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Abstract: Relation extraction tasks aim to predict the type of relationship between two entities
from a given text. However, many existing methods fail to fully utilize the semantic information
and the probability distribution of the output of pre-trained language models, and existing data
augmentation approaches for natural language processing (NLP) may introduce errors. To address
this issue, we propose a method that introduces prompt information and Top-K prediction sets and
utilizes ChatGPT for data augmentation to improve relational classification model performance. First,
we add prompt information before each sample and encode the modified samples by pre-training the
language model RoBERTa and using these feature vectors to obtain the Top-K prediction set. We add
a multi-attention mechanism to link the Top-K prediction set with the prompt information. We then
reduce the possibility of introducing noise by bootstrapping ChatGPT so that it can better perform
the data augmentation task and reduce subsequent unnecessary operations. Finally, we investigate
the predefined relationship categories in the SemEval 2010 Task 8 dataset and the prediction results
of the model and propose an entity location prediction task designed to assist the model in accurately
determining the relative locations between entities. Experimental results indicate that our model
achieves high results on the SemEval 2010 Task 8 dataset.

Keywords: relation extraction; language model; prompt information; deep learning models; NLP

1. Introduction

Relation extraction has garnered significant attention from researchers, as it is an
important subtask in the information extraction task and plays an important role in many
downstream natural language processing applications, e.g., sentiment analysis, question
answering application, abstract summarization, and knowledge graph construction. If the
entity pairs e1 and e2 are labeled and the types of relationships are predefined, the task
becomes a standard classification problem. For example, “Bob Parks made a similar <e1>
offer </e1> in a <e2> phone call </e2> made earlier this week.” In this text, “offer” is
the head entity e1, “phone call” is the tail entity e2, and the relationship between the two
entities is of type “Message-Topic (e2, e1)”.

With the emergence of language models, such as BERT [1], RoBERTa [2], GPT [3], etc.,
their powerful ability to capture contextual information has been proven. Currently, there
is a significant amount of work in the field of relational extraction that involves initial
fine-tuning of pre-trained language models to obtain vector representations containing rich
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semantic information. Subsequently, researchers make algorithmic improvements on top
of these models. In [4], it is demonstrated that a difference exists in the objective forms of
the pre-trained language model (PLM) between the pre-training and fine-tuning phases.
Typically, PLMs are usually pre-trained with a cloze-style task. However, in the fine-tuning
phase, the vector representation of just one or a few words in the model may be utilized
for a specific task. For example, when using the BERT model to do sentiment analysis on
the sentence “This is a great movie”. First of all, a “[CLS]” special token is usually added
in front of the sentence, which becomes “[CLS] This is a great movie”. Then, the vector
representation of this sentence is obtained by BERT as X = {x0, x1, x2, . . . , xt}, where x0 is
the representation of the “[CLS]” token. Next, a straightforward classification task uses
only x0 through a linear layer. This approach may result in a model that only partially
leverages the semantic information in the pre-trained language model.

For supervised relation extraction models, the quantity and quality of data in the
training set significantly impact the final performance of the model. Currently, the training
data for such models mainly relies on manual labeling to complete. While manually labeled
data is generally reliable, labeling data is time-consuming and labor-intensive. Additionally,
obtaining diverse expressions that represent the same semantic information from manually
labeled data can be challenging. One of the purposes of data augmentation is to increase
the diversity of training data, which can effectively alleviate the problem of data scarcity.

When using a pre-trained language model for relation extraction tasks, the final
prediction is typically the label with the highest probability from the output probability
distribution of the classification layer. Sometimes, the model incorrectly predicts relation-
ships between entities, but the correct labels may be in the first K probability distributions,
which contain valuable information for the relationship extraction task. However, it has yet
to receive extensive attention for relational classification tasks. Some datasets define rela-
tionship categories by distinguishing the relative positions of entities, e.g., “Entity-Origin
(e1, e2)” and “Entity-Origin (e2, e1)” are two different relationship categories.

