
Citation: Hosny, M.; Hayel, R.;

Altwaijry, N. Composing Multiple

Online Exams: The Bees Algorithm

Solution. Appl. Sci. 2023, 13, 12710.

https://doi.org/10.3390/

app132312710

Academic Editors: Yu Liang,

Wenjun Wu and Ying Li

Received: 22 September 2023

Revised: 18 November 2023

Accepted: 20 November 2023

Published: 27 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Composing Multiple Online Exams: The Bees
Algorithm Solution
Manar Hosny 1,* , Rafa Hayel 1,2 and Najwa Altwaijry 1

1 Department of Computer Science, College of Computer and Information Sciences, King Saud University,
Riyadh 12371, Saudi Arabia; rafa.hayel@taiz.edu.ye (R.H.); ntwaijry@ksu.edu.sa (N.A.)

2 Department of Computer Science, Faculty of Applied Sciences, Taiz University, Taiz P.O. Box 6803, Yemen
* Correspondence: mifawzi@ksu.edu.sa; Tel.: +966-118052427

Abstract: Online education has gained increasing importance in recent years due to its flexibility and
ability to cater to a diverse range of learners. The COVID-19 pandemic has further emphasized the
significance of online education as a means to ensure continuous learning during crisis situations.
With the disruption of traditional in-person exams, online examinations have become the new
norm for universities worldwide. Among the popular formats for online tests are multiple-choice
questions, which are drawn from a large question bank. However, creating online tests often involves
meeting specific requirements, such as minimizing the overlap between exams, grouping related
questions, and determining the desired difficulty level. The manual selection of questions from a
sizable question bank while adhering to numerous constraints can be a laborious task. Additionally,
traditional search methods that evaluate all possible solutions are impractical and time-consuming
for such a complex problem. Consequently, approximate methods like metaheuristics are commonly
employed to achieve satisfactory solutions within a reasonable timeframe. This research proposes the
application of the Bees Algorithm (BA), a popular metaheuristic algorithm, to address the problem of
generating online exams. The proposed solution entails creating multiple exam forms that align with
the desired difficulty level specified by the educator, while considering other identified constraints.
Through extensive testing and comparison with four rival methods, the BA demonstrates superior
performance in achieving the primary objective of matching the desired difficulty level in most test
cases, as required by the educator. Furthermore, the algorithm exhibits robustness, indicated by
minimal standard deviation across all experiments, which suggests its ability to generalize, adapt,
and be practically applicable in real-world scenarios. However, the algorithm does have limitations
related to the number of successful solutions and the achieved overlap percentage. These limitations
have also been thoroughly discussed and highlighted in this research.

Keywords: metaheuristics; Bees Algorithm; online exams; swarm intelligence

1. Introduction

Over the past few years, the education system has experienced a significant transfor-
mation, primarily attributable to the impact of the COVID-19 pandemic. The shift towards
online exams has been motivated by the imperative to prioritize the safety and well-being
of both students and staff, while also ensuring the uninterrupted progression of education.
Online exams provide students with a secure environment in comparison to traditional
modes of examination. In general, from an instructor standpoint, multiple-choice questions
(MCQ) can be advantageous with respect to the ease of scoring, perceived objectivity in
grading, fast return of scores in large classes, and the capacity to ask more questions [1,2].

The process of selecting exam questions, though, can be time-consuming, particularly
when multiple exam models are necessary. Furthermore, when exams are administered
to a large number of students at different times, it becomes essential to have a question
bank that encompasses a considerable number of questions. Question banks facilitate

Appl. Sci. 2023, 13, 12710. https://doi.org/10.3390/app132312710 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312710
https://doi.org/10.3390/app132312710
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3054-647X
https://orcid.org/0000-0002-7386-1886
https://doi.org/10.3390/app132312710
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312710?type=check_update&version=1

Appl. Sci. 2023, 13, 12710 2 of 23

the inclusion of questions in the exam at different intervals, offering a variety of selection
criteria. This approach enhances the diversity of the generated exams. However, a challenge
faced in both automatic and manual online exam generation is the question bank’s size.
To ensure exam variety and minimize repetition, having a question bank larger than the
total number of questions required is generally recommended [3,4]. While there is no
specific guideline regarding the exact question bank size in relation to the number of
questions needed, educational experts and researchers suggest having a substantial number
of questions available. A larger question bank offers broader coverage of the curriculum
and ensures adequate assessment of all important topics [5,6]. The specific question bank
size will depend on factors such as the subject matter, questions’ difficulty level, and
desired variety in the exams [3,4]. Generating various exam models from a question bank
can be accomplished through manual or automated methods. The manual process is
typically intricate and time-consuming, while employing an algorithm to automate the task
allows for precise adherence to specific criteria instead of random question selection. This
approach guarantees that the exam models maintain consistent difficulty levels and meet
the required constraints.

The multiple-exam composition problem has recently attracted the attention of many
researchers [2]. The problem at hand involves the automated generation of multiple MCQ
exam papers or test sheets. These test sheets cover the same subject matter and maintain an
identical or nearly identical difficulty level, ensuring a fair assessment process. It is crucial
that the difficulty levels of the generated exams align with the desired test level established
by the educator. Furthermore, to promote diversity and mitigate the potential for cheating,
the overlap between the different tests, in terms of identical questions, should not exceed a
specified percentage.

In this study, we propose a method to simultaneously create multiple forms of MCQ ex-
ams while adhering to specific criteria, including the difficulty level, avoidance of question
repetition, and a predetermined number of questions in each section. Given that traditional
search methods that exhaustively examine all feasible solutions are often impractical and
time-consuming for larger problem sizes, we introduce a metaheuristic algorithm as a
solution, namely, the Bees Algorithm (BA) [7].

In brief, the concept of the BA revolves around a set of initial solutions. The algorithm
then focuses on exploiting promising and elite solutions by making modifications to
enhance the likelihood of discovering improved solutions. The ultimate objective is to
achieve the optimal or near-optimal solution through these iterative refinements [8]. The
motivation for employing the BA algorithm lies in its ability to effectively tackle real-world
problems that have proven challenging for other classical algorithms [8]. This algorithm, in
particular, demonstrates promise in addressing combinatorial optimization problems [7].
Moreover, for the multiple-exam composition problem specifically, we opted for the BA
for two primary reasons. Firstly, despite its popularity and simplicity, the BA has not been
previously applied to solve this particular problem, unlike other well-known methods
such as Simulated Annealing (SA) [9], the Genetic Algorithm (GA) [10], Particle Swarm
Optimization (PSO) [2,11,12], and Ant Colony Optimization (ACO) [13]. Secondly, we
believe that the BA possesses an inherent advantage over other methods which directly
aligns with the multiple-exam composition problem. Specifically, it naturally selects the
best and elite solutions as part of its optimization process, thereby readily generating
multiple exams (i.e., solutions) in each run. In other words, the BA does not require any
additional steps to generate multiple tests simultaneously, as seen in other algorithms, such
as the random algorithm [14], SA [9], GA [10], and ACO [13], which involve repeating runs
and/or sorting the population to select the best individuals, or incorporating parallelization,
as in PSO [2,11,12].

The problem tackled in this research is defined as follows [15]:
Let a question bank QB = {Q1, Q2, Q3, . . . , Qk} and the generated test Ti = {Q1, Q2,

Q3, . . . , Qn} where n ≤ k. The difficulty level requirement of the exam set by the educator
is DLR ∈ [0, 1]; the difficulty level of each question, DLx ∈ [0, 1], is also determined by

Appl. Sci. 2023, 13, 12710 3 of 23

the educator. Moreover, each question belongs to a certain chapter (part). The objective
function that determines the quality of the solution (exam) computes the average of the
difficulty values of all questions in the exam and then compares it to the required difficulty
level DLR, as shown in Equation (1) [15].

f
(
Qij·DL

)
=

∣∣∣∣∣∑n
j=1 Qij·DL

n
− DLR

∣∣∣∣∣ (1)

where Qij·DL represents the difficulty level of question Qij. The smaller f
(
Qij·DL

)
be-

comes, the better the fitness of the solution. In addition, each generated exam must adhere
to the following constraints, where C1, C2, and C3 are hard (i.e., mandatory) constraints,
while C4 is a soft (i.e., desired but not mandatory) constraint:

C1: Each question in the exam must be unique.
C2: The difficulty level of each question should not be concentrated around the required
difficulty level of the exam, ensuring diversity. In other words, selecting questions all of
the same difficulty level for the test is not allowed.
C3: The number of questions extracted from each chapter (or section) must match the
desired number specified by the educator.
C4: To generate multiple exams while ensuring a high level of uniqueness in each test, it is
desirable to restrict the percentage of overlapping questions between tests. The acceptable
overlap percentage can be determined using Equation (2). This approach guarantees that
the exams exhibit minimal redundancy and maintain a diverse collection of questions.
Following [2], the maximum acceptable overlap percentage is 0.3. Assuming we have m
generated tests, the overlap percentage Ptest between the m tests is calculated as follows:

Ptest =
O−U

m·n ·100 (2)

where

• O is the number of overlapping questions between all tests;
• U is the number of unique questions within O;
• m is the number of tests generated;
• n is the number of questions in each test.

The O−U term accounts for the diversity of the questions involved in the overlapping
count. Its purpose is to slightly mitigate the impact of overlap when the questions involved
in the overlapping count are different. This approach is used to address situations in
which the overlapping portion consists of a small number of questions, indicating a higher
similarity between the exams. To illustrate this concept, consider the following example:

Let us consider five exams, each consisting of ten questions. Suppose there are
15 overlapping questions, all of which come from Q1, Q2, and Q3. In this case, the overlap
percentage would be calculated as ((15 − 3)/50) × 100 = (12/50) × 100 = 24%.

On the other hand, suppose we have 15 overlapping questions, but these ques-
tions include Q1, Q2, Q3, Q4, and Q5. In this case, the overlap percentage would be
((15 − 5)/50) × 100 = (10/50) × 100 = 20%. The second scenario is considered better than
the first because it demonstrates more diversity in the questions included in the overlap-
ping. If we remove the “U” (unique) component from Equation (2), both scenarios would
yield the same overlap percentage, which we believe is not fair.

In this research, the BA is employed to construct a number of MCQ exams from a
question bank while adhering to specific constraints. The primary objective of the solution
is to attain the desired difficulty level determined by the educator. As a metaheuristic
algorithm, the BA offers an approximate solution that can be optimal or near-optimal. As
previously highlighted, the BA is well-suited for simultaneously generating multiple exam
forms as it interacts with a population of solutions and selects the best and elite solutions
during an intensified search process.

