vB is determined by the phonon
lifetime t, where ∆vB = 1/2πt. In theory, phonon absorption leads to a shorter phonon
lifetime and thus a narrower linewidth. However, the bandwidth of Brillouin gain is
significantly broadened due to various influences, such as lateral variations in sound
velocity or longitudinal temperature changes.

The threshold power Pcrit−B for Brillouin stimulated scattering is given by [24,32,33]:
Pcrit−B =

21Ae f f
γB Le f f

(
1 + ∆vlaser

∆vB

)
Ae f f =

(
s ∞
−∞ |F(x,y)|2dxdy)

2

s ∞
−∞ |F(x,y)|4dxdy

Le f f =
1−e−αL

α

(2)

where Ae f f is the effective mode area of the fiber and γB is the gain coefficient of the Bril-
louin scattering. F(x, y) represents the transverse distribution inside the core of the optical
fiber. Le f f denotes the effective gain length of the optical fiber. α and L are the attenuation
coefficient and length of the optical fiber. ∆vlaser is the linewidth of the laser source.

In optical fiber transmission, Raman scattering can negatively impact performance.
Similar to Brillouin scattering, the generation of Raman scattering also has an obvious
threshold. Under equivalent conditions, the threshold power for generating Raman scatter-
ing is approximately two orders of magnitude higher than the threshold power of Brillouin
scattering [24]. In general, Raman scattering includes forward Raman scattering and back-
ward Raman scattering. The threshold power Pcrit−R−B for generating backward Raman
scattering is about 25% higher than the threshold power Pcrit−R−F for generating forward
Raman scattering. Based on the classical estimation theory of the threshold power for
generating Raman scattering, the threshold power Pcrit−R−F for generating forward Raman
scattering and the threshold power Pcrit−R−B for generating backward Raman scattering
can be expressed as [24,32,33] Pcrit−R−F =

16Ae f f
γR Le f f

Pcrit−R−B =
20Ae f f
γR Le f f

(3)

where γR is the gain coefficient of the Raman scattering.

3. Simulation and Results

In the simulation and calculation of the threshold power for generating Brillouin
scattering and Raman scattering, we consider an optical fiber made of fused silica single
mode fiber with a refractive index of 1.451 and a light wavelength of 1.5 µm. The Brillouin
frequency shift is estimated to be around 11 GHz.

3.1. Stimulated Brillouin Scattering

According to Equation (2), we assess the threshold power of generating the Brillouin
scattering as a function of the optical fiber’s length L with the various effective mode area
Ae f f , including 1 × 10−11 m2, 5 × 10−11 m2, and 1 × 10−10 m2. The corresponding results
for the threshold power Pcrit−B are presented in Figure 3.
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linewidth ∆vlaser of the laser source and the linewidth ∆vB of the Brillouin scattering are 1 kHz and
10 MHz, respectively. The gain coefficient γB of the Brillouin scattering is 5 × 10−11 m/W.

In general, for fiber lengths of less than 1 km, the threshold power Pcrit−B typically
falls in the range of 100 mW. However, for fiber lengths ranging from 1 km to 100 km, the
threshold powers for Brillouin scattering are typically around 10 mW. When the effective
mode area Ae f f of the fiber remains constant, the threshold powers for Brillouin scattering
decrease as the fiber length increases. For instance, at fiber lengths of 100 m and 500 m,
the threshold powers for Brillouin scattering with an effective mode area of 1 × 10−10 m2

are approximately 424 mW and 88 mW, respectively. Conversely, when the fiber length
exceeds 10 km, the threshold power Pcrit−B remains relatively constant. Specifically, it
hovers around 1 mW for an effective mode area Ae f f of 1 × 10−11 m2, approximately 4 mW
for Ae f f of 5× 10−11 m2, and about 8 mW for Ae f f of 1× 10−10 m2. These calculations hold
potential theoretical significance for guiding laser and optical fiber sensing applications
that utilize Brillouin scattering characteristics. Additionally, when the fiber length L is held
constant, the threshold powers for Brillouin scattering increase with a larger effective mode
area Ae f f of the fiber. For instance, at a fixed fiber length of 2 km, the threshold powers
for Brillouin scattering with effective mode areas Ae f f of 1 × 10−11 m2, 5 × 10−11 m2, and
1 × 10−10 m2 are approximately 2.6 mW, 12.7 mW, and 25.5 mW, respectively.

