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Abstract: Blasting is routinely carried out in urban quarry sites. Residents or houses around quarry
sites are affected by the ground vibrations induced by blasting. Peak Particle Velocity (PPV) is
used as a metric to measure ground vibration intensity. Therefore, many prediction models of PPV
using experimental methods, statistical methods, and Artificial Neural Networks (ANNs) have been
proposed to mitigate this effect. However, prediction models using experimental and statistical
methods have a tendency of poor prediction accuracy. In addition, while prediction models using
ANNs can produce a highly accurate prediction results, a large amount of measured data is necessarily
collected. In an urban quarry site where the number of blastings is limited, it is difficult to collect
a lot of measured data. In this study, a new PPV prediction method using Weighted Non-negative
Matrix Factorization (WNMF) is proposed. WNMF is a method that approximates a non-negative
matrix (including missing data) to the product of two low-dimensional matrices and predicts the
missing data. In addition, WNMF is one of the unsupervised learning methods, so it can predict
PPV regardless of the amount of data. In this study, PPV was predicted using measured data from
100 sites at the Mikurahana quarry site in Japan. As a result, the proposed method showed higher
accuracy when using measured data at 60 sites rather than 100 sites, and the root mean square error
for PPV prediction decreased from 0.1759 (100 points) to 0.1378 (60 points).

Keywords: blasting; Peak Particle Velocity (PPV); prediction models; urban quarry vibrations;
Weighted Non-negative Matrix Factorization (WNMF)

1. Introduction

In recent years, blast-induced ground vibrations from quarrying activities and their
impact on structures and human beings have attracted significant attention in scientific
and industrial communities. Researchers like Khandelwal and Singh have demonstrated
through their studies the relationship between blast parameters and resulting ground
vibrations [1–3]. These vibrations can potentially harm structures, especially if they are
close to the blasting sites. Other researchers such as Faramarzi et al. and Navarro Torres et al.
also contributed to this field of study by investigating the simultaneous effects of ground
vibration and air blasts [4,5].

The prediction and control of ground vibrations induced by blasting have been exten-
sively researched. Singh and Roy provided insights into the damage to surface structures
due to these vibrations [6]. Artificial Neural Network approaches, as proposed by Khan-
delwal and Singh, have been employed for the prediction of these vibrations [1,3]. This
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method of prediction was further expanded by other researchers such as Monjezi et al.,
Hajihassani et al., and Saadat et al. [7–9].

Apart from neural network methods, multivariate analysis, as applied by Hudaverdi,
has also been employed for the prediction of blast-induced ground vibrations [10]. More-
over, Australian and British standards provide guidelines related to the use of explosives
and evaluation of human exposure to vibrations, respectively [11,12]. The studies by au-
thors like Nicholls et al., Siskind et al., and Dowding offer in-depth knowledge on blasting
vibrations and their effects on structures [13–15].

Historical perspectives on the topic have been provided by Duvall and Petkof and
Langefors and Kihlström [16,17]. In addition, some research works like those by Roy and
Kamali have proposed other models to predict vibrations [18,19]. With the rise in the
relevance of technology, web-based visualization systems for predicting ground vibrations,
as suggested by Kawamura et al., are gaining traction [20].

Recommendation systems using techniques like matrix factorization have also found
application in this domain [21–23]. The critical essence is to find a balance between efficient
blasting and minimizing the adverse impacts on the surroundings.

2. Related Work
2.1. Ground Vibrations from Blasting

In opencast mining, predicting blast-induced ground vibrations and their frequen-
cies is essential for the safety of nearby structures and inhabitants. Researchers have
employed various techniques to predict and control these vibrations, including neural
network approaches which have shown promising results [1–4,24]. Various factors in-
fluence the intensity and frequency of ground vibrations, including the explosive type,
blasting method, blast-to-structure distance, and the rock and soil’s geological properties.
Studies over the years have provided insights into the impact of blasting on surrounding
structures [6,13–15,25] and informed guidelines for explosive use and human vibration
exposure in buildings [11,12]. Understanding explosion-generated strain pulses in rock is
also crucial [16,17]. Previous work has emphasized the importance of controlling vibration
in mines using advanced predictors [18]. Multivariate analysis for predicting blast-induced
ground vibrations has also been explored [10]. In the domain of recommendation systems,
matrix factorization techniques have been foundational. Koren et al. provided an overview
of these techniques for recommender systems [21]. GroupLens introduced an architecture
for collaborative netnews filtering [22], and Squires et al. investigated rank selection in
non-negative matrix factorization [23]. For urban planning, visualizing predicted ground
vibration is essential, and Web-GIS systems have been developed to aid this [20].