Appl. Sci. 2023, 13, 12710 4 of 23

This study presents four main contributions. Firstly, it introduces a unique adaptation
of the BA, specifically designed to address this problem. Secondly, it enables the generation
of multiple online tests simultaneously, meeting the user requirements without resorting to
parallelization techniques. Thirdly, it introduces problem-specific neighborhood moves,
crafted to adhere to the constraints of this particular problem. Finally, the experimental
results demonstrate that our proposed method performs favorably compared to existing
approaches, delivering high-quality solutions to the problem at hand.

The remainder of this paper is organized as follows. Section 2 reviews some back-
ground information, as well as previous related work. Section 3 details the proposed BA
approach for the multiple-exam composition problem. Section 4 describes our experiments
and results. Section 5 discusses our findings, and finally Section 6 concludes the study.

2. Background and Related Work

This section provides an overview of the fundamentals of metaheuristics and the BA,
while the related work part briefly covers the single-exam generation problem, in which
the proposed algorithm generates only one exam paper, and multiple-exam generation,
where multiple versions of the exam are generated.

2.1. Metaheuristics

A metaheuristic is a problem-independent algorithmic framework that can solve intri-
cate and complex problems by providing “acceptable” solutions in a reasonable amount of
time; it follows a set of principles or strategies for guiding algorithms using heuristic opti-
mization [16]. Metaheuristic algorithms generally outperform simple heuristics. Numerous
different classifications exist for metaheuristic algorithms. One approach classifies them
as population-based versus single-solution-based. Population-based algorithms search a
problem domain by processing a population of individuals (i.e., possible problem solu-
tions) [17]. Examples of this category include Genetic Algorithms (GAs) and Particle Swarm
Optimization (PSO). On the other hand, there exist algorithms with a single solution that is
traversed over the search space like Hill-Climbing (HC) and Simulated Annealing (SA) [18].
This work focuses on the Bees Algorithm (BA) as a population-based metaheuristic.

2.2. Bees Algorithm (BA)

Bee-inspired algorithms are commonly employed as metaheuristic optimization tech-
niques, leveraging the intelligent behavior of honeybees [19]. These algorithms belong to
the category of swarm intelligence optimization methods, drawing inspiration from the
cooperative foraging behavior of natural bee colonies [20]. The Bee Algorithm (BA) and
its closely related variant, the Artificial Bee Colony (ABC), have demonstrated successful
applications in various optimization problems. They have been particularly effective in
domains such as vehicle routing and transportation, as exemplified by [21–24], as well as
in timetabling and scheduling problems, as demonstrated in [25–27].

In nature, a bee colony is characterized as a collective entity that exhibits a wide-
ranging presence, extending over significant distances (often exceeding ten kilometers)
in multiple directions simultaneously to explore a vast area in search of food. The suc-
cess of a colony’s foragers relies on their ability to be directed towards productive food
sources. In theory, flower patches that can attract a large number of bees are expected
to offer abundant nectar and pollen, making them easily accessible with minimal energy
expenditure. Conversely, flower patches that provide limited nectar or pollen tend to attract
fewer bees [28].

In a bee colony, foraging begins with scout bees searching for suitable flowers. These
scouts explore their surroundings in a random manner, moving from one patch to another.
When a scout bee discovers a source of nectar or pollen, it returns to the hive and performs
a unique behavior known as the waggle dance on the dance floor. This peculiar dance holds
significance in colony communication, as it conveys three essential pieces of information
about the flower patches: direction, distance, and source quality, as depicted in Figure 1.

Appl. Sci. 2023, 13, 12710 5 of 23

Equipped with this information, the colony can effectively guide its bees without the need
for external supervision or a predetermined blueprint. Follower bees inside the hive, who
have been awaiting the dance, as well as the scout bees, then return to the flower patch.
While collecting food from the patch, the bees assess its quality and continue to refine the
waggle dance, if necessary, upon their return to the colony. This iterative process ensures
that the colony continues its search for the most suitable patches, with bees performing
additional waggle dances to recruit more individuals if the patch still contains ample food
and requires additional workers [28]. The BA tries to mimic this process by applying the
following steps [28]:

• Initialize the population with random solutions.
• Evaluate the fitness of the population.
• While (stopping condition not met):

o Select the best sites for neighborhood search.
o Select elite sites from the best sites.
o Recruit bees around selected sites and evaluating fitness.
o Select the fittest bee from each site.
o Assign the remaining bees to a random search and assessing their fitness.

• End While.
• Return the best bee as the final solution.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 23

In a bee colony, foraging begins with scout bees searching for suitable flowers. These
scouts explore their surroundings in a random manner, moving from one patch to an-
other. When a scout bee discovers a source of nectar or pollen, it returns to the hive and
performs a unique behavior known as the waggle dance on the dance floor. This peculiar
dance holds significance in colony communication, as it conveys three essential pieces of
information about the flower patches: direction, distance, and source quality, as depicted
in Figure 1. Equipped with this information, the colony can effectively guide its bees with-
out the need for external supervision or a predetermined blueprint. Follower bees inside
the hive, who have been awaiting the dance, as well as the scout bees, then return to the
flower patch. While collecting food from the patch, the bees assess its quality and continue
to refine the waggle dance, if necessary, upon their return to the colony. This iterative
process ensures that the colony continues its search for the most suitable patches, with
bees performing additional waggle dances to recruit more individuals if the patch still
contains ample food and requires additional workers [28]. The BA tries to mimic this pro-
cess by applying the following steps [28]:
• Initialize the population with random solutions.
• Evaluate the fitness of the population.
• While (stopping condition not met):

o Select the best sites for neighborhood search.
o Select elite sites from the best sites.
o Recruit bees around selected sites and evaluating fitness.
o Select the fittest bee from each site.
o Assign the remaining bees to a random search and assessing their fitness.

• End While.
• Return the best bee as the final solution.

Figure 1. Information that appears in the waggle dance (inspired by [29]).

The BA begins with a population of solutions as its initial starting point. During the
first iteration, bees make numerous local moves in order to explore potential solutions to
the problem. This process is repeated until a predetermined number of solutions have
been discovered. The best solutions, determined by their fitness, are retained. Subse-
quently, new neighboring solutions are generated around these top-performing solutions.
These newly generated solutions are then evaluated to estimate the solutions that should
be aimed for. The process continues iteratively until the algorithm satisfies a specified ter-
mination condition, ultimately returning a satisfactory solution to the problem[30].

Hive

NectarSun

Gravity

Distance
Dance
Direction

40°

40°

Figure 1. Information that appears in the waggle dance (inspired by [29]).

The BA begins with a population of solutions as its initial starting point. During the
first iteration, bees make numerous local moves in order to explore potential solutions to
the problem. This process is repeated until a predetermined number of solutions have been
discovered. The best solutions, determined by their fitness, are retained. Subsequently, new
neighboring solutions are generated around these top-performing solutions. These newly
generated solutions are then evaluated to estimate the solutions that should be aimed
for. The process continues iteratively until the algorithm satisfies a specified termination
condition, ultimately returning a satisfactory solution to the problem [30].

2.3. The Single-Exam Generation Problem

The demand for performing online exams has increased remarkably in recent times.
As a result, there has been a growing interest in developing optimal and efficient methods
to generate online exams. Several approaches have been employed to address the single-
exam generation problem. One straightforward method is the randomization approach
utilized in [14], in which a Shuffling Algorithm was employed to detect and prevent

Appl. Sci. 2023, 13, 12710 6 of 23

the duplication or repetition of randomly generated questions. Additionally, Simulated
Annealing (SA) has been employed in [9] to select test items in a web-based environment,
aiming to achieve a balanced distribution of information, content coverage, and item
exposure (i.e., a measure of the frequency with which a test question is selected), within the
generated test. Nevertheless, more sophisticated metaheuristic optimization algorithms
are the current trend for solving this problem, as evident by [2,10–13,15,31–34]. Particle
Swarm Optimization (PSO) is a widely used optimization algorithm that imitates a flock
of birds to locate an optimal solution. In PSO, each bird is referred to as a particle that
flies searching for nourishment, which then shares the location of a favorable site. By
doing so, the rest of the flock, or the swarm, can profit until they locate the optimal spot
or solution. PSO was used in [15] to generate exams based on an objective difficulty level,
while satisfying several constraints, such as the required number of questions in the exam
and the number of questions used per section. A fitness function for each particle, i.e.,
exam, was calculated. The swarm keeps moving towards the global best until it reaches an
optimal solution or satisfies the termination condition. The results of this approach showed
that PSO succeeds in finding the best test to fit the requirements from a question bank with
great speed, accuracy, and stability.

The Genetic Algorithm (GA) has also proven to be powerful for generating online
exams [10,15,31–33]. GA is an algorithm based on natural selection, in which the best
individuals are selected for reproduction. The offspring then inherit characteristics from
their parents. At the start of each generation, several individuals are selected and sorted
according to their respective fitness levels. If the individual with the best fitness satisfies
the requirements, the algorithm will stop. Otherwise, crossover and mutation will take
place. The algorithm keeps iterating this process until a satisfactory solution is found.

Studies [31–33] used GAs to generate online tests. The work in [31] attempted to
generate tests with many requirement constraints, such as the number of questions, question
types, difficulty, answer time, and exposure. The fitness function measures the difficulty
level of the test, the class distribution, the total time needed to complete the test and the
average exposure to the test paper. This approach yielded reasonable, diverse test papers,
with a fast-running time of approximately 10 s.

The researchers in [32] developed two distinct models to generate tests, each consid-
ering a problem with a different objective. The first model solves the Specified Length of
Assessment Time problem (SLAT), in which the generated exam must be solved in a fixed
period of time. The second is the Fixed Number of Test Items (FNTI) problem, wherein the
exam must consist of a specific number of questions. The proposed models are the Concept
Lower Bound First Genetic (CLFG) approach, which addresses SLAT problems, and the
Feasible Item First Genetic (FIFG) approach, used to solve FNTI problems. Both models
attempt to make all questions in an exam meet the lower bound of the expected relevance
of each concept to be addressed.

Another work that also used GA to generate a test is [33], in which each question
in the question bank had the following attributes: a question score, difficulty, teaching
requirement, item type, unit of knowledge point, estimated answer time, and item number.
The fitness function depends on the deviation between the required values set by the user
and the actual values of the following constraints: knowledge points, difficulty coefficient,
teaching requirement, and the time required. The algorithm generated tests that met all
the requirements and were vigorously tested by altering the size of the question bank and
changing the type of questions.

2.4. The Multiple-Exam Generation Problem

When it comes to tests, educators often create multiple versions of each test to prevent
cheating among students. However, this introduces a new challenge where the generated
tests must maintain similar difficulty levels while covering the same content to ensure
fairness. To address this challenge, researchers have explored various metaheuristic algo-

Appl. Sci. 2023, 13, 12710 7 of 23

rithms, such as PSO, GA, and ACO, which have shown promising results in generating
appropriate versions of tests.