This paper proposes a relation extraction method based on prompt information and
Top-K prediction sets to address the above problems. Firstly, adding prompt information
before each input data can link the pre-training and fine-tuning phases of the pre-trained
language model. The prompt information and Top-K prediction set are effectively fused
through the multi-head attention [5] to more fully utilize the rich semantic information of
vectors. We added an entity position prediction method to assist the model in correctly
predicting the relative positions of two entities. Additionally, augmented data generated
based on ChatGPT improves the model’s generalization. We conducted corresponding
experiments on the SemEval 2010 Task 8 dataset, and the results demonstrate that the
method proposed in this paper significantly outperforms the baseline model in terms of
F1 score.

The rest of the paper is organized as follows. Section 2 reviews previous work on
relation extraction and prompt tuning. In Section 3, we present the details of the proposed
method in this paper. Section 4 presents the dataset used, experimental steps, and experi-
mental results. Finally, we show the conclusions of this paper and the prospects for future
work in Section 5.

2. Related Work

Relation extraction is a crucial aspect of the NLP domain, aiming to determine the re-
lationship between two entities in a given sentence. The performance of traditional relation
extraction models depends on the quality of extracted features. However, feature extraction
using NLP tools often introduces noise. An example is the ambiguity of word meanings.
Consider a sentence: “I bought an apple”. In this context, “apple” could refer to a fruit or a
technology company, and this ambiguity is a potential source of noise, which can degrade
model performance. To reduce the noise introduced during feature extraction, in recent
years, several models have emerged that use deep neural networks for supervised relation
extraction tasks, which are capable of making predictions about the type of relationship
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between specified entities in text. Ref. [6] introduced a model that employs Convolutional
Neural Networks (CNNs) to extract lexical and sentence-level features. In this model, they
initially convert each word into a vector through word embedding. Then, lexical-level
features are extracted based on the given noun. Simultaneously, a CNN is employed to
extract the sentence-level features. Finally, the two levels of features are fused into a final
feature vector and fed into a SoftMax layer to predict the relationship between the two
entities. Nevertheless, due to CNN’s limitations, this model may require assistance in
accurately predicting relationship types between entities, particularly in long sentences
with entities positioned far apart. Graph Convolutional Networks (GCNs) [7] are a widely
used structure in which the information of each node in each GCN layer communicates
with neighboring nodes through edges between them. The ability of GCNs to efficiently
capture semantic relationships and contextual information between entities in a text has
been demonstrated by many previous studies [8–10]. Many models use dependency trees
to build graphs. However, the graphs generated by this method can be noisy, particularly
when generated automatically. Noise may be present in the generated graphs because the
algorithms constructing the dependency trees cannot handle complex syntactic structures
or the text is ambiguous. Excessive reliance on dependency trees may harm the perfor-
mance of relational extraction tasks.

In recent years, pre-trained language models have gained significant attention in
various research areas for their potent semantic representations. BERT belongs to the
Transformer architecture family and stands out for its ability to perform bidirectional
context modeling. Unlike traditional models, BERT considers both a word’s left and right
context, providing a more comprehensive understanding of language context. Trained
unsupervised on large-scale unlabeled text data, BERT learns universal language represen-
tations, making it a versatile tool for various NLP tasks. The model’s impact extends to
tasks such as text classification, named entity recognition, and relation extraction, showcas-
ing its effectiveness through fine-tuning. RoBERTa builds upon the foundation of BERT.
Unlike BERT, RoBERTa removes the bidirectional training restriction and employs larger
text corpora for pretraining, enhancing its language representation capabilities. Notable
improvements include the introduction of dynamic masking, where the mask length is
adjusted dynamically during each training iteration, facilitating better contextual learning.
Ref. [11] proposed the R-BERT model, which uses BERT to extract relational features and
fuses the information of head and tail entities to accomplish the relational extraction task,
leading to a notable enhancement in model performance.