2.2. Traditional PPV Prediction Methods

Ground vibrations originating from blasts are usually recorded as Peak Particle Veloc-
ity (PPV). Given its correlation with the extent of potential structural damages, PPV has been
deemed to be a crucial metric, especially in environmental considerations within the realm
of resource development [6,11,12,14]. Over time, various methods have been devised to
predict PPV. These methods can be broadly classified into experimental methods, statistical
methods, and Artificial Neural Networks (ANNs). The most basic approach is the experi-
mental method, which has been extensively employed by many researchers [13,14,16–18].
The PPV prediction model using this method can be expressed as

V = kD−b (1)

where V is the PPV (mm/s), D is the scaled distance (m/
√

kg), and k, b are constants
determined based on the specific site conditions. The scaled distance, D, is given by

D =
R√
Q

(2)
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where R represents the distance from the blasting site (m) and Q denotes the square root of
the amount of explosive (kg). However, given the vast number of parameters involved in
real-world blasting-induced ground vibrations, the experimental method shows limitations
in its accuracy [2,20,24].

To overcome the limitations of experimental methods, statistical methods were intro-
duced. These take into account a wide array of parameters, from the design of the blasts to
the nature of the rock mass [10,19,26]. However, their predictive accuracy can be diminished
when applied to new locations since they primarily rely on existing datasets [1,3,7].

Emerging from the domain of artificial intelligence (AI) during the 1980s, ANN en-
abled massive parallel computations, mimicking the human brain’s functionality. Khandel-
wal et al. [1] proposed an ANN-based PPV prediction model using data from 150 blasting
sites, illustrating its superior predictive accuracy over traditional experimental methods.
Monjezi et al. [7] and Dehghani et al. [27] also demonstrated high accuracy with ANN-
based models. Recent innovations even incorporated advanced algorithms like particle
swarm optimization (PSO) and the imperialism competitive algorithm (ICA) in PPV pre-
dictions [8,28]. Notably, a compilation of research on ANN-based PPV predictions can be
seen in Table 1 [2,3,7–9,27–29]. However, the major challenge with ANN methods is the
requirement for extensive datasets to build high-accuracy models. Urban quarries, due
to their proximity to populated areas, face data collection challenges due to the limited
opportunities for blasting.

Table 1. Study on PPV prediction using ANN.

Author Method Input Output Number R2

Khandelwal [2] ANN
B, S, HD, HL, CL, BI, E,
DB, Y, PR, Vp, VOD, DE PPV 170 0.99

Khandelwal [2] ANN
B, S, HD, HL, CL, BI, E,
DB, Y, PR, Vp, VOD, DE Frequency 170 0.99

Khandelwal [3] ANN
B, S, D, BI, MC, Y, PR,
Vp, VOD PPV 174 0.99

Khandelwal [3] ANN
B, S, D, BI, MC, Y, PR,
Vp, VOD Frequency 174 0.91

Dehghani [27] ANN
B, S, D, NR, PF, MC, MH,
DB, PLI PPV 116 0.75

Monjezi [7] ANN HL, ST, MC, DB PPV 182 0.95

Mohamed [29] ANN MC, DB PPV 162 0.94

Armaghani [28] PSO-ANN
B, S, HL, HD, ST, SD, NR,
PF, MC, DB, RD, FRD PPV 44 0.93

Saadat [9] ANN HD, ST, MC PPV 69 0.96

Hajihassani [8] ICA-ANN BS, SL, MC, DB, Y, Vp PPV 95 0.98

Notes: burden (B); spacing (S); burden to spacing (BS); delay (D); hole length (HL); hole
diameter (HD); stemming (ST); stemming length (SL); charge length (CL); sab-drilling (SD);
number of rows (NR); powder factor (PF); blastability index (BI); maximum charge per
delay (MC); maximum hole per delay (MH); explosive per hole (E); density of explosive
(DE); distance from the blasting point (DB); Yong’s modulus (Y); Poison’s ratio (PR); point
load index (PLI); rock density (RD); field rock diameter (FRD); P-wave velocity (Vp);
velocity of detonation (VOD); coefficient of determination (R2).