In Figure 4a, we present the threshold power Pcrit−B for generating Brillouin scattering
as a function of the attenuation coefficient α of the optical fiber when the laser source
linewidth ∆vlaser, Brillouin scattering linewidth ∆vB, and Brillouin scattering gain coeffi-
cient γB are set at 1 kHz, 10 MHz, and 5 × 10−11 m/W, respectively. Generally, when the
fiber length L is held constant, the threshold powers for Brillouin scattering increase with
higher values of the attenuation coefficient α of the optical fiber. For example, at L = 50 km,
the threshold powers for α = 0.1 dB/km, α = 1 dB/km, and α = 2 dB/km are approximately
4 mW, 42 mW, and 84 mW, respectively. However, with L = 1 km and α = 0.5 dB/km, the
threshold power for Brillouin scattering is approximately 53 mW, which is about 30 mW
higher than that for L = 10 km. Interestingly, when α is varied between 0.1 dB/km and
2 dB/km, the threshold power for Brillouin scattering at L = 50 km remains essentially
unchanged compared to that at L = 10 km.

The calculation results depicted in Figure 4b present the threshold powers of Brillouin
scattering as a function of the Brillouin scattering gain coefficient γB. Here, the parameters
include the laser source linewidth ∆vlaser at 1 kHz, Brillouin scattering linewidth ∆vB at
10 MHz, and optical fiber attenuation coefficient α at 0.2 dB/km. Generally, when the fiber
length L is constant, the threshold power Pcrit−B of Brillouin scattering decreases with an
increasing Brillouin scattering gain coefficient γB. For instance, at L = 1 km, the threshold
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powers for γB values of 1 × 10−11 m/W, 6 × 10−11 m/W, and 1 × 10−10 m/W are approxi-
mately 232 mW, 39 mW, and 23 mW, respectively. When γB ranges from 1 × 10−11 m/W to
1 × 10−10 m/W, the threshold power of Brillouin scattering remains essentially constant for
L = 50 km and L = 10 km. For a fixed L = 10 km and γB = 7 × 10−11 m/W, the threshold
power of Brillouin scattering is approximately 7 mW. This is, notably, 26 mW lower than
the corresponding value for L = 1 km.
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Figure 5 illustrates the threshold powers required to generate Brillouin scattering as a
function of the laser source linewidth ∆vlaser for different fiber lengths: 1 km, 10 km, and
50 km. Generally, when the fiber length L is fixed and the laser source linewidth ∆vlaser
ranges from 1 Hz to 1 MHz, it does not impact the threshold powers for generating Brillouin
scattering. The threshold powers remain approximately 46 mW for L = 1 km, 10 mW for
L = 10 km, and 8 mW for L = 50 km, respectively. However, when ∆vlaser is determined
between 1 MHz and 10 MHz with a constant fiber length L, the threshold powers of
Brillouin scattering increase proportionally. For instance, at L = 10 km, the threshold powers
are approximately 12 mW and 16 mW for ∆vlaser = 2 MHz and ∆vlaser = 6 MHz, respectively.
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Figure 5. The threshold power Pcrit−B for generating the Brillouin scattering as a function of the
linewidth ∆vlaser of the laser source. The attenuation coefficient of the optical fiber α is 0.2 dB/km.
The linewidth ∆vB of the Brillouin scattering is 10 MHz. The gain coefficient γB of the Brillouin
scattering is 5 × 10−11 m/W. The effective mode area Ae f f of the fiber is 1 × 10−10 m2.
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3.2. Raman Scattering

Utilizing Equation (3), we calculate the threshold power Pcrit−R for generating Raman
scattering as a function of the length L of the optical fiber, considering an effective mode
area Ae f f of 1.0× 10−10 m2, an attenuation coefficient α of 0.2 dB/km, and a gain coefficient
γR for Raman scattering of 4.2 × 10−13 m/W. The results of this calculation are illustrated
in Figure 6.
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Figure 6. The threshold power for generating the Raman scattering as a function of the length L of
the optical fiber. (a) The fiber with less than 1 km in length. (b) The fiber with the length from 1 km to
100 km.