In order to produce multiple unique exams in one run, researchers opted for par-
allelism in [2], using multi-swarm PSO. In their approach, a thread represents a swarm
responsible for forming an exam that satisfies certain constraints, such as uniqueness, the
diversity of the difficulty levels between questions, and multi-part questions appearing to-
gether. Also, the number of questions extracted from each section is equal to a pre-specified
number. Each particle within a swarm thread represents a nominee exam, for which the
average difficulty level is the objective function. To ensure the variety and uniqueness of
the exam, the overlap percentage between exams should not exceed the overlap threshold
set by the educator. Throughout the program, threads are connected via migration, where
more robust swarms help the weaker ones. A thorough examination of the results has
been conducted, through which the approach in [2] proved to be superior to many others,
including Simulated Annealing (SA) [9] and Random Search algorithms [14].

The work in [11] also utilized a single objective PSO approach. The constraints that the
resulting exams had to meet were identical to those in [2]. The fitness function calculates
the average difficulty level of the exam and subtracts it from the required difficulty level.
As the fitness value decreases, the quality of the exam improves. In order to generate
multiple exams, the researchers employed parallelism, assigning each thread to a separate
swarm. This approach yielded satisfactory solutions within a short timeframe. However,
the algorithm faced challenges in terms of generating sufficient variety. Consequently, none
of these migration theories were applied in this study.

The study in [12] proposed using Multiswarm Multiobjective Particle Swarm Opti-
mization (MMPSO) to generate multiple tests in one run. The outcome of this approach
depends on the tests’ overall difficulty and the total testing time. To generate multiple tests,
several subswarms were created. SA was employed to create the initial population, thus
increasing the diversity of the generated tests. Here the constraints set were also identical
to those in [2]. The objective function combines the average difficulty of the exam and the
total exam duration. The MMPSO algorithm with SA and migration was tested against
several PSO algorithms such as MMPSO, MMPSO with SA, and MMPSO with migration
(without SA). The results indicated that MMPSO with migration and SA achieved excellent
results with respect to the variety and number of successful attempts.

The study [10] presents an automated generator for multiple test questions using the
GA. The questions were categorized in the question bank based on the six levels of Bloom’s
classification. Previous exam questions were processed and stored in the question bank
based on Bloom’s classification level. As shown in the results, the decrease in the number
of questions impacts each level in Bloom’s taxonomy, while a test is of good quality when
it covers at least three levels of Bloom’s taxonomy.

In [34], a different metaheuristic algorithm was employed. A Tabu-Search-based
algorithm called the Bit Map Selection Tabu Approach (BMST) was used to search the
solution space effectively. Tabu search prohibits revisiting solutions that were previously
encountered. The constraint set was the gross relevance of the chosen questions between
the maximum and minimum boundaries of the related concept to be learned. The fitness
function stands for the average discrimination of the resulting test. BMST was tested
against the feasible-time-first Algorithm (FTF), Random Search, and exhaustive search
algorithms. The results showed that near-optimal test sheets can be obtained in much
shorter times when using BMST.

Another popular metaheuristic algorithm that can solve such problems is the Ant
Colony Optimization (ACO) algorithm. It emulates the attitude of ants while searching for
food to find the optimized solution. The main procedure of this algorithm, as described
in [13], is based on constructing a graph, where each question from the question bank is
represented as a node, and the connecting lines denote the paths formed by the ants to
create a test. During the construction process, as the ant builds a solution, the heuristic
and pheromone information is influenced by the discriminative nature of the question

Appl. Sci. 2023, 13, 12710 8 of 23

and signifies the suitability of including the question in the current solution. Once the
colony completes the construction of tests, the best solution is chosen. Subsequently, a local
search is performed on the best solution to enhance it by exchanging certain questions.
Finally, the pheromone values associated with the questions in the best test are updated
in the global pheromone memory. The researchers highlight that the results demonstrate
the effectiveness of the ACO method in generating tests that meet the requirements and
provide satisfactory solutions, which are not impacted by the size of the question bank.

As observed from the review of related work, none of the previous studies have
employed the BA to solve the multi-exam generation problem. We firmly believe that
the BA is particularly well-suited for addressing this problem due to its capability of
handling multiple preferred solutions concurrently, such as the best and elite solutions.
This feature facilitates the extraction of multiple tests simultaneously without the need for
parallelization, as will be discussed shortly. Furthermore, the BA stands out for its simple
implementation and straightforward parameter configuration compared to other types
of metaheuristics. It possesses the advantage of effectively handling both discrete and
continuous optimization problems, while also adapting its behavior based on the quality of
the generated solutions [35]. Therefore, in our research, we aim to explore the feasibility of
utilizing the BA as an approach to tackling this problem.

3. Methodology

This section provides a detailed description of the algorithm employed to address the
multiple-exam composition problem. Firstly, we will outline the main steps followed by the
BA to solve this problem. After specifying the number of desired exams (m), the required
difficulty level (DLR), the number of questions in each part, and the overlap threshold, the
algorithm proceeds as follows:

1. Generate an initial population of bees (s > m), in which each bee represents a potential
exam, and s denotes the scout bees. Sort the population based on each bee’s fitness,
i.e., the exam’s difficulty level, calculated using Equation (1).

2. Select the fittest bees (m) for neighborhood search. During neighborhood search, some
questions in the selected exam are replaced, resulting in a new exam or neighbor.
The number of neighbors generated for the elite (fittest) bees (e) within m is higher
than the number of neighbors generated for the remaining bees (m-e). The fittest bee
from each of the m patches or neighborhoods is then chosen to transfer to the next
generation. Two neighborhood search methods are applied: random for the best and
elite bees, and deterministic when the set of m exams fails the overlap condition. In
the deterministic method, overlapping questions are replaced with new questions
from the same chapters with similar difficulty levels. This preserves the fitness value
while reducing the overlap percentage.

3. Test the overlap condition by comparing the m exams and keeping track of overlapping
questions. If the overlap condition is satisfied, select the fittest bees from the m patches
to transfer to the next generation and discard the remaining (s-m) bees. However, if
the ratio of overlapping questions to the remaining questions in the exams exceeds the
overlap threshold, perform a new neighborhood search operation on the previously
selected m bees until the overlap condition is met. The overlap percentage is calculated
by dividing the number of repeated questions by the total number of questions in the
m exams, as shown in Equation (2).

4. Generate new (s-m) bees randomly to maintain the original population size.

The stopping condition test memorizes the best DLR and checks whether the overlap
percentage has changed. If not, the algorithm returns the desired m exams. The process
(steps 2–4) repeats until the termination condition is met. The termination condition can
be satisfied when the resulting set of bees includes m exams that fulfill all the conditions
specified by the educator, or when the algorithm reaches a maximum pre-defined number
of iterations, or when the overlapping percentage remains unchanged for five consecutive
iterations. Algorithm 1 presents the pseudocode of the proposed method.

Appl. Sci. 2023, 13, 12710 9 of 23

Algorithm 1: BA for Multiple Exam Generation.

Input: number of the desired exams (m), required difficulty level, overlap percentage, number of
required chapters and the number of questions in each chapter.
Output: multiple tests satisfying the conditions.
Initialize the number of scout bees s, number of best sites e and patch size.
Initialize a population of s scout bees.
Repeat until maximum iterations is reached.

If iteration ! = 0 Then
If the overlap condition is not satisfied Then

Apply overlap neighborhood move.
End if
If stopping condition is satisfied Then

Return the m exams generated.
End if

End if
Calculate the objective function of the population.
Choose m best sites for neighborhood search.
Assign the size of the neighborhood (patch size).
Apply neighborhood search; search more around the best e sites.
Select the fittest bee from each patch.
Assign the (s-m) remaining bees to random search.

Generate a new population of scout bees.
End Repeat
Return the m exams generated.

A crucial aspect of the algorithm is the representation of a problem’s solution, which,
in our case, corresponds to an exam or test. The exam is structured into parts or chapters,
with each part containing multiple questions of varying difficulty levels. The educator
specifies the number of questions per part, the overall difficulty level of the test, and the
desired overlap percentage between tests. Hence, the solution is represented as a test object
comprising parts or chapters, where each part consists of a collection of questions identified
via a question ID. Figure 2 provides an illustration of a solution representation for an exam.

As mentioned earlier, our neighborhood move involves replacing one question in
the exam to generate a new exam. In the following section, we present an example of a
question bank that will be utilized to illustrate and describe the behavior of our algorithm.

Ch1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

DL 0.56 0.93 0.45 0.12 0.98 0.71 0.24 0.25 0.2 0.62

Ch2 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

DL 0.37 0.54 0.5 0.36 0.86 0.13 0.9 0.67 0.76 0.28

Ch3 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30

DL 0.42 0.21 0.33 0.60 0.13 0.59 0.78 0.94 0.81 0.63

The initial step involves initializing a random population. In this example, pop-
ulation size = 3, and there are two exams to be generated (m = 2). Each exam consists
of five questions, with two questions allocated to chapter 1, two questions to chapter
2, and one question to chapter 3. The desired difficulty level is set to 0.65, and the
overlap limit is defined as 0.2. The fitness of each exam is calculated by computing the
difference between the average difficulty level of the exam and the required difficulty
level specified by the user.

Appl. Sci. 2023, 13, 12710 10 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 23

The stopping condition test memorizes the best DLR and checks whether the overlap
percentage has changed. If not, the algorithm returns the desired m exams. The process
(steps 2–4) repeats until the termination condition is met. The termination condition can
be satisfied when the resulting set of bees includes m exams that fulfill all the conditions
specified by the educator, or when the algorithm reaches a maximum pre-defined number
of iterations, or when the overlapping percentage remains unchanged for five consecutive
iterations. Algorithm 1 presents the pseudocode of the proposed method.

Algorithm 1: BA for Multiple Exam Generation.
Input: number of the desired exams (m), required difficulty level, overlap percentage,
number of required chapters and the number of questions in each chapter.
Output: multiple tests satisfying the conditions.
Initialize the number of scout bees s, number of best sites e and patch size.
Initialize a population of s scout bees.
Repeat until maximum iterations is reached.
 If iteration ! = 0 Then
 If the overlap condition is not satisfied Then
 Apply overlap neighborhood move.
 End if
 If stopping condition is satisfied Then
 Return the m exams generated.
 End if
 End if
 Calculate the objective function of the population.
 Choose m best sites for neighborhood search.
 Assign the size of the neighborhood (patch size).
 Apply neighborhood search; search more around the best e sites.
 Select the fittest bee from each patch.
 Assign the (s-m) remaining bees to random search.
 Generate a new population of scout bees.
End Repeat
Return the m exams generated.

A crucial aspect of the algorithm is the representation of a problem’s solution, which,
in our case, corresponds to an exam or test. The exam is structured into parts or chapters,
with each part containing multiple questions of varying difficulty levels. The educator
specifies the number of questions per part, the overall difficulty level of the test, and the
desired overlap percentage between tests. Hence, the solution is represented as a test ob-
ject comprising parts or chapters, where each part consists of a collection of questions
identified via a question ID. Figure 2 provides an illustration of a solution representation
for an exam.