Using BERT for the relationship classification task inevitably brings a gap between
pre-training and fine-tuning for traditional data pre-processing, impacting the model’s
performance [12]. To address this issue, a new fine-tuning paradigm, Prompt tuning, is
proposed based on pre-trained language models. By utilizing language prompts as contex-
tual cues, downstream tasks can be formulated as objectives akin to pre-training objectives.
The addition of templates avoids the introduction of extra parameters, thus allowing the
language model to achieve the desired results in small- or zero-sample scenarios. Large-
scale models are believed to maximize their reasoning and comprehension capabilities with
suitable templates. Ref. [13] introduced the proposed framework of rule-based prompt
tuning. The method initially encodes the prior task knowledge into rules, breaks down the
task into sub-tasks, proceeds to design the requisite sub-prompts, and ultimately assembles
these sub-prompts to process the task by the established rules. This approach effectively
narrows the gap between pre-training and fine-tuning and alleviates the challenges of de-
signing prompt templates and sets of label words. Ref. [14] proposes a relational extraction
method that adds prompt information and feature reuse. Firstly, the prompt information is
added before each sentence. Then, the pre-trained language model RoBERTa encodes the
sentence, entity pair, and prompt information. BIGRU is introduced into the composition
of the neural network to extract the information. The feature information is passed through
the neural network to form several sets of feature vectors. Then, these feature vectors are
reused in different combinations to form multiple outputs. The outputs are aggregated
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using the ensemble-learning soft voting for relational extraction.
In order to increase the amount of data in the training set to improve the performance

of supervised models, ref. [15] three neural network machine translation systems were
used to generate augmented data by back-translating to the original data. However, there
is no way to pass the annotation information of the entities during the back-translation
process, and it is necessary to add the entity alignment operation after the back-translation
operation, which may result in the accumulation of errors and thus damage the model
performance. Previous research in [16] demonstrates that when the model makes an in-
correct prediction, it often finds the correct result among the top K labels with the highest
probabilities, referred to as the Top-K prediction set. The Top-K prediction set contains
valuable information for establishing connections between ground truth labels and other
labels, which is beneficial for relational classification tasks.

3. Relational Extraction Model PTKRE

This paper proposes the PTKRE (Prompt and Top-K Relationship Extraction) model.
The structure of the PTKRE model is shown in Figure 1, consisting primarily of four
components: input layer, Top-K prediction set generation layer, multi-head attention layer,
and entity location prediction layer. Firstly, the input layer converts the sentence with the
prompt information into a vector representation H. We generate the Top-K prediction set
and calculate the loss based on the vector representation H. Next, the multi-head attention
mechanism fuses the Top-K prediction set and the two “<mask>” tokens in the vector
representation H, where the <mask> tokens masked the relational category words. We
then feed the fused vectors into the fully connected layer and utilize the loss function
layer to calculate the loss. Meanwhile, use the “<s>” token and the two entities to form
the three nodes in the graph, where the “<s>” token is a special token that needs to be
added at the top of the sentence when using RoBERTa. Then, use the graph convolutional
neural network for feature extraction and the feature vector to complete the entity location
prediction tasks and get the loss.

Figure 1. Overall structure of the model. In the figure, “$” and “#” are special tokens, where Si to Sj

are head entities and Sk to Sm are tail entities.

3.1. Input Layer

First, we introduce prompt information in the form of “$ [ent1] $ and # [ent2] # are
related in the sentence through <mask> <mask> sentence”: at the beginning of the sentence.
Subsequently, we replace “[ent1]” and “[ent2]” with the head entity and the tail entity in
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the text, respectively. Specific examples are provided in Table 1. Next, we need to apply a
replacement operation to all sentences in the dataset. The special token “<e1>” and “</e1>”
denoting the start and end positions of the head entity in the sentences are replaced with
the token “$”, while the token “<e2>” and “</e2>” indicating the start and end positions
of the tail entity are replaced with the token “#”. Finally, “<s>” is added at the beginning
of each sentence, and “</s>” is added at the end. For example, a sentence in the dataset
“A <e1> girl </e1> plays her <e2> violin </e2> on a pogo stick”. after processing would
become: “<s> $ girl $ and # violin # are related in the sentence through <mask> <mask>
sentence: A $ girl $ plays her # violin # on a pogo stick </s>”. Next, we use the previously
modified sentence as the input sequence Sinput = {x0, x1, x2, . . . , xt} for RoBERTa, and we
finally obtain the corresponding vector representation H = {h0, h1, h2, . . . , ht} from RoBERTa,
with h0 containing the feature information of the entire sentence.