As shown in Figure 6, when the fiber length L varies from 0.1 km to 1 km, the threshold
powers, including Pcrit−R−B for generating backward Raman scattering and Pcrit−R−F for
generating forward Raman scattering, are consistently in the vicinity of 10 W. This value is
roughly two orders of magnitude greater than the threshold powers for Brillouin scattering
at the same fiber length. This discrepancy can be attributed to the significantly higher gain
coefficient of Brillouin scattering, which is approximately two orders of magnitude larger
than the gain coefficient γR of Raman scattering. The threshold powers for generating
Raman scattering are approximately 1 W for fiber lengths ranging from 1 km to 100 km.
In cases where the fiber length L is fixed, Pcrit−R−B for backward Raman scattering is
approximately 25% higher than that for forward Raman scattering. Generally, the threshold
powers for Brillouin scattering exhibit a decreasing trend as the fiber length L increases. For
instance, for a 0.5 km fiber length, Pcrit−R−F and Pcrit−R−B are approximately 8 W and 10 W,
respectively, and they decrease by approximately 3.8 W and 4.8 W, respectively, as the fiber
length increases. However, for fiber lengths exceeding 10 km, the threshold powers for
generating Raman scattering remain relatively constant, paralleling the behavior observed
in Brillouin scattering.

When the optical fiber’s length is 10 km, Figure 7a displays the calculated threshold
powers for generating Raman scattering as a function of the attenuation coefficient α of the
optical fiber. It is observed that as the attenuation coefficient α of the optical fiber increases,
the threshold powers for generating Raman scattering also increase. For example, when
the attenuation coefficients are 1 dB/km and 2 dB/km, the threshold powers for backward
Raman scattering are approximately 4.8 W and 9.5 W, respectively, while the threshold
powers for forward Raman scattering are approximately 3.8 W and 7.6 W, respectively.
Furthermore, when the attenuation coefficient α of the optical fiber remains constant at
0.5 dB/km, the threshold power Pcrit−R−B for backward Raman scattering surpasses that
of forward Raman scattering, with values of about 2.4 W and 1.9 W, respectively.
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Figure 7. The threshold power for generating the Raman scattering as a function of the attenuation
coefficient α of the optical fiber and the gain coefficient γR of the Raman scattering. (a) The attenuation
coefficient α based on the gain coefficient γR = 4.2 × 10−13 m/W and the effective mode area
Ae f f = 1.0 × 10−10 m2. (b) The gain coefficient γB based on the attenuation coefficient α = 0.2 dB/km
and the effective mode area Ae f f = 1.0 × 10−10 m2.

As shown in Figure 7b, the threshold powers of the Raman scattering as a function of
the gain coefficient γB of the Raman scattering are presented, where the length L of the fiber
is 10 km. In general, the threshold power Pcrit−R, including the backward Raman scattering
and the forward Raman scattering, decreases as the gain coefficient γR of the Raman
scattering increases. For instance, consider two scenarios with different gain coefficients
for Raman scattering: 1 × 10−13 m/W and 1 × 10−12 m/W, resulting in average threshold
powers of approximately 4.2 W and 0.4 W, respectively. When the gain coefficient γR
for Raman scattering is established, the threshold power Pcrit−R−F for forward Raman
scattering is found to be lower than that for backward Raman scattering. Specifically, with
gain coefficients of 5 × 10−13 m/W for Raman scattering, the threshold power for forward
Raman scattering is approximately 0.7 W, which is 0.2 W less than that for backward
Raman scattering.

In this study, we compare the research on the threshold powers of Brillouin scattering
and Raman scattering in high-precision optical fiber frequency transfer with previous
works [11–18] (Table 1). However, unlike these works, our study focuses on investigating
the Brillouin scattering threshold power and Raman scattering threshold power in detail.
We also examine the influence of various parameters on these threshold powers. This
research is crucial for long-distance and high-precision fiber optical frequency transfer.
For instance, in the “high precision ground-based timing system” of the national major
scientific and technological infrastructure plan [12,13], the attenuation coefficient α of the
optical fiber in the field differs from the attenuation coefficient in the laboratory, which can
impact the threshold powers.

Table 1. Comparison of research on the threshold powers of the Brillouin scattering and Raman
scattering in the high-precision optical fiber frequency transfer.

Item Research Team
Brillouin Scattering Threshold Power Raman Scattering

Threshold PowerL γB α ∆vlaser

1 Ref. [11]

Yes

No

No

No

No
2 Ref. [18] No No

3 Refs. [14,15] Yes Yes

4 Refs. [16,17] Yes No

5 Refs. [12,13] No Yes Yes

6 This work Yes Yes Yes Yes Yes
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4. Experimental Verification
4.1. Stimulated Brillouin Scattering