Figure 2. An example of a solution representation. Figure 2. An example of a solution representation.

Exam 1

Question Q8 Q9 Q13 Q11 Q24 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.266

Difficulty 0.25 0.2 0.5 0.37 0.60

Exam 2

Question Q1 Q7 Q17 Q14 Q25 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.212

Difficulty 0.56 0.24 0.9 0.36 0.13

Exam 3

Question Q2 Q6 Q12 Q18 Q29 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.016

Difficulty 0.93 0.71 0.54 0.67 0.32

Next, a neighborhood search is conducted on the fittest m bees (exams), for which m
equals 2 in this instance. During this step, one question is exchanged within the fittest m
exams, and replaced by another question from the same chapter. As Exam 3 is the fittest (or
elite) exam, we will extract two neighbors from it. For clarity, the exchanged questions are
denoted in bold text.

Exam 4
(neighbor
2)

Question Q1 Q7 Q17 Q19 Q25 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.132

Difficulty 0.56 0.24 0.9 0.76 0.13

Exam 5
(neighbor
3)

Question Q2 Q6 Q12 Q18 Q21 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.004

Difficulty 0.93 0.71 0.54 0.67 0.42

Exam 6
(neighbor
3)

Question Q2 Q6 Q11 Q18 Q29 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.05

Difficulty 0.93 0.71 0.37 0.67 0.32

The next step is to select the fittest exams from each neighborhood or patch, specifically
Exams 4 and 5. We then evaluate the overlap ratio for each exam. In this case, as there are
no overlapping questions between them, the overlap ratio is 0, which does not exceed the
defined overlap threshold. Consequently, we need to generate a new random population
of (s-m) bees. Since the m bees are Exams 4 and 5, only one new bee is created randomly.
Thus, the new set of bees comprises Exams 4, 5, and 7.

Appl. Sci. 2023, 13, 12710 11 of 23

Exam 4

Question Q1 Q7 Q17 Q19 Q25 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.132

Difficulty 0.56 0.24 0.9 0.76 0.13

Exam 5

Question Q2 Q6 Q12 Q18 Q21 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.004

Difficulty 0.93 0.71 0.54 0.67 0.42

Exam 7

Question Q5 Q1 Q20 Q15 Q30 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.126

Difficulty 0.98 0.56 0.85 0.86 0.63

Then, we proceed to repeat the neighborhood search operation on Exams 5 and 7,
since they are the best exams.

Exam 8
(neighbor 5)

Question Q5 Q6 Q12 Q18 Q21 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.014

Difficulty 0.98 0.71 0.54 0.67 0.42

(neighbor 7)
Question Q10 Q1 Q20 Q15 Q30 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0

Difficulty 0.35 0.56 0.85 0.86 0.63

Exam 9
(neighbor 5)

Question Q2 Q6 Q12 Q18 Q29 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0

Difficulty 0.93 0.71 0.54 0.67 0.40

The fittest exams from each neighborhood are Exams 9 and 10. Since there are no
overlapping questions between them, the overlap percentage is calculated as 0%. At this
point, we check the stopping condition. Since we have two distinct exams, both with a
fitness value of 0, the algorithm terminates, resulting in two unique exams that have the
same difficulty level and the required distribution of questions across chapters.

Furthermore, we provide an example of the overlap neighborhood move, which
occurs when the algorithm exceeds the predefined overlap percentage. When the algorithm
fails to satisfy the overlap condition, it focuses on diversifying the top m exams. This is
accomplished by replacing as many overlapping questions as possible with new questions
from the same chapter. The replacement questions are carefully selected to ensure a similar
or closely matched difficulty level to the questions they replace. The process of changing
the overlapping questions is carried out individually for each question and one exam at
a time. In other words, for every overlapping question, an attempt is made sequentially
on each overlapping exam to replace the corresponding question with another unique
question from the same chapter, with a similar or closely matched difficulty level. If the
attempt is successful, there is no need to consider other exams. However, if the attempt
fails, the next exam in the sequence is taken into consideration.

The parameters used in this example are as follows: population size = 3, m = 2 (number
of exams), and five questions per exam. The difficulty level is set to 0.65, and the overlap
limit is defined as 0.15. Exams 1 and 2 are identified as the best exams (m best exams). It
is noteworthy that both Q9 and Q13 appear twice in the selected best exams. The total
number of overlapping questions (O) is determined as 2 + 2 = 4. The variable U represents
the number of unique questions within the set of overlapping questions (O). Since all
overlapping questions are either Q9 or Q13, U = 2. To calculate the overlap percentage, we

Appl. Sci. 2023, 13, 12710 12 of 23

use the formula in Equation (2), which in this case yields (4− 2)/(5× 2) = 0.2. Consequently,
the overlap percentage exceeds the maximum overlap threshold specified above.

Exam 1

Question Q2 Q9 Q13 Q18 Q29 Fitness

Chapter Ch1 Ch1 Ch2 CH2 CH3
0.126

Difficulty 0.93 0.2 0.5 0.67 0.32

Exam 2

Question Q8 Q9 Q13 Q11 Q24 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.266

Difficulty 0.25 0.2 0.5 0.37 0.60

Exam 3

Question Q1 Q9 Q12 Q14 Q25 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.292

Difficulty 0.56 0.2 0.54 0.36 0.13

The overlap neighborhood move is then performed on the best m exams, specifically
Exams 1 and 2. During this process, the overlapping questions are replaced with new and
unique questions from the same chapter. The replacement questions are chosen to have
a difficulty level that is either identical to or within a 0.05 margin of the question being
replaced. In this case, since Q7 is available and meets the specified criteria (from chapter
1 and within the margins of the difficulty level), it is an appropriate replacement for Q9.
Similarly, Q13 is replaced with Q12 for the same reasons. These changes were applied to
Exam 1.

Exam 1

Question Q2 Q7 Q12 Q18 Q29 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.11

Difficulty 0.93 0.24 0.54 0.67 0.32

Exam 2

Question Q8 Q9 Q13 Q11 Q24 Fitness

Chapter Ch1 Ch1 Ch2 Ch2 Ch3
0.266

Difficulty 0.25 0.2 0.5 0.37 0.60

After the execution of the overlap neighborhood move, the resulting best m exams
are entirely distinct from each other. As a result, the overlap percentage is now reduced to
zero.

4. Experimental Design and Results

To evaluate the performance of the proposed algorithm, we utilized two datasets
obtained from references [2,15]. These datasets are outlined in Table 1. The first dataset, the
small question bank (small QB) consists of 1000 questions with varying difficulty levels,
distributed across 14 chapters. The second dataset, the large question bank (large QB)
consists of 12,000 questions with diverse difficulty levels across 12 chapters.

To run the algorithm, the educator needs to provide several parameters, including the
number of desired exams (m), the difficulty level requirement for each exam (DLR), the
desired chapters (Ch1, Ch2, . . . Chc) for each exam, and the number of questions covering
each selected chapter (Qn1, Qn2, . . . Qnc). Additionally, there are other parameters specific
to our Bee Algorithm (BA) that need to be specified, such as the number of scout bees (initial
population size) (s), the number of best solutions from the m exams (e), the neighborhood
(patch) size for both e and m-e, and the maximum allowed overlap percentage between
generated tests. We conducted a parameterized test, exploring different values for these
parameters to determine the optimal configuration for our algorithm.

Appl. Sci. 2023, 13, 12710 13 of 23

Table 1. Summary of experimental datasets; dataset 1 for the small question bank [2], dataset 2 for
the large question bank [15].

Dataset 1 (Small Question Bank) Dataset 2 (Large Question Bank)

Level of Difficulty Num Questions Level of Difficulty Num Questions

0.1 77 0.1 1890
0.2 101 0.2 1333
0.3 170 0.3 1357
0.4 142 0.4 1379
0.5 154 0.5 1361
0.6 153 0.6 1369
0.7 131 0.7 1358
0.8 51 0.8 1375
0.9 21 0.9 578

Total 1000 Total 12,000

The performance criterion considered was that the quality of each exam, as measured
by the fitness function, should have a margin of error no greater than 0.0001 [2]. We also
introduced additional measures to handle the trade-off between fitness value and runtime.
If the algorithm fails to produce m exams with a fitness value within the range of [0, 0.0001]
within the allocated time, the margin of error is increased to 0.15. The resulting exams
should not exceed a maximum overlap percentage of 0.3, as assumed in reference [2].

Initially, the algorithm prioritizes the fitness value, which is based on the difficulty of
the exam. The algorithm keeps track of its solutions and saves the overall best solutions.
Once an acceptable fitness value is achieved, the algorithm shifts its focus towards improv-
ing the overlap percentage. If the overlap percentage does not improve over five iterations,
the algorithm terminates and outputs its best solution.

We implemented the proposed approach using Python 3.6.12 in the Colab environment,
leveraging several libraries that support machine learning algorithms.

To evaluate the effectiveness of the proposed approach, we conducted a comparative
analysis with four other algorithms: Parallel Migration PSO (PMPSO) [2], sequential PSO
(SPSO) [2], the random algorithm (RA) [14], and the Simulated Annealing (SA) [9] algorithm.
The results of these four methods were documented in reference [2].

The performance measurements used for evaluation were the quality of the solution
and the standard deviation. Multiple runs of each algorithm were performed to obtain ro-
bust results. It is important to note that the population size and difficulty level requirement
(DLR) were kept consistent across all algorithms in this comparison. However, the size
of the question bank was varied to evaluate the algorithms’ performance across different
search space sizes (i.e., different datasets). The objective function computed the quality
of the solution, with a decreasing fitness function indicating an improved solution. The
fitness value of each test was measured to assess the quality of the results.

The standard deviation served as a measure of the generated exam’s proximity to
the desired difficulty level (DLR). It acted as an indicator of the algorithm’s stability or
robustness [2]. To evaluate the stability of the algorithm, we measured the standard
deviation across multiple DLRs.

Table 2 presents the parameters utilized in the conducted experiments. We performed
two distinct experiments, each executed twice: once on the large question bank and once on
the small question bank. The first experiment aimed to assess the algorithms’ performance
when varying the number of generated exams, while the second experiment evaluated
their performance when altering the required difficulty level. As the BA is a stochastic
algorithm that can produce different results with each run, each experiment was repeated
ten times to ensure accurate and reliable outcomes, which aligns with the number of runs
conducted in [2].

Appl. Sci. 2023, 13, 12710 14 of 23

Table 2. Parameters used in the testing phase.