Table 1. Add a prompt before a sentence.

Class Example

before modification A <e1> girl </e1> plays her <e2> violin </e2> on a pogo stick .

after modification <s> $ girl $ and # violin # are related in the sentence through <mask> <mask> sentence:
A <e1> girl </e1> plays her <e2> violin </e2> on a pogo stick. </s>

3.2. Top-K Prediction Set Generation Layer

The main purpose of this layer is to generate Top-K prediction sets for all samples.
When provided with a vector representation H for a sentence, as generated by the input
layer, we first extract the vectors associated with the “<s>” token and the vectors of the
corresponding positions of the two entities in H. Since the sentences do not have fixed
lengths for the head entity and the tail entity, performing separate average pooling on the
representations of the head entity and the tail entity becomes necessary. The “<s>” token
has a fixed length, requiring no additional processing. Then, the “<s>” token and the vector
representations of the processed two entities are passed into the fully connected layer for
processing, respectively, to obtain the vector representations s, e1 and e2. Here, s, e1 and
e2 ∈ Rd and d are the size of the hidden layer vectors outputted by the pre-trained language
model. For example, the RoBERTa-large model uses a dimension of 1024. The vector
representations s, e1, and e2 are then concatenated:

r = FC([s ‖ e1 ‖ e2]) (1)

The ‖ represents vector concatenation. FC is the fully connected layer. The representa-
tion r is input into the SoftMax and the loss function layers. The SoftMax layer calculates
the probabilities of potential relationships between entities, and we select the Top-K most
probable relationship categories by configuring the hyperparameter k, resulting in the
formation of the Top-K prediction set. The cross-entropy loss is used in the loss function
layer to optimize the model, and this loss is denoted as Loss1.

3.3. Multi-Head Attention Layer

After obtaining the Top-K prediction set from the Top-K prediction set generation
layer, it is first necessary to split each relational category word in the Top-K prediction
set into two words. For example, “Instrument-Agency (e1, e2)” is split into two words,
“Instrument” and “Agency”, and if “Instrument-Agency (e2, e1)” is split into two words,
“Instrument” and “Agency”. The order of the split words is related to the order of “e1” and
“e2” in the relational category words. Following this, we employ multi-attention to combine
the relational representation with the representation of the “<mask>” token:

r1 = MultiHeadAtt(Mh, Lh, Lh) (2)
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r2 = MultiHeadAtt(Mt, Lt, Lt) (3)

where Lh and Lt ∈ Rk∗d are vector representations obtained by splitting the relationship
category words, they are generated using RoBERTa. Mh and Mt are vector representations
corresponding to the two “<mask>” tokens extracted from the vector representation H.
Mh and Lh form a pair, with Mh as the query vector, resulting in vector r1 after passing
through the multi-head attention layer. Mt and Lt also form a pair, with Mt as the query
vector, resulting in vector r2 after passing through the multi-head attention layer. Finally, it
is necessary to concatenate the vectors r1 and r2 and then use the Multilayer Perceptron
(MLP) with a softmax activation function to obtain the final prediction:

p = MLP(r1 ‖ r2). (4)

Optimize the model using cross-entropy loss function to obtain Loss2.