3. Target Site and Data Used
3.1. Target Site

In this study, we focused on the Mikurahana gravel pit operated by Toseki Material
Co., Ltd., located in Akita, Japan. The primary objective was to predict the ground vibra-
tions caused by blasting in this area. The Mikurahana gravel pit is an open-pit mine that
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employs the bench cut method. The primary rock type in this area is rhyolitic andesite. This
rock formation significantly influences the blasting dynamics due to its specific lithological
and geotechnical properties. The gravel pit has a production capacity of approximately
2000 t/day.

The lithological units at the site consist mainly of rhyolitic andesite, characterized by
its high silica content and physical hardness. The geotechnical properties of this rock type,
including its density, porosity, and fracture patterns, play a crucial role in determining
the blast design and the resulting ground vibrations. These properties were carefully
analyzed to optimize the blasting process and mitigate adverse effects on the surrounding
environment.

The geographical relationship between the Mikurahana gravel pit and the surrounding
area is illustrated in Figure 1. From Figure 1, it is evident that there are settlements and
roads in the immediate vicinity of the gravel pit. The Mikurahana gravel pit conducts
up to two blasts daily, making the surrounding areas susceptible to the effects of ground
vibrations from these blasts.

Figure 1. Mikurahana quarry site.

A schematic of the blasting design at the Mikurahana gravel pit is shown in Figure 2.
The scale of blasting is relatively small compared to overseas standards, with approximately
125 kg of explosives used for a single blast and a bench height of 10 m. The hole spacing is
around 2–2.4 m, with blast hole lengths ranging from 9 to 9.5 m. Explosive materials such
as ANFO, water gel explosives, and electric detonators are employed. The design includes
five vertical holes and several horizontal holes, with a blasting interval of 25 mm/s. The cor-
responding vertical and horizontal holes are detonated simultaneously. From the obtained
blast design information, geographical conditions during ground vibration measurements,
and parameter values such as Peak Particle Velocity (PPV), we created a measurement data
matrix to analyze the impact of these blasts.
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Figure 2. Blast design at target site.

3.2. Data

Table 2 presents the types of data used for the measurement data matrix. In addition
to the PPV, the parameters include the maximum instantaneous charge (MIC), which
indicates the amount of explosive that detonates within 8 mm/s; the distance from the
blasting point to the measurement point; the elevation difference between the blasting and
measurement points; the direction, which denotes the angle of the line drawn between the
blasting and measurement points; and the latitude and longitude of both the blasting and
measurement points, totaling nine parameters. All these data were collected at 100 points
around the Mikuranoseki quarry. Based on these data, we utilized a measurement data
matrix (100 rows × 9 columns), where the rows represent measurement points and the
columns represent the parameters.

Table 2. Data used in the measurement data matrix.

Parameter [Unit] Overview Max Min Ave.

PPV [mm/s] Peak Particle Velocity 1.81 0.184 0.625
MIC [kg] Amount of explosive used simultaneously within 8 ms 32.5 23.0 26.1
Distance [m] Parallel distance from the blasting point to the measuring point 482 207 350
Difference elevation [m] Difference in elevation between the blasting point and measuring point 44.0 1.00 19.2

Direction [°] Angle of the line connecting the blasting point to the measuring point
(North = 360°) 349 18.7 290

Blast-latitude [°] Latitude of the blasting point 39.988 39.985 39.986
Blast-longitude [°] Longitude of the blasting point 140.08 140.08 140.08
Measure-latitude [°] Latitude of the measuring point 39.990 39.985 39.988
Measure-longitude [°] Longitude of the measuring point 140.07 140.08 140.08

4. Measurement of PPV
4.1. Collection of Ground Vibration Data

In this section, we discuss the method of collecting ground vibration data. To mea-
sure the ground vibrations caused by blasting, devices were placed in contact with the
ground. Figure 3 shows a schematic of the experimental setup. The instruments for
measuring ground vibrations due to blasting include the three-axis micro vibration de-
tector MODEL-2205B (dimensions: 150 mm × 100 mm × 80 mm) by Showa Measuring
Instruments Co. Tokyo, Japan) and accelerometers 608T No.E189, 608T No.E190 (dimen-
sions: φ 13.8 mm × H 25 mm, resonance frequency: 30 kHz), 708LF C516, 708LF C518
(dimensions: φ 13.8 mm × H 28 mm, resonance frequency: 50 kHz) by Teac Corporation
Tokyo, Japan). Although only one Teac accelerometer is illustrated in Figure 3, two–four
accelerometers were used during measurements to increase measurement points. The am-
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plifier used was Teac’s SA-611 CHARGE AMPLIFIER and the data logger used was the
DM3100 by GRAPHTEC (Yokohama, Japan). The OPS021 application by the same company
was used to set the measurement conditions. Using these devices, ground vibrations due to
blasting were measured. When using the data logger outdoors, the engine was turned off
and the ACC power source was used to eliminate the effects of vibrations from vehicles.