Parameters Values

Number of exams (m) As entered by the user
Number of initial scout bees (m) × 4
Number of elite bees Ceil ((m)/4)
Number of neighbors for (m-e) 5
Number of elite (e) neighbors 8
Overlap percentage limit 0.3
Required difficulty level range [0.3, 0.7]
Number of exams range [100, 400]
Number of maximum iterations 250

Table 3 shows the detailed performance of all algorithms when changing the number
of exams while keeping the difficulty level the same. The large question bank was used in
this experiment. The success rate measures the number of times the algorithm reaches a
successful solution, i.e., a solution with a fitness ∈ [0, 0.0001]. Figure 3 shows the average
fitness of all algorithms.

Table 3. Algorithms’ results when changing the number of exams, using the large question bank.

Algorithm
Large QB

Number of
Exams

Difficulty
Level

Number of
Runs

Success
Rate

Average
Fitness

Std
Deviation

Average
Overlap

Bees Algorithm (BA)
100 0.5 10 942 3.85 × 10−5 3.14 × 10−5 0.36
200 0.5 10 1905 3.72 × 10−5 3.08 × 10−5 0.56
400 0.5 10 3375 3.82 × 10−5 3.15 × 10−5 0.75

Parallel Migration
PSO (PMPSO) [2]

100 0.5 10 1000 4.93 × 10−5 2.92 × 10−5 0.009
200 0.5 10 2000 4.74 × 10−5 2.89 × 10−5 0.009
400 0.5 10 4000 4.76 × 10−5 2.88 × 10−5 0.009

Sequential
PSO (SPSO) [2]

100 0.5 10 1000 4.72 × 10−5 2.86 × 10−5 0.009
200 0.5 10 2000 4.77 × 10−5 2.88 × 10−5 0.009
400 0.5 10 4000 4.78 × 10−5 2.87 × 10−5 0.009

Random Algorithm
(RA) [14]

100 0.5 10 151 6.41× 10−4 6.40× 10−4 0.009
200 0.5 10 263 6.55× 10−4 6.39× 10−4 0.009
400 0.5 10 552 6.27× 10−4 6.29× 10−4 0.009

Simulated Annealing
(SA) [9]

100 0.5 10 178 9.07× 10−4 9.48× 10−4 0.009
200 0.5 10 373 8.93× 10−4 9.29× 10−4 0.009
400 0.5 10 711 8.94× 10−4 8.92× 10−4 0.009

As evident from the outcomes presented in Table 3 and Figure 3, the BA exhibits
superior performance in terms of average fitness values across all dataset sizes compared to
all other methods. The PMPSO and the SPSO demonstrate comparable performance, while
the RA and SA underperform across all test cases. With regard to the standard deviation,
the BA and PSO methods exhibit similar values, with slightly smaller deviations observed
for the PSOs. This suggests that all three algorithms demonstrate stability, as the variation
between different runs is minimal. Conversely, the RA and SA once again underperform in
this aspect.

For the success rate, the BA was able to achieve an approximately 93% success rate on
average, compared to the 100% success rate for the PSOs and much worse success rates for
the RA and SA.

Appl. Sci. 2023, 13, 12710 15 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 23

Table 3. Algorithms’ results when changing the number of exams, using the large question bank.

Algorithm
Large QB

Number of
Exams

Difficulty
Level

Number
of Runs

Success
Rate

Average Fitness Std
Deviation

Average
Overlap

Bees Algorithm
(BA)

100 0.5 10 942 3.85 × 10−5 3.14 × 10−5 0.36
200 0.5 10 1905 3.72 × 10−5 3.08 × 10−5 0.56
400 0.5 10 3375 3.82 × 10−5 3.15 × 10−5 0.75

Parallel Migra-
tion PSO
(PMPSO) [2]

100 0.5 10 1000 4.93 × 10−5 2.92 × 10−5 0.009
200 0.5 10 2000 4.74 × 10−5 2.89 × 10−5 0.009
400 0.5 10 4000 4.76 × 10−5 2.88 × 10−5 0.009

Sequential
PSO (SPSO) [2]

100 0.5 10 1000 4.72 × 10−5 2.86 × 10−5 0.009
200 0.5 10 2000 4.77 × 10−5 2.88 × 10−5 0.009
400 0.5 10 4000 4.78 × 10−5 2.87 × 10−5 0.009

Random Algo-
rithm (RA) [14]

100 0.5 10 151 6.41× 10−4 6.40× 10−4 0.009
200 0.5 10 263 6.55× 10−4 6.39× 10−4 0.009
400 0.5 10 552 6.27× 10−4 6.29× 10−4 0.009

Simulated An-
nealing
(SA) [9]

100 0.5 10 178 9.07× 10−4 9.48× 10−4 0.009
200 0.5 10 373 8.93× 10−4 9.29× 10−4 0.009
400 0.5 10 711 8.94× 10−4 8.92× 10−4 0.009

Figure 3. Average fitness values for different numbers of exams using the large question bank.

As evident from the outcomes presented in Table 3 and Figure 3, the BA exhibits
superior performance in terms of average fitness values across all dataset sizes compared
to all other methods. The PMPSO and the SPSO demonstrate comparable performance,
while the RA and SA underperform across all test cases. With regard to the standard de-
viation, the BA and PSO methods exhibit similar values, with slightly smaller deviations
observed for the PSOs. This suggests that all three algorithms demonstrate stability, as the
variation between different runs is minimal. Conversely, the RA and SA once again un-
derperform in this aspect.

For the success rate, the BA was able to achieve an approximately 93% success rate
on average, compared to the 100% success rate for the PSOs and much worse success rates
for the RA and SA.

For the overlap percentage, it is important to highlight that our method for calculat-
ing the overlap percentage differs from the approach used by [2]. The reason behind this
discrepancy is that their calculation involves dividing the number of overlapping ques-
tions by the number of tests, without considering the total number of questions in the

Figure 3. Average fitness values for different numbers of exams using the large question bank.

For the overlap percentage, it is important to highlight that our method for calculating
the overlap percentage differs from the approach used by [2]. The reason behind this
discrepancy is that their calculation involves dividing the number of overlapping questions
by the number of tests, without considering the total number of questions in the tests. We
believe that this method is not accurate for calculating the overlap percentage because
when calculating a percentage, it is necessary to consider the relationship between a part
and the whole. In other words, both the numerator and the denominator should be of the
same type. Since exams are distinct entities from questions, we have developed our own
formula for determining the overlap percentage, as shown in Equation (2). Therefore, a
direct comparison of the overlap percentage between the algorithms cannot be provided.
However, since we have established a baseline for comparison, which is the overlap
threshold defined by the user, our ultimate objective is to ensure that the overlap percentage
does not exceed this threshold, regardless of the calculation method employed. Observing
the obtained results, it is evident that the BA was unable to attain the targeted overlap
percentage of 30% for the larger test cases. This outcome is somewhat expected as the
likelihood of question repetition increases with a larger number of exams.

Table 4 shows the performance of all algorithms when varying the number of exams
using the small question bank, while Figure 4 shows a comparison of the algorithms in
terms of average fitness values with respect to the number of exams.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 23

tests. We believe that this method is not accurate for calculating the overlap percentage
because when calculating a percentage, it is necessary to consider the relationship be-
tween a part and the whole. In other words, both the numerator and the denominator
should be of the same type. Since exams are distinct entities from questions, we have de-
veloped our own formula for determining the overlap percentage, as shown in Equation
(2). Therefore, a direct comparison of the overlap percentage between the algorithms can-
not be provided. However, since we have established a baseline for comparison, which is
the overlap threshold defined by the user, our ultimate objective is to ensure that the over-
lap percentage does not exceed this threshold, regardless of the calculation method em-
ployed. Observing the obtained results, it is evident that the BA was unable to attain the
targeted overlap percentage of 30% for the larger test cases. This outcome is somewhat
expected as the likelihood of question repetition increases with a larger number of exams.

Table 4 shows the performance of all algorithms when varying the number of exams
using the small question bank, while Figure 4 shows a comparison of the algorithms in
terms of average fitness values with respect to the number of exams.

Table 4. Algorithms’ results when changing the number of exams using the small question bank.

Algorithm
Small QB

Number of
Exams

Difficulty
Level

Number
of Runs

Successful
Solutions Average Fitness Std Deviation

Average
Overlap

BA
100 0.5 10 949 3.26 × 10−5 3.08 × 10−5 0.93
200 0.5 10 1346 3.32 × 10−5 2.95 × 10−5 0.96
400 0.5 10 3841 3.34 × 10−5 2.95 × 10−5 0.98

PMPSO [2]
100 0.5 10 1000 4.91 × 10−5 2.85 × 10−5 0.16
200 0.5 10 2000 4.79 × 10−5 2.92 × 10−5 0.16
400 0.5 10 4000 4.80 × 10−5 2.89 × 10−5 0.16

SPSO [2]
100 0.5 10 1000 4.72 × 10−5 2.84 × 10−5 0.16
200 0.5 10 2000 4.78 × 10−5 2.88 × 10−5 0.16
400 0.5 10 4000 4.85 × 10−5 2.89 × 10−5 0.16

RA [14]
100 0.5 10 63 1.28 × 10−3 1.25 × 10−3 0.16
200 0.5 10 125 1.32 × 10−3 1.28 × 10−3 0.16
400 0.5 10 291 1.33 × 10−3 1.32 × 10−3 0.16

SA [9]
100 0.5 10 94 1.56 × 10−3 1.53 × 10−3 0.16
200 0.5 10 205 1.47 × 10−3 1.46 × 10−3 0.16
400 0.5 10 388 1.55 × 10−3 1.55 × 10−3 0.16

Figure 4. Average fitness values for different numbers of exams using the small question bank.
Figure 4. Average fitness values for different numbers of exams using the small question bank.

Appl. Sci. 2023, 13, 12710 16 of 23

Table 4. Algorithms’ results when changing the number of exams using the small question bank.

Algorithm
Small QB

Number of
Exams

Difficulty
Level

Number of
Runs

Successful
Solutions

Average
Fitness

Std
Deviation

Average
Overlap

BA
100 0.5 10 949 3.26 × 10−5 3.08 × 10−5 0.93
200 0.5 10 1346 3.32 × 10−5 2.95 × 10−5 0.96
400 0.5 10 3841 3.34 × 10−5 2.95 × 10−5 0.98

PMPSO [2]
100 0.5 10 1000 4.91 × 10−5 2.85 × 10−5 0.16
200 0.5 10 2000 4.79 × 10−5 2.92 × 10−5 0.16
400 0.5 10 4000 4.80 × 10−5 2.89 × 10−5 0.16

SPSO [2]
100 0.5 10 1000 4.72 × 10−5 2.84 × 10−5 0.16
200 0.5 10 2000 4.78 × 10−5 2.88 × 10−5 0.16
400 0.5 10 4000 4.85 × 10−5 2.89 × 10−5 0.16

RA [14]
100 0.5 10 63 1.28 × 10−3 1.25 × 10−3 0.16
200 0.5 10 125 1.32 × 10−3 1.28 × 10−3 0.16
400 0.5 10 291 1.33 × 10−3 1.32 × 10−3 0.16

SA [9]
100 0.5 10 94 1.56 × 10−3 1.53 × 10−3 0.16
200 0.5 10 205 1.47 × 10−3 1.46 × 10−3 0.16
400 0.5 10 388 1.55 × 10−3 1.55 × 10−3 0.16

Based on the outcomes presented in Table 4 and Figure 4, it is evident once again
that the BA generated exams with smaller fitness values compared to all other competing
methods. This indicates that the exams produced by the BA were closer to the desired DLR.
However, it should be noted that the two variants of PSO achieved an optimal success rate,
which the BA did not attain, albeit with a small margin. Nevertheless, the BA exhibited a
significantly higher success rate compared to the RA and SA. For standard deviation, both
the BA and PSO methods demonstrated comparable values, suggesting stability across
different runs for the obtained results. In contrast, the RA and SA exhibited much higher
deviations, indicating instability in the outcomes across multiple runs. On the other hand,
the BA once again fell short of achieving the desired overlap percentage, as calculated
using our method.