3.4. Entity Location Prediction Layer

In the SemEval-2010 Task 8 dataset, relationship categories, except for “other”, are
corresponded in pairs, such as “Cause-Effect (e1, e2)” and “Cause-Effect (e2, e1)”. Hence,
distinguishing the relative positions of two entities in this dataset becomes crucial. To assist
the model in the final relation extraction task, we first designed three categories: “head
entity-tail entity”, “tail entity-head entity”, and “other”, as shown in Table 2. We utilized
the vector representations of the “<s>” token, the head entity, and the tail entity to construct
nodes in an undirected graph. Edges link every pair of nodes among the three, and each
node has self-connections. We then applied GCN to capture the topological features
of the graph by computing new representations for each node. For multi-layer GCNs,
the propagation rule is as follows:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)) (5)

where Ã = A + IN is the graph’s adjacency matrix with the addition of self-connections
for nodes, and where IN is the identity matrix. D̃ii = ∑j Ãij and W(l) is a learnable weight
matrix. σ(·) represents the activation function. Finally, the updated features of the three
nodes in the graph are spliced and used for the final prediction of the relative positions of
the head and tail entities, and we obtain Loss3 using the cross-entropy loss function.

Table 2. The meaning of categories in entity position prediction task.

Class Meaning

0 (e1, e2)
1 (e2, e1)
2 other

3.5. Data Augmentation

Based on the number of sentences for each relationship type in the SemEval 2010 Task 8
dataset, it is evident that the dataset suffers from imbalance. Consequently, we deliberately
tried to perform more data augmentation on the categories with fewer sentences. For each
sentence requiring augmentation, ChatGPT generated three additional sentences. We
present the resulting data augmentation quantities in Table 3.

Table 3. The original data quantity in the dataset and the number of data instances generated
by ChatGPT.

Data Train Test

SemEval 2010 Task 8 8000 2717
ChatGPT-Generated 5120 -
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If we directly provide the sentence requiring augmentation to ChatGPT and request it
to perform data augmentation, several issues may arise:

1. The augmented data may lose special symbols indicating the head and tail entity’s
beginning and ending positions, such as “<e1>” and “</e1>”. This results in the need
for entity alignment of the augmented data and then placing special symbols at the
beginning and end of the entity, increasing the workload and potentially introducing
new noise.

2. The generated augmented data might not adhere to the expected augmentation
methods, such as translation, recombination, or entity replacement.

3. The augmented data may suffer from poor quality, and the quantity of generated data
may not meet the requirements of this paper.

To address these issues, before formally using ChatGPT for data augmentation, it is
necessary to pre-pend a prompt for the sentences to be augmented. For example: “For the
sentences: [sentences], please use sentence recombination to generate four augmented data
instances in the provided data format”. Subsequently, the sentences with the added prompts
are provided to ChatGPT to complete the data augmentation task, and the augmented
data does not require further modification. The overall process of using ChatGPT for data
augmentation is shown in Figure 2.

Figure 2. Data augmentation process.

3.6. Loss Function

This paper produces three loss functions, where the primary task involves predicting
relationship categories, resulting in two loss functions, while the auxiliary task involves
predicting relative entity positions, resulting in one loss function. Previous methods for
concurrently learning multiple tasks employ a simple weighted sum of losses, where the
weights of these losses may be uniform or require manual adjustment:

Ltotal = ∑
i

WiLi (6)

Ref. [17] indicates that the performance of multi-task learning highly depends on
assigning weights to the loss for each task. A principled approach is proposed that weights
multiple loss functions by considering the homoscedastic uncertainty of each task. This
paper adopts a similar approach to weight Loss1, Loss2, and Loss3 in the model, resulting
in the final loss function:

Ltotal =
1
σ2

1
Loss1 +

1
σ2

2
Loss2 +

1
σ2

3
Loss3 + logσ1 + logσ2 + logσ3 (7)

where σ is a learnable noise scalar.
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4. Experiments and Analysis

We first describe the dataset, parameter settings, and evaluation criteria used for the
experiments and then explore the impact of each part of the model on model performance.
Next, we created three templates to verify the effect of different templates on model
performance. We also verified whether the model could misinterpret the relative positions
of the entities, which could lead to final prediction errors. Finally, we compare our proposed
model with existing models.