As depicted in Figure 8, we compared the calculated threshold powers for generating
Brillouin scattering with experimental results. These experimental results include values
from the published literature as well as our own measurements. The threshold powers
for Brillouin scattering in optical fibers with lengths of 1 km, 2 km, 3 km, and 4 km are
obtained from ref. [34]. For optical fiber lengths ranging from 5 km to 17 km, we cite the
measured threshold powers from ref. [35]. In our laboratory, we conducted experiments
using a 120 km single mode fiber to determine the threshold power for generating Brillouin
scattering. Our experimental results indicate that the threshold power for a 120 km length
optical fiber is approximately 8 mW.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 
Figure 8. Comparison of calculated and experimental values of the threshold power for generating 
the Brillouin scattering. The attenuation coefficient 𝛼  and the effective mode area 𝐴௘௙௙  are 0.2 
dB/km and 1.0 × 10−10 m2, respectively. The gain coefficient 𝛾஻ of the Brillouin scattering is 5.0 × 10−11 
m/W. (a) Comparison of calculated and experimental values of the threshold power for generating 
the Brillouin scattering as a function of the optical fiber length L. (b) The experimental measurement 
results of the input optical power and the output optical power when the fiber length is 120 km. 

4.2. Raman Scattering 
As shown in Figure 9, we compare the calculated results with the experimental re-

sults of the threshold power for generating the Raman scattering, including the threshold 
power 𝑃௖௥௜௧ିோିி  for forward Raman scattering and the threshold power 𝑃௖௥௜௧ିோି஻  for 
backward Raman scattering. The experimental results of the threshold power for generat-
ing the Raman scattering are cited in ref. [36]. 

 
Figure 9. Comparison of calculated and experimental values of the threshold power for generating 
the Raman scattering. The attenuation coefficient 𝛼 and the effective mode area 𝐴௘௙௙ are 0.2 dB/km 
and 1.0 × 10−10 m2, respectively. The gain coefficient 𝛾ோ of the Brillouin scattering is 4.2 × 10−13 m/W. 
(a) Comparison of calculated and experimental values of the threshold power for generating the 
forward Raman scattering as a function of the optical fiber length L. (b) Comparison of calculated 
and experimental values of the threshold power for generating the backward Raman scattering as a 
function of the optical fiber length L. 

The threshold power 𝑃௖௥௜௧ିோିி for forward Raman scattering is investigated. The ex-
perimental and calculated values show good agreement, with an overall difference of ap-
proximately 10%. Notably, the largest difference between the calculated and experimental 
values is observed at a fiber length of 2.2 km, reaching about 22%. Conversely, the smallest 
difference is observed at a fiber length of 3.2 km, which is approximately 0.3%. Addition-
ally, for fiber lengths ranging from 0.2 km to 0.8 km, the calculated value exceeds the ex-
perimental value. However, at fiber lengths of 1.1 km and 4.1 km, the calculated value is 
lower than the experimental value. For instance, at a fiber length of 0.2 km, the 

Figure 8. Comparison of calculated and experimental values of the threshold power for generating the
Brillouin scattering. The attenuation coefficient α and the effective mode area Ae f f are 0.2 dB/km and
1.0 × 10−10 m2, respectively. The gain coefficient γB of the Brillouin scattering is 5.0 × 10−11 m/W.
(a) Comparison of calculated and experimental values of the threshold power for generating the
Brillouin scattering as a function of the optical fiber length L. (b) The experimental measurement
results of the input optical power and the output optical power when the fiber length is 120 km.

Overall, the calculated threshold powers for generating Brillouin scattering align well
with the experimental measurements. On average, there is a difference of about 4.5%
between the experimental and calculated values. The largest discrepancy, about 34%, is
observed at a fiber length of 3 km, while the smallest difference of approximately 1% is
observed at a length of 13 km. Notably, for fiber lengths ranging from 2 km to 7 km,
the experimental threshold powers for generating Brillouin scattering are higher than
the calculated values. However, for fiber lengths ranging from 11 km to 120 km, the
experimental results are lower than the calculated values. For instance, at a fiber length of
2 km, the experimental and calculated threshold powers for generating Brillouin scattering
are approximately 30 mW and 25.5 mW, respectively. The experimental results show that
the threshold powers for generating Brillouin scattering are approximately 9.2 mW, which
is slightly higher than the calculated values. This experiment is conducted using an optical
fiber length of 11 km.

4.2. Raman Scattering

As shown in Figure 9, we compare the calculated results with the experimental results
of the threshold power for generating the Raman scattering, including the threshold power
Pcrit−R−F for forward Raman scattering and the threshold power Pcrit−R−B for backward
Raman scattering. The experimental results of the threshold power for generating the
Raman scattering are cited in ref. [36].
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Figure 9. Comparison of calculated and experimental values of the threshold power for generating the
Raman scattering. The attenuation coefficient α and the effective mode area Ae f f are 0.2 dB/km and
1.0 × 10−10 m2, respectively. The gain coefficient γR of the Brillouin scattering is 4.2 × 10−13 m/W.
(a) Comparison of calculated and experimental values of the threshold power for generating the
forward Raman scattering as a function of the optical fiber length L. (b) Comparison of calculated
and experimental values of the threshold power for generating the backward Raman scattering as a
function of the optical fiber length L.