Figure 5 illustrates the runtime behavior (in seconds) of the Bees Algorithm when
varying the number of exams for question banks of different sizes. It can be observed from
the figure that as the size of the question bank increases, the runtime also significantly
increases, which is expected.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 23

Based on the outcomes presented in Table 4 and Figure 4, it is evident once again that
the BA generated exams with smaller fitness values compared to all other competing
methods. This indicates that the exams produced by the BA were closer to the desired
DLR. However, it should be noted that the two variants of PSO achieved an optimal suc-
cess rate, which the BA did not attain, albeit with a small margin. Nevertheless, the BA
exhibited a significantly higher success rate compared to the RA and SA. For standard
deviation, both the BA and PSO methods demonstrated comparable values, suggesting
stability across different runs for the obtained results. In contrast, the RA and SA exhibited
much higher deviations, indicating instability in the outcomes across multiple runs. On
the other hand, the BA once again fell short of achieving the desired overlap percentage,
as calculated using our method.

Figure 5 illustrates the runtime behavior (in seconds) of the Bees Algorithm when
varying the number of exams for question banks of different sizes. It can be observed from
the figure that as the size of the question bank increases, the runtime also significantly
increases, which is expected.

Figure 5. Bees Algorithm’s runtime when changing the number of exams.

The subsequent experiment involves modifying the required difficulty level (DLR)
using the large question bank. The results of all algorithms for this experiment are pre-
sented in Table 5, while Figure 6 provides a side-by-side comparison of the algorithms in
terms of their average fitness values. From these findings, it can be observed that the BA
outperforms the PSO methods in terms of average fitness in three out of five instances
(DLR = 0.4, 0.5, and 0.6), while having a slightly worse fitness for a DLR = 0.7, and much
worse fitness for a DLR = 0.3. Nevertheless, the BA outperforms the RA and SA consist-
ently in all instances. Also, the BA and both PSO algorithms demonstrate comparable
standard deviations in most instances, outperforming the RA and SA.

Regarding the success rate, the BA achieved an average success rate of approximately
90% across the various test cases, significantly outperforming the RA and SA, which failed
to obtain any successful solutions for the majority of the test cases. The PSO methods,
though, had a 100% success rate for all test cases. In terms of the overlap percentage, the
BA achieves better results in this experiment compared to the previous one on the same
question bank (Table 3), as is discussed in more detail in Section 5.

Figure 5. Bees Algorithm’s runtime when changing the number of exams.

Appl. Sci. 2023, 13, 12710 17 of 23

The subsequent experiment involves modifying the required difficulty level (DLR)
using the large question bank. The results of all algorithms for this experiment are presented
in Table 5, while Figure 6 provides a side-by-side comparison of the algorithms in terms of
their average fitness values. From these findings, it can be observed that the BA outperforms
the PSO methods in terms of average fitness in three out of five instances (DLR = 0.4, 0.5,
and 0.6), while having a slightly worse fitness for a DLR = 0.7, and much worse fitness for a
DLR = 0.3. Nevertheless, the BA outperforms the RA and SA consistently in all instances.
Also, the BA and both PSO algorithms demonstrate comparable standard deviations in
most instances, outperforming the RA and SA.

Table 5. Algorithms’ results when changing the DLR using the large question bank.

Algorithm
Large QB

Number of
Exams

Difficulty
Level

Number of
Runs

Successful
Solutions

Average
Fitness

Std
Deviation

Average
Overlap

BA

100 0.3 10 888 7.31 × 10−5 2.38 × 10−4 0.47
100 0.4 10 905 4.15 × 10−5 4.82 × 10−5 0.39
100 0.5 10 922 4.00 × 10−5 3.36 × 10−5 0.36
100 0.6 10 895 4.39 × 10−5 4.45 × 10−5 0.39
100 0.7 10 888 4.88 × 10−5 7.89 × 10−5 0.50

PMPSO [2]

100 0.3 10 1000 4.89 × 10−5 2.89 × 10−5 0.015
100 0.4 10 1000 4.86 × 10−5 2.89 × 10−5 0.010
100 0.5 10 1000 4.72 × 10−5 2.84 × 10−5 0.009
100 0.6 10 1000 4.70 × 10−5 2.89 × 10−5 0.010
100 0.7 10 1000 4.73 × 10−5 2.87 × 10−5 0.014

SPSO [2]

100 0.3 10 1000 4.92 × 10−5 2.93 × 10−5 0.015
100 0.4 10 1000 4.80 × 10−5 2.91 × 10−5 0.010
100 0.5 10 1000 4.90 × 10−5 2.88 × 10−5 0.009
100 0.6 10 1000 4.95 × 10−5 2.95 × 10−5 0.010
100 0.7 10 1000 4.67 × 10−5 2.90 × 10−5 0.014

RA [14]

100 0.3 10 - - - -
100 0.4 10 - - - -
100 0.5 10 151 6.39 × 10−4 6.42 × 10−4 0.009
100 0.6 10 - - - -
100 0.7 10 - - - -

(SA) [9]

100 0.3 10 0 1.43 × 10−1 1.23 × 10−2 0.009
100 0.4 10 0 4.30 × 10−2 1.21 × 10−2 0.009
100 0.5 10 177 9.30 × 10−4 9.49 × 10−4 0.009
100 0.6 10 0 3.95 × 10−2 1.21 × 10−2 0.009
100 0.7 10 0 1.39 × 10−1 1.22 × 10−2 0.009

Regarding the success rate, the BA achieved an average success rate of approximately
90% across the various test cases, significantly outperforming the RA and SA, which failed
to obtain any successful solutions for the majority of the test cases. The PSO methods,
though, had a 100% success rate for all test cases. In terms of the overlap percentage, the
BA achieves better results in this experiment compared to the previous one on the same
question bank (Table 3), as is discussed in more detail in Section 5.

The performance of the algorithms when varying the required difficulty levels using
the small question bank is presented in Table 6. Similar to previous experiments, both PSO
methods exhibited higher success rates than the BA in all instances, except for the instance
in which DLR = 0.3, where both PSO methods significantly underperformed in comparison
to the BA.

Appl. Sci. 2023, 13, 12710 18 of 23

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 23

Table 5. Algorithms’ results when changing the DLR using the large question bank.

Algorithm Large
QB

Number of
Exams

Difficulty
Level

Number
of Runs

Successful
Solutions

Average Fitness Std Deviation Average
Overlap

BA

100 0.3 10 888 7.31 × 10−5 2.38 × 10−4 0.47
100 0.4 10 905 4.15 × 10−5 4.82 × 10−5 0.39
100 0.5 10 922 4.00 × 10−5 3.36 × 10−5 0.36
100 0.6 10 895 4.39 × 10−5 4.45 × 10−5 0.39
100 0.7 10 888 4.88 × 10−5 7.89 × 10−5 0.50

PMPSO [2]

100 0.3 10 1000 4.89 × 10−5 2.89 × 10−5 0.015
100 0.4 10 1000 4.86 × 10−5 2.89 × 10−5 0.010
100 0.5 10 1000 4.72 × 10−5 2.84 × 10−5 0.009
100 0.6 10 1000 4.70 × 10−5 2.89 × 10−5 0.010
100 0.7 10 1000 4.73 × 10−5 2.87 × 10−5 0.014

SPSO [2]

100 0.3 10 1000 4.92 × 10−5 2.93 × 10−5 0.015
100 0.4 10 1000 4.80 × 10−5 2.91 × 10−5 0.010
100 0.5 10 1000 4.90 × 10−5 2.88 × 10−5 0.009
100 0.6 10 1000 4.95 × 10−5 2.95 × 10−5 0.010
100 0.7 10 1000 4.67 × 10−5 2.90 × 10−5 0.014

RA [14]

100 0.3 10 - - - -
100 0.4 10 - - - -
100 0.5 10 151 6.39 × 10−4 6.42 × 10−4 0.009
100 0.6 10 - - - -
100 0.7 10 - - - -

(SA) [9]

100 0.3 10 0 1.43 × 10−1 1.23 × 10−2 0.009
100 0.4 10 0 4.30 × 10−2 1.21 × 10−2 0.009
100 0.5 10 177 9.30 × 10−4 9.49 × 10−4 0.009
100 0.6 10 0 3.95 × 10−2 1.21 × 10−2 0.009
100 0.7 10 0 1.39 × 10−1 1.22 × 10−2 0.009

Figure 6. Average fitness values for different DLRs using the large question bank.

The performance of the algorithms when varying the required difficulty levels using
the small question bank is presented in Table 6. Similar to previous experiments, both PSO
methods exhibited higher success rates than the BA in all instances, except for the instance

Figure 6. Average fitness values for different DLRs using the large question bank.

Table 6. Algorithms’ results when changing the DLR using the small question bank.