4.1. Dataset

In the experiments, to evaluate the model, this paper employed a publicly available
dataset, SemEval 2010 Task 8. The dataset comprises a training set and a test set, totaling
10,717 samples, with 8000 samples in the training set and 2717 samples in the test set.
The dataset includes 9 relationship types and a unique “other” class. These 9 relationship
types can be further divided into 18 based on the relative positions of the head and tail
entities. For example, “Entity-Origin” can be split into “Entity-Origin (e1, e2)” and “Entity-
Origin (e2, e1)”, which are distinct relationship types. Therefore, there are ultimately
19 relationship types in the dataset. The relationships contained in the dataset and the
number of each relationship are shown in Table 4.

Table 4. The pre-defined number of relationships in the SemEval 2010 Task 8 dataset.

Relation Train Test

Cause–Effect 1003 328
Instrument–Agency 504 156
Product–Producer 717 231
Content–Container 540 192

Entity–Origin 716 258
Entity–Destination 845 292
Component–Whole 941 312
Member–Collection 690 233

Message–Topic 634 261
Other 1410 454
Totle 8000 2717

4.2. Parameter Setting and Evaluation Metrics

This paper evaluates the model using the official scoring script from SemEval 2010
Task 8, with the F1 score as the evaluation metric. We conducted the experiments using the
PyTorch [18] deep learning framework. The hardware configuration is an NVIDIA RTX
A5000 GPU with 24 GB of memory, an AMD EPYC 7371 CPU. A Warm-Up strategy [19] was
employed, which means the model starts training with a minimal learning rate to ensure
better convergence. As training progresses, the learning rate gradually increases until it
reaches the initial learning rate setting. Subsequently, the learning rate slowly decreases.
We set the Warm-Up step to 3200 and initiated the learning rate at 1 × 10−5. A dropout
layer was added to the model to prevent overfitting with a dropout rate of 0.1. We have
provided details of the other main parameters of the model in Table 5.

Table 5. Parameter setting.

Parameter Name Value

Number of GCN Layers 2
epoch 12

batch_size 8
Top-K prediction set parameter K 6

hidden_dim 1024
optimizer AdamW
seq_length 200
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4.3. Ablation Experiment

In order to evaluate the performance of the PTKRE models, this section includes
ablation experiments on the model. Based on the different pre-trained language models
used, these ablation experiments are divided into two control groups: BERT-large and
RoBERTa-large. In each ablation experiment group, there are three comparative models:

1. PTKRE-Att model: Change the multi-head attention layer of the PTKRE model that
fuses prompt information and Top-K prediction set to average pooling operation.
Moreover, we removed the entity location prediction layer.

2. PTKRE-Pos model: We removed only the entity location prediction layer in the
PTKRE model.

3. PTKRE-ChatGPT model: Maintain the basic structure of the PTKRE model and remove
only the augmented data generated by ChatGPT in the training set.

The results of two sets of ablation experiments using BERT and RoBERTa are shown
in Tables 6 and 7. By observing the experimental results of the two control groups, the fol-
lowing conclusions can be drawn:

1. PTKRE vs. PTKRE-Att: After the PTKRE-Att model changes the fusion method of
prompt information and Top-K prediction set to average pooling, the model’s F1 score
decreases in both sets of experiments. It shows that the multi-head attention can more
effectively fuse the “<mask>” token in the prompt information and the relationship
representation in the Top-K prediction set.

2. PTKRE vs. PTKRE-Pos: After removing the entity location prediction layer from the
PTKRE model, the F1 score of the model decreased by 0.14 in both sets of experiments.
It shows that the entity position prediction task can effectively assist the model in
determining the relative positions between entities in a sentence, thereby enhancing
its performance in predicting the relationship categories between entities.