Figure 3. Schematic diagram of experimental devices.

Figure 4a shows the ground vibration data measurement points used in this study.
The map is cited from Google Maps. For the collection of ground vibration data, the measur-
ing devices shown in Figure 4a were installed at about 50 points located around the marked
quarry. Although the map indicates approximately 50 measurement points, in reality, multi-
ple accelerometers were used at the same location, resulting in data from 100 measurement
points. Typically, ground vibrations due to blasting decrease as the distance from the
blasting point increases. Therefore, it is essential to set the measuring devices in advance to
avoid measurement failures. The OPS021 settings used for data collection can be broadly
categorized into amplifier settings, trigger settings, and memory settings. Figure 4b–d show
the settings screens for the amplifier, memory, and trigger, respectively. In the amplifier
settings (Figure 4b), one can set the name, input, range, and filter for each channel (CH).
The name can be set freely for each CH. For the input, one can choose between DC and AC,
with AC being chosen for this data collection. The accelerometers used in this experiment
output vibration values in volts (V or mV). The range indicates the upper and lower limits
of the vertical axis (voltage values) when displaying the measured ground vibration waves
in the application. Care must be taken when setting this range; if the set range is exceeded,
it becomes impossible to measure the peak vibration values. A range of 500 mV was set for
collecting ground vibration data. Meanwhile, the filter excludes vibrations of a frequency
higher than the set value, which helps in avoiding noise (high-frequency vibrations) and
simplifying data processing. In this study, a filter of 500 Hz was set, so vibrations above
500 Hz were not measured.

In the memory settings (Figure 4c), one sets the sampling interval (sampling frequency),
block size, and measurement duration. The sampling frequency indicates the interval for
measuring vibration values, which affects the vibrational values that can be measured.
Generally, the sampling frequency must be set to a value at least twice as high as the
frequency one wishes to measure. Ground vibrations due to blasting are known to fall
between 10 and 200 Hz and are known to be high-frequency waves compared to natural
earthquakes. Considering these facts, the sampling frequency was generously set to 10 kHz
for the collection of ground vibration data. The block size indicates how many times
the measurement time is divided, and the measurement duration is determined by the
sampling frequency and block size.

In the trigger settings (Figure 4d), one can set the timing (trigger) to start the mea-
surement in percentage terms. Specifically, measurement starts when a vibration larger
than the percentage value of the range set in the amplifier settings is detected. To ensure
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no vibrations before the start of the measurement are missed, a pre-trigger can be set in
percentage terms. Vibrations occurring a percentage of the measurement time set in the
memory settings before the triggers are recorded. In this study, the trigger and pre-trigger
were set to 8% and 10%, respectively. After the measurement, the data were saved to
a computer in comma-separated value (CSV) format. The location where the vibration
measurement took place was also recorded on a Google Maps map, and the latitude and
longitude coordinates of that measurement point were recorded simultaneously.

(a)

(b)

(c)
(d)

Figure 4. Various settings and data points: (a) measuring points for vibration data; (b) amplifier set-
tings; (c) memory settings; (d) trigger settings.

4.2. Conversion to Peak Particle Velocity (PPV)

This section details the methodology for processing ground vibration data acquired
from quarry operations, utilizing Origin 2021 spreadsheet software. Raw data, in CSV
format, was initially imported into Origin, presenting as voltage values. A sampling rate
set at 10 kHz allowed for time series creation at 0.0001-s intervals, subsequently enabling
the generation of graphs for time-dependent voltage, acceleration, and velocity. Figure 5a
exemplifies a time–voltage graph for Z-axis ground vibrations, captured via a tri-axial
micro-vibration detector.
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Utilizing the detector’s calibration coefficient of 2, voltage readings were transformed
into acceleration units, depicted in a time–acceleration graph in Figure 5b. Velocity metrics
were calculated by integrating the acceleration figures, an example of which is provided in
Figure 5c, identifying the peak amplitude as the “Peak Particle Velocity” (PPV).