Algorithm
Large QB

Number of
Exams

Difficulty
Level

Number of
Runs

Successful
Solutions

Average
Fitness

Std
Deviation

Average
Overlap

BA

100 0.3 10 864 1.87 × 10−4 7.71 × 10−4 0.95
100 0.4 10 854 6.92 × 10−5 2.05 × 10−4 0.93
100 0.5 10 874 4.70 × 10−5 4.14 × 10−5 0.93
100 0.6 10 855 5.65 × 10−5 8.26 × 10−5 0.93
100 0.7 10 865 1.88 × 10−4 8.33 × 10−4 0.94

PMPSO [2]

100 0.3 10 41 1.69 × 10−2 1.09 × 10−2 0.39
100 0.4 10 1000 4.70 × 10−5 2.83 × 10−5 0.22
100 0.5 10 1000 4.81 × 10−5 2.93 × 10−5 0.16
100 0.6 10 1000 4.75 × 10−5 2.82 × 10−5 0.18
100 0.7 10 998 4.77 × 10−5 4.85 × 10−5 0.28

SPSO [2]

100 0.3 10 38 1.64 × 10−2 1.06 × 10−2 0.39
100 0.4 10 1000 4.84 × 10−5 2.87 × 10−5 0.22
100 0.5 10 1000 4.74 × 10−5 2.86 × 10−5 0.16
100 0.6 10 1000 4.94 × 10−5 2.80 × 10−5 0.18
100 0.7 10 998 5.84 × 10−5 3.27 × 10−4 0.28

RA [14]

100 0.3 10 - - - -
100 0.4 10 - - - -
100 0.5 10 78 1.35 × 10−3 1.29 × 10−3 0.16
100 0.6 10 - - - -
100 0.7 10 - - - -

SA [9]

100 0.3 10 0 1.87 × 10−1 8.28 × 10−3 0.16
100 0.4 10 0 8.78 × 10−2 8.18 × 10−3 0.16
100 0.5 10 104 1.52 × 10−3 1.53 × 10−3 0.16
100 0.6 10 0 3.52 × 10−2 8.08 × 10−3 0.16
100 0.7 10 0 1.34 × 10−1 8.03 × 10−3 0.16

Figures 7 and 8 provide a comparison of the average fitness values for each method
across different instances, with Figure 8 separating the outlier instance (DLR = 0.3) for

Appl. Sci. 2023, 13, 12710 19 of 23

clarity. From these figures, it can be observed that the BA demonstrated better performance
in terms of average fitness in two instances (DLR = 0.3 and 0.5), while it had a worse average
fitness than the PSO methods in the remaining three instances. However, it is worth noting
that the BA consistently outperformed the RA and SA in all instances. Additionally, the
PSO methods exhibited slightly better standard deviations than the BA in most cases. Again
in this experiment, the desired threshold for the overlap percentage was still not achieved
by the BA.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 23

Figure 7. Average fitness values when changing the DLR [0.4–0.7] for the small question bank.

Figure 8. Average fitness for DLR = 0.3 for the small question bank.

5. Discussion
In our study, we evaluated the performance of the Bees Algorithm (BA) based on four

key criteria: the number of successful solutions, fitness, overlap percentage, and standard
deviation. The computational experimentation demonstrated that the BA achieved favor-
able results in terms of successful solutions, fitness, and standard deviation compared to
its rival methods. Specifically, the BA outperformed all competing methods in terms of
average fitness in most test cases. However, the PSO methods (both parallel and sequen-
tial versions) exhibited a higher success rate, highlighting their advantage over the BA in
this particular metric, although the BA outperformed the RA and SA in this metric.

Amongst the different difficulty levels (DLRs) considered, the case of DLR = 0.5 con-
sistently showed the best results in terms of the fitness function, standard deviation, and
successful solutions, as indicated in (Tables 3–6). This can be attributed to the nature of
our neighborhood move, which selects replacement questions at random. Therefore, it is
relatively easier to balance difficulty level values for DLR = 0.5, since there is an approxi-
mately equal number of questions with higher and lower difficulty levels than 0.5. On the
other hand, in the case of a DLR = 0.7, the majority of the questions in the database have a
difficulty level lower than 0.7, making it more challenging to generate an exam with that
difficulty level.

Furthermore, the standard deviation results were comparable to those of the PMPSO,
according to the computational results. Once again, the case of DLR = 0.5 exhibited greater

Figure 7. Average fitness values when changing the DLR [0.4–0.7] for the small question bank.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 23

Figure 7. Average fitness values when changing the DLR [0.4–0.7] for the small question bank.

Figure 8. Average fitness for DLR = 0.3 for the small question bank.

5. Discussion
In our study, we evaluated the performance of the Bees Algorithm (BA) based on four

key criteria: the number of successful solutions, fitness, overlap percentage, and standard
deviation. The computational experimentation demonstrated that the BA achieved favor-
able results in terms of successful solutions, fitness, and standard deviation compared to
its rival methods. Specifically, the BA outperformed all competing methods in terms of
average fitness in most test cases. However, the PSO methods (both parallel and sequen-
tial versions) exhibited a higher success rate, highlighting their advantage over the BA in
this particular metric, although the BA outperformed the RA and SA in this metric.

Amongst the different difficulty levels (DLRs) considered, the case of DLR = 0.5 con-
sistently showed the best results in terms of the fitness function, standard deviation, and
successful solutions, as indicated in (Tables 3–6). This can be attributed to the nature of
our neighborhood move, which selects replacement questions at random. Therefore, it is
relatively easier to balance difficulty level values for DLR = 0.5, since there is an approxi-
mately equal number of questions with higher and lower difficulty levels than 0.5. On the
other hand, in the case of a DLR = 0.7, the majority of the questions in the database have a
difficulty level lower than 0.7, making it more challenging to generate an exam with that
difficulty level.

Furthermore, the standard deviation results were comparable to those of the PMPSO,
according to the computational results. Once again, the case of DLR = 0.5 exhibited greater

Figure 8. Average fitness for DLR = 0.3 for the small question bank.

5. Discussion

In our study, we evaluated the performance of the Bees Algorithm (BA) based on
four key criteria: the number of successful solutions, fitness, overlap percentage, and
standard deviation. The computational experimentation demonstrated that the BA achieved
favorable results in terms of successful solutions, fitness, and standard deviation compared
to its rival methods. Specifically, the BA outperformed all competing methods in terms of
average fitness in most test cases. However, the PSO methods (both parallel and sequential
versions) exhibited a higher success rate, highlighting their advantage over the BA in this
particular metric, although the BA outperformed the RA and SA in this metric.

Appl. Sci. 2023, 13, 12710 20 of 23

Amongst the different difficulty levels (DLRs) considered, the case of DLR = 0.5
consistently showed the best results in terms of the fitness function, standard deviation,
and successful solutions, as indicated in (Tables 3–6). This can be attributed to the nature
of our neighborhood move, which selects replacement questions at random. Therefore,
it is relatively easier to balance difficulty level values for DLR = 0.5, since there is an
approximately equal number of questions with higher and lower difficulty levels than 0.5.
On the other hand, in the case of a DLR = 0.7, the majority of the questions in the database
have a difficulty level lower than 0.7, making it more challenging to generate an exam with
that difficulty level.

Furthermore, the standard deviation results were comparable to those of the PMPSO,
according to the computational results. Once again, the case of DLR = 0.5 exhibited greater
a robustness of the algorithm. Additionally, the successful solutions were generally close
to the optimal solution, as evident in the results, particularly for DLR = 0.5. It is worth
noting that even better results could have been achieved if we had set a margin of error
less than 15%. Furthermore, the BA did not meet the specified overlap threshold reported
in [2]. Despite this, our results can be considered reasonable, especially considering the
small question bank, which has a limited number of questions per chapter. For instance,
taking the first row of Table 4 as an example, the dataset of the small bank for the first ten
chapters comprised 614 unique questions, while the total number of generated questions
was 10,000. This resulted in a significant overlap percentage.

Moreover, in line with the results presented in Table 3, there is a direct correlation
between the number of exams and the overlap percentage. As expected, as the number
of exams increased, the overlap percentage also increased. Additionally, Table 5 revealed
that the selected difficulty level (DLR) could impact the overlap percentage, as previously
explained.

In conclusion, we believe that the BA successfully achieved our research goals by
producing near-optimal solutions that satisfied the required difficulty level set by the
educator. It displayed robustness with respect to the difficulty level, as evidenced by the
small standard deviation.

6. Conclusions

Automatically generated online exams have garnered significant interest among re-
searchers and educators. However, there is a scarcity of resources that can produce multiple
versions of the same exam automatically. Educators require such tools for fair assessments
and to prevent cheating during exams. This study aims to contribute to the field of educa-
tion by providing a method to quickly generate unique and fair exams compared to manual
solutions. We propose the utilization of the Bees Algorithm (BA) to compose multiple
exams from a question bank, with a focus on achieving the desired difficulty level as the
primary objective. Each generated exam also adheres to several constraints defined by the
educators to ensure an equitable examination process. The contribution of this research
lies in presenting a customized version of the BA, specifically designed to address the
problem at hand. Our proposed method enables the generation of multiple online tests
simultaneously, effectively meeting user requirements without the need for parallelization
techniques. Additionally, we introduce innovative problem-specific neighborhood moves
that are designed to adhere to the constraints of the problem.

Through extensive testing on benchmark data and comparison with the four rival
methods reported in [2], the experimental results indicate that our algorithm outperforms
the competing methods in terms of the primary objective, i.e., the difficulty level of the
exams, in the majority of test cases. Furthermore, the algorithm exhibits a small stan-
dard deviation across all experiments, demonstrating its robustness. However, it has a
slightly lower success rate compared to the Particle Swarm Optimization (PSO) methods,
although it outperforms the Random and Simulated Annealing (SA) algorithms in this
aspect. Furthermore, the BA fell short of attaining the targeted overlap percentage, as
assumed in [2].

Appl. Sci. 2023, 13, 12710 21 of 23

For future work, we aim to enhance the design of the BA by employing smarter
neighborhood moves, particularly when dealing with overlapping questions between
exams. Fine-tuning this approach and exploring alternative methods may mitigate the
overlap percentage and further improve the algorithm’s performance in terms of exam
construction. One possible approach is to utilize question selection heuristics instead of
randomly selecting replacement questions. An example heuristic is the Least Recently
Used (LRU) heuristic, which prioritizes questions that have been used the least number of
times in previous exams. By favoring less recently used questions, the LRU heuristic can
maximize question diversity and minimize overlap. Additionally, runtime improvements
can be achieved through parallelization or other optimization techniques (e.g., adaptive
parameter tuning). Moreover, we intend to test the algorithm’s scalability by evaluating
larger-sized instances.

In conclusion, the BA is a metaheuristic algorithm that proves useful in solving our
problem. It stands out for its simplicity, adaptability, and ease of use. We believe that our
BA competes well with other metaheuristic algorithms that have been successfully applied
to this problem. Our research findings hold promise for improving educational outcomes
by reducing the workload for instructors, enhancing student satisfaction, and optimizing
resource allocation.

Author Contributions: Conceptualization, M.H.; methodology, M.H.; validation, M.H. and R.H.;
formal analysis, M.H.; investigation, M.H. and R.H; resources, M.H. and N.A.; data curation, M.H
and R.H.; writing—original draft preparation, R.H.; writing—review and editing, M.H. and N.A.;
visualization, M.H.; supervision, M.H.; project administration, M.H; funding acquisition N.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been funded by King Saud University, Riyadh, Saudi Arabia, through the
Researchers Supporting Project number (RSPD2023R857).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in 10.1109/ACCESS.2021.
3057515, reference number 2 and 10.6688/JISE.201811_34(6).0004, reference number 15.