3. PTKRE vs. PTKRE-ChatGPT: After removing the augmented data generated by Chat-
GPT from the training set, the F1 score of the model decreased noticeably in both
control experiments, with reductions of 0.19 and 0.2, respectively. These results in-
dicate that data augmentation significantly impacts the performance of supervised
relationship extraction models. The reason for this is that supervised model perfor-
mance relies heavily on the goodness of the training set, which has high quality and a
large amount of data that helps to improve the generalization of the model.

Table 6. Results of ablation experiments using BERT.

Model F1-Score

PTKRE-Att 90.19
PTKRE-Pos 90.31

PTKRE-ChatGPT 90.26
PTKRE 90.45

Table 7. Results of ablation experiments using RoBERTa.

Model F1-Score

PTKRE-Att 91.10
PTKRE-Pos 91.24

PTKRE-ChatGPT 91.18
PTKRE 91.38

4.4. Impact Assessment of Different Prompt Templates

In this paper, we add prompt information before each sentence, and to evaluate the
influence of different prompt templates on the performance of the PTKRE model, we design
three new prompt templates as follows:
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• Original Prompt: [ent1] and [ent2] are related in the sentence through <mask> <mask>
sentence:

• Prompt 1: In this sentence, the relation is <mask> <mask>:
• Prompt 2: [ent1] and [ent2] are related in the sentence through <mask> <mask>
• Prompt 3: In this sentence, the relationship between [Ent1] and [Ent2] is <mask>

<mask> sentence:

In the experiments, we used RoBERTa as the pre-trained language model and ex-
plored the impact of different prompt templates on the performance of the PTKRE model.
The relevant experimental results are presented in Figure 3:
1. Template 1 removed entity-related information from the original prompt, retaining only

the “<mask>” token and the sentence starting token “:”. The experimental results show
that removing entity-related information impairs the model’s performance, resulting in
an overall F1 score decrease of 0.26 to 0.34 compared to the original template.

2. Template 2, based on the original template, removed sentence starting information
“sentence:”, which indicated the starting position of the sentence where RoBERTa extracts
entity relationships from the data. Compared to the original template, the experimental
results show that Template 2’s overall F1 score decreased by 0.09 to 0.15, indicating
relatively more minor damage to the model than removing entity-related information.

3. Template 3 retained all the information but used a different phrasing while conveying
the same meaning as the original template. Template 3’s overall F1 score decreased by
0.13 to 0.3 compared to the original template.

Figure 3. Impact of different prompt on F1.

These experimental results illustrate that different prompt templates significantly impact
the model’s final performance. This study confirms that adding entity-related information
and sentence-starting position information to the prompt template enhances the model’s
performance. Furthermore, different phrasings also influence the model’s performance.

4.5. Entity Location Prediction Experiment

Due to the specificity of the predefined relationship classes in the SemEval 2010 Task
8 dataset, this section verifies experimentally whether the model confuses the relative
positions of two entities. We conducted experiments using the PTKRE-Pos model, which
we obtained by removing only the entity position prediction layer from the PTKRE model.

We have displayed two experimental results of the model predictions in Table 8.
Observing the prediction results of the PTKRE-Pos model on the test set, we can see that
this model confuses the relative positions of the two entities, which results in incorrect
predictions. Then, we employed the PTKRE model to predict the test set once more, and we
compared the prediction results with those of the PTKRE-Pos model. The results show
that with the addition of the entity location prediction layer, the model can accurately
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determine the relative locations of entities, thus obtaining correct prediction results. These
experimental results show that the entity location prediction layer can effectively assist the
model in recognizing the entity location, thus improving the model’s performance.

Table 8. Comparison of correct results and model predictions.

Sentence:

His trademark steam-engine puffing is
revealed as a <e1> sound </e1> made by a

<e2> viper </e2> spitting venom at his prey
before swallowing her whole.