In instances of observed irregularities in the time–velocity graph, noise reduction
was critical. This was accomplished with Origin’s Fast Fourier Transform (FFT) filter,
particularly the band-pass type. A preliminary FFT analysis, converting time–velocity data
to a frequency–amplitude graph, identified the significant frequency bands in the vibration
data, essential for effective noise filtration. Figure 5d displays an FFT spectrum, highlighting
a dominant 20–40 Hz frequency range, confirming these as the main contributors to blast-
related ground vibrations. This insight directed the subsequent filtration of extraneous
frequencies from the time–velocity data, ensuring an accurate PPV determination.

(a) (b)

(c) (d)

Figure 5. Various time-related graphs and Fourier spectrum: (a) time–voltage graph; (b) time–
acceleration graph; (c) time–velocity graph; (d) example of Fourier spectrum.

5. Methodology
5.1. WNMF

WNMF uses the non-negative measurement data matrix A ∈ Rm×n shown in Figure 6.
Here, let the set of measurement points be O = {o1, o2, . . . , om} and the set of parameters
constituting the measurement data be P = {p1, p2, . . . , pn}. aij ∈ {a11, a12, . . . , anm} repre-
sents the value of parameter pj measured at the measurement point oi. Values of parameters
not measured are incorporated into matrix A as missing values (=0). In WNMF, this matrix
A is approximately decomposed into matrices U ∈ Rm×k and V ∈ Rk×n, and their inner
product is taken to predict the missing values (values indicated as 0 in matrix A). This can
be represented by Equation (3) as:

A ≈ UV (3)
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Here, k denotes the rank, which is smaller than m or n. Generally, as the rank increases,
the prediction accuracy of the missing values increases, and as the rank decreases, the pre-
diction accuracy decreases. However, too large a rank may increase the computational
load and reduce prediction accuracy. Therefore, it is important to choose an appropriate
rank when executing WNMF. WNMF is a learning method that aims to improve prediction
accuracy for missing values by using only measured value elements [30]. WNMF learns
matrices U and V by solving the optimization problem defined by Equation (4):

min
U,V
‖W ◦ (A−UV)‖2

F (4)

Here, initial values of matrices U and V are given randomly. Furthermore, ◦ represents
element-wise matrix multiplication, and ‖ · ‖F denotes the Frobenius norm of a matrix.
The matrix W ∈ Rm×n represents a weight matrix and is defined by Equation (5):

wij =

{
1 if aij ∈ Ao

0 if aij ∈ Au (5)

Here, Ao represents the set of measured values contained in matrix A, and Au rep-
resents the set of missing values contained in matrix A. Thus, when wij = 1, it indicates
that it is used for learning, and when wij = 0, it indicates that it is not used for learning.
The optimization problem in Equation (4) can be solved by updating matrices U and V t
times until they converge, using Equations (6) and (7):

u(t)
ik = u(t−1)

ik
(W · A(t−1))V(t−1)T

ik

(W ·U(t−1)TV(t−1)T)V(t−1)T
ik

(6)

v(t)kj = v(t−1)
kj

U(t−1)T(W · A(t−1)T)ik

U(t−1)T(W ·U(t−1)TV(t−1))ik
(7)

Figure 6. Memory settings.

5.2. Prediction of PPV Using WNMF

WNMF allows for the prediction of any parameter value by replacing it with a missing
value. By leveraging this feature, our proposed method integrates the PPV of the prediction
site as a missing value in the matrix. This matrix is then approximated by WNMF to predict
PPV. Figure 7 illustrates the flow of PPV prediction using WNMF. The matrix shown in the
bottom right of Figure 7 represents measurement data using three parameters: PPV, amount
of explosives, and distance. This shows the matrix calculation process in our proposed
method. From Figure 7, our approach is divided into four steps: 1—data collection; 2—data
processing; 3—matrix creation; 4—PPV prediction. Each step is detailed below.
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Figure 7. Memory settings.

5.2.1. Step 1: Data Collection

Here, values for each parameter are measured at the target site. Ground vibration data
resulting from blasting are converted to PPV. The type of parameter other than PPV can
be arbitrarily chosen. In this study, we utilize nine parameters: MIC, distance, elevation
difference, direction, latitude of the blasting site, longitude of the blasting site, latitude of
the measurement site, and longitude of the measurement site.

5.2.2. Step 2: Data Processing

In Step 1, the range of values varies greatly for each parameter. Therefore, if these
measurement data are used directly in WNMF, the learning may not proceed properly,
potentially reducing the accuracy of PPV prediction. Thus, in Step 2, to apply WNMF
for PPV prediction, normalization using ANN is performed on