Acknowledgments: This work has been funded by King Saud University, Riyadh, Saudi Arabia,
through the Researchers Supporting Project number (RSPD2023R857). The authors acknowledge
the contributions of Rafeef Alazzaz, Demah Alawadh, Atheer Mohammad, Beshayer Al-mutawa,
Ghadah Alshabib for their role in reviewing the literature, implementing the algorithm, and reporting
the results.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stanger-Hall, K.F. Multiple-Choice Exams: An Obstacle for Higher-Level Thinking in Introductory Science Classes. CBE—Life Sci.

Educ. 2012, 11, 294–306. [CrossRef] [PubMed]
2. Nguyen, T.; Nguyen, L.T.T.; Bui, T.; Loc, H.D.; Pedrycz, W.; Snasel, V.; Vo, B. Multi-Swarm Optimization for Extracting Multiple-

Choice Tests From Question Banks. IEEE Access 2021, 9, 32131–32148. [CrossRef]
3. Raje, S.; Stitzel, S. Strategies for Effective Assessments While Ensuring Academic Integrity in General Chemistry Courses during

COVID-19. J. Chem. Educ. 2020, 97, 3436–3440. [CrossRef]
4. Beerepoot, M.T.P. Formative and Summative Automated Assessment with Multiple-Choice Question Banks. J. Chem. Educ. 2023,

100, 2947–2955. [CrossRef]
5. Wen, J.; Lu, W.; Chen, Z. Innovation and Construction of Examination Database of Pharmacology. Indian J. Pharm. Educ. Res. 2020,

54, 279–283. [CrossRef]
6. Krzic, M.; Brown, S. Question Banks for Effective Online Assessments in Introductory Science Courses. Nat. Sci. Educ. 2022, 51,

e20091. [CrossRef]
7. Yuce, B.; Mastrocinque, E.; Packianather, M.S.; Lambiase, A.; Pham, D.T. The Bees Algorithm and Its Applications. In Hand-

book of Research on Artificial Intelligence Techniques and Algorithms; IGI Global: Pennsylvania, PA, USA, 2015; pp. 122–151,
ISBN 978-1-4666-7258-1.

https://doi.org/10.1187/cbe.11-11-0100
https://www.ncbi.nlm.nih.gov/pubmed/22949426
https://doi.org/10.1109/ACCESS.2021.3057515
https://doi.org/10.1021/acs.jchemed.0c00797
https://doi.org/10.1021/acs.jchemed.3c00120
https://doi.org/10.5530/ijper.54.2.32
https://doi.org/10.1002/nse2.20091

Appl. Sci. 2023, 13, 12710 22 of 23

8. Al-Negheimish, S.; Alnuhait, F.; Albrahim, H.; Al-Mogherah, S.; Alrajhi, M.; Hosny, M. An Intelligent Bio-Inspired Algorithm for
the Faculty Scheduling Problem. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 151–159. [CrossRef]

9. Lu, P.; Cong, X.; Zhou, D. The Research on Web-Based Testing Environment Using Simulated Annealing Algorithm. Sci. World J.
2014, 2014, 167124. [CrossRef]

10. Rahim, T.N.T.A.; Aziz, Z.A.; Rauf, R.H.A.; Shamsudin, N. Automated Exam Question Generator Using Genetic Algorithm. In
Proceedings of the 2017 IEEE Conference on e-Learning, e-Management and e-Services (IC3e), Miri, Malaysia, 16–17 November
2017; pp. 12–17.

11. Nguyen, T.; Bui, T.; Vo, B. Multi-Swarm Single-Objective Particle Swarm Optimization to Extract Multiple-Choice Tests. Vietnam J.
Comp. Sci. 2019, 6, 147–161. [CrossRef]

12. Bui, T.; Nguyen, T.; Huynh, H.M.; Vo, B.; Chun-Wei Lin, J.; Hong, T.-P. Multiswarm Multiobjective Particle Swarm Optimization
with Simulated Annealing for Extracting Multiple Tests. Sci. Program. 2020, 2020, e7081653. [CrossRef]

13. Hu, X.-M.; Zhang, J.; Chung, H.S.-H.; Liu, O.; Xiao, J. An Intelligent Testing System Embedded With an Ant-Colony-Optimization-
Based Test Composition Method. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2009, 39, 659–669. [CrossRef]

14. Naik, K.; Sule, S.; Jadhav, S.; Pandey, S. Automatic Question Paper Generation System Using Randomization Algorithm. Int. J.
Eng. Technol. Res. 2014, 2, 192–194.

15. Bui, T.; Nguyen, T.; Vo, B.; Pedrycz, W.; Snasel, V. Application of Particle Swarm Optimization to Create Multiple-Choice Tests. J.
Inf. Sci. Eng. 2018, 34, 1405–1423. [CrossRef]

16. Glover, F.; Sörensen, K. Metaheuristics. Scholarpedia 2015, 10, 6532. [CrossRef]
17. Cheng, S.; Liu, B.; Ting, T.O.; Qin, Q.; Shi, Y.; Huang, K. Survey on Data Science with Population-Based Algorithms. Big Data Anal.

2016, 1, 3. [CrossRef]
18. Gandomi, A.; Yang, X.-S.; Talatahari, S.; Alavi, A. Metaheuristic Algorithms in Modeling and Optimization. In Metaheuristic

Applications in Structures and Infrastructures; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–24. ISBN 978-0-12-398364-0.
19. Ziarati, K.; Akbari, R.; Zeighami, V. On the Performance of Bee Algorithms for Resource-Constrained Project Scheduling Problem.

Appl. Soft Comput. 2011, 11, 3720–3733. [CrossRef]
20. Li, T.; Zhou, C.; Hu, M. An Improved Artificial Bee Colony Algorithm for 3D Protein Structure Prediction. In Proceedings of the

2017 International Conference on Biometrics Engineering and Application, Hong Kong, China, 21–23 April 2017; Association for
Computing Machinery: New York, NY, USA, 2017; pp. 7–12.

21. Korkmaz, E.; Akgüngör, A.P. The Forecasting of Air Transport Passenger Demands in Turkey by Using Novel Meta-heuristic
Algorithms. Concurr. Comput. 2021, 33, e6263. [CrossRef]

22. Korkmaz, E.; Akgüngör, A.P. Comparison of Artificial Bee Colony and Flower Pollination Algorithms in Vehicle Delay Models at
Signalized Intersections. Neural Comput. Appl. 2020, 32, 3581–3597. [CrossRef]

23. Korkmaz, E.; Doğan, E.; Akgüngör, A. Estimation of Car Ownership in Turkey Using Artificial Bee Colony Algorithm. In
Proceedings of the 3rd International Conference on Traffic and Transport Engineering (ICTTE), Belgrade, Serbia, 24–25 November
2016.

24. Dogan, E.; Korkmaz, E.; Akgungor, A.P. Comparison Of Different Approaches In Traffic Forecasting Models For The D-200
Highway In Turkey. Sci. J. Silesian Univ. Technol. Ser. Transp. 2018, 99, 25–42. [CrossRef]

25. Li, J.-Q.; Song, M.-X.; Wang, L.; Duan, P.-Y.; Han, Y.-Y.; Sang, H.-Y.; Pan, Q.-K. Hybrid Artificial Bee Colony Algorithm for a
Parallel Batching Distributed Flow-Shop Problem With Deteriorating Jobs. IEEE Trans. Cybern. 2020, 50, 2425–2439. [CrossRef]

26. Alhuwaishel, N.; Hosny, M. A Hybrid Bees/Demon Optimization Algorithm for Solving the University Course Timetabling
Problem. In Proceedings of the 3rd NAUN International Conference on Mathematical, Computational and Statistical Sciences,
Dubai, United Arab Emirates, 22–24 February 2015.

27. Almaneea, L.I.; Hosny, M.I. A Two Level Hybrid Bees Algorithm for Operating Room Scheduling Problem. In Intelligent Computing;
Arai, K., Kapoor, S., Bhatia, R., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham,
Switzerland, 2019; Volume 858, pp. 272–290. ISBN 978-3-030-01173-4.

28. Pham, D.; Ghanbarzadeh, A.; Koç, E.; Otri, S.; Rahim, S.; Zaidi, M. The Bees Algorithm Technical Note; Manufacturing Engineering
Centre, Cardiff University: Cardiff, UK, 2005; pp. 1–57.

29. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; Volume 74,
ISBN 978-0-470-27858-1.

30. Teodorović, D.; Dell’Orco, M. Bee Colony Optimization—A Cooperative Learning Approach to Complex Transportation Problems.
Adv. OR AI Methods Transp. 2005, 51, 60–69.

31. Ma, L.; Zhu, X.; Feng, Q. Improvement and Design of Genetic Algorithm in Personalized Test Paper Composition System. In
Proceedings of the 4th International Conference on Computer Science and Application Engineering, Sanya, China, 20–22 October
2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–5.

32. Hwang, G.-J.; Lin, B.M.T.; Tseng, H.-H.; Lin, T.-L. On the Development of a Computer-Assisted Testing System with Genetic Test
Sheet-Generating Approach. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2005, 35, 590–594. [CrossRef]

33. Shushu, L.; Fengying, W. Strategy and Realization of Auto-Generating Exam Paper Based on Genetic Algorithm. In Proceedings
of the 2010 International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China, 23–24 October 2010;
Volume 2, pp. 478–482.

https://doi.org/10.14569/IJACSA.2018.090519
https://doi.org/10.1155/2014/167124
https://doi.org/10.1142/S219688881950009X
https://doi.org/10.1155/2020/7081653
https://doi.org/10.1109/TSMCC.2009.2021952
https://doi.org/10.6688/JISE.201811_34(6).0004
https://doi.org/10.4249/scholarpedia.6532
https://doi.org/10.1186/s41044-016-0003-3
https://doi.org/10.1016/j.asoc.2011.02.002
https://doi.org/10.1002/cpe.6263
https://doi.org/10.1007/s00521-018-3670-3
https://doi.org/10.20858/sjsutst.2018.99.3
https://doi.org/10.1109/TCYB.2019.2943606
https://doi.org/10.1109/TSMCC.2004.843184

Appl. Sci. 2023, 13, 12710 23 of 23

34. Hwang, G.-J.; Yin, P.-Y.; Yeh, S.-H. A Tabu Search Approach to Generating Test Sheets for Multiple Assessment Criteria. IEEE
Trans. Educ. 2006, 49, 88–97. [CrossRef]

35. Baronti, L.; Castellani, M.; Pham, D.T. An Analysis of the Search Mechanisms of the Bees Algorithm. Swarm Evol. Comput. 2020,
59, 100746. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TE.2002.858405
https://doi.org/10.1016/j.swevo.2020.100746

	Introduction
	Background and Related Work
	Metaheuristics
	Bees Algorithm (BA)
	The Single-Exam Generation Problem
	The Multiple-Exam Generation Problem

	Methodology
	Experimental Design and Results
	Discussion
	Conclusions
	References