Truth label: Cause–Effect (e2, e1)
PTKRE-Pos Predictive labels: Cause–Effect (e1, e2)

PTKRE Predictive labels: Cause–Effect (e2, e1)

Sentence: A “green bean” which is actually a <e1> fruit
</e1> with <e2> seeds </e2> inside.

Truth label: Component–Whole (e1, e2)
PTKRE-Pos Predictive labels: Component–Whole (e2, e1)

PTKRE Predictive labels: Component–Whole (e1, e2)

4.6. Comparison of Different Methods

In order to validate the effectiveness of the PTKRE model on the relational extraction
dataset, we conducted this part of the experiment on the SemEval 2010 Task 8 dataset. We
compared it with other relational extraction models.

1. The R-BERT [11] model adds different special labels for the head and tail entities,
enriching the pre-trained BERT model by using the entity information for the relation-
ship classification task.

2. The A-GCN [8] model utilizes dependency information for relationship classifica-
tion. The attention mechanism is applied to dependency connections by assigning
weights for both connections and types to distinguish the importance of dependency
information better.

3. The Skeleton-Aware BERT [20] model proposes an indicator-aware relation extraction
method in order to be able to utilize both syntactic indicators and sentence context.
First, this model extracts the syntactic indicators under the guidance of syntactic
knowledge. Then, a neural network is constructed to combine the syntactic indicators
and the whole sentence to represent the relation better.

4. The KLG [16] model utilizes Top-K prediction sets to improve performance on the
relational extraction task. First, a pre-trained language model is fine-tuned on the
downstream dataset, and this PLM automatically generates Top-K prediction sets for
each sample, where a dynamic K selection mechanism generates K. Then, a labeled
graph neural network is constructed.

5. The PTR [13] method is a prompt-based learning approach that proposes to encode
the a priori knowledge of a classification task into rules, then design sub-prompts
based on the rules and apply a masked training task of a language model to predict
the classification.

6. The RIFRE [21] model proposes an iterative fusion method for representations based
on heterogeneous graph neural networks. The method takes relations and words as
nodes on the graph. It iteratively fuses the two types of semantic nodes through a
message-passing mechanism to get a representation of the more suitable node for the
relation extraction task. When the node representation is updated, the model does the
relation extraction task.

As seen from the experimental results in Table 9, the F1 score of the PTKRE model
is improved compared to the comparison models. R-BERT is a more classical relational
extraction model after the emergence of the pre-trained language model BERT, and the
PTKRE model improves the F1 score by 2.13 compared to the R-BERT model, which
illustrates the effectiveness of the PTKRE model in the relational extraction task.
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Table 9. Results of model comparison experiments on the SemEval 2010 Task 8 dataset.

Model F1-Score

R-BERT 89.25
A-GCN 89.85

PTR 89.9
Skeleton-Aware BERT 90.36

KLG 90.5
RIFRE 91.3
PTKRE 91.38

5. Conclusions

This paper introduces a relation extraction model incorporating prompt information
and the Top-K prediction set. Additionally, ChatGPT is employed to augment the training
dataset, thereby improving the performance of the relation extraction model. The incor-
poration of prompt information aims to reduce the disparities between the pre-trained
language model RoBERTa during its pre-training and fine-tuning stages, allowing for a more
comprehensive utilization of the semantic information provided by the RoBERTa model.
Furthermore, we observed that the predefined relationship categories in the SemEval-2010
Task 8 dataset are contingent on the relative positions of the head and tail entities. This
dependency manifests as a challenge during experiments, where models may confuse entity
positions, leading to erroneous results. To address this issue, we propose an entity position
prediction task that assists the model in accurately identifying the relative positions of
entities within sentences. As a result, the approach presented in this paper achieves an
F1-score of 91.38 on the SemEval 2010 Task 8 dataset. In the future, we will focus on how
to auto-generated prompts since, in our experiments, we found that different prompts
impact the model’s performance. Data augmentation is significant for supervised relational
extraction models, and we will continue to explore how to utilize ChatGPT to accomplish
data augmentation tasks better.
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