The threshold power Pcrit−R−F for forward Raman scattering is investigated. The
experimental and calculated values show good agreement, with an overall difference of
approximately 10%. Notably, the largest difference between the calculated and experimen-
tal values is observed at a fiber length of 2.2 km, reaching about 22%. Conversely, the
smallest difference is observed at a fiber length of 3.2 km, which is approximately 0.3%.
Additionally, for fiber lengths ranging from 0.2 km to 0.8 km, the calculated value exceeds
the experimental value. However, at fiber lengths of 1.1 km and 4.1 km, the calculated
value is lower than the experimental value. For instance, at a fiber length of 0.2 km, the
experimental and calculated values are approximately 14.3 W and 16.9 W, respectively.
When the fiber length is 4.1 km, the experimental value and calculated value are about
1.7 W and 1.4 W, respectively.

The experimental results and calculated values for the threshold power Pcrit−R−B
for backward Raman scattering show good agreement, which is similar to the threshold
power Pcrit−R−F. Generally, the difference between the experimental results and calculated
values of Pcrit−R−B is approximately 2% lower than that of Pcrit−R−F. When the fiber length
is 2.2 km, the difference between the calculated value and the experimental value is the
largest (around 20.6%). On the other hand, when the fiber length is 3.2 km, the difference
between the calculated value and the experimental value is the smallest (approximately
2.5%). These two points resemble the behavior observed in the threshold power Pcrit−R−F.
Additionally, when the fiber length ranges from 0.2 km to 0.8 km, the experimental value
is lower than the calculated value. However, for fiber lengths of 3.3 km and 4.1 km, the
calculated value is lower than the experimental value. For instance, at a fiber length of
0.8 km, the experimental value and calculated value are approximately 5.7 W and 6.6 W,
respectively. Similarly, at a fiber length of 4.1 km, the experimental value and calculated
value are approximately 2.0 W and 1.7 W, respectively.

Through the experimental method, researchers have investigated the effects of var-
ious parameters on the threshold power for generating Brillouin scattering and Raman
scattering [34–40]. These parameters include optical fiber length [34–36,40], input pump
powers [38], and special types of optical fibers, such as photonic crystal fiber [39] and
three-layer fiber [37]. For example, R. Parvizi et al. conducted a study on the threshold
power for generating Brillouin scattering in photonic crystal fiber. They propose an ap-
proach to calculate this threshold and find that their results align well with experimental
and simulation data. Similarly, E.B. Mejía et al. [39] examine the threshold power for
generating Raman scattering as a function of doped-fiber length (specifically, lengths lower
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than approximately 1.3 m). Their experimental results demonstrate good agreement be-
tween the measured and calculated threshold powers for both backward and forward
Raman scattering.

5. Conclusions

In this work, nonlinear effects in optical fiber frequency transfer are investigated
through theoretical and simulation calculations in detail. We focus on the main nonlinear
effects, including the Brillouin scattering and the Raman scattering. Generally, the threshold
power of the Brillouin scattering is two orders lower than that of the Raman scattering. The
calculation results show that the threshold powers of the Brillouin scattering and the Raman
scattering decrease with the increase in the fiber length; however, the threshold powers
basically do not change with the fiber length when the fiber length is greater than 10 km.
When the length L of the fiber is constant, the threshold power of the Brillouin scattering
and the Raman scattering decreases as the gain coefficients increase. However, for the
attenuation coefficient α, the results are the opposite. In addition, when the fiber length
L is determined and the linewidth ∆vlaser of the laser source is from 1 Hz to 1 MHz, the
linewidth ∆vlaser of the laser source does not affect the threshold powers of generating the
Brillouin scattering. As far as we know, this work is the first time to investigate nonlinear
effects in optical fiber frequency transfer in detail. This work aims to provide reference
design guidance for the reduction of nonlinear effects in optical fiber frequency transfer. The
calculation result has potential guiding significance for many applications using Brillouin
and Raman scattering characteristics, such as laser and optical fiber sensing. In future
research, we will primarily focus on studying the nonlinear effects of optical fibers with
lengths exceeding 500 km, as well as field optical fibers and special optical fibers, in the
context of optical fiber frequency transfer.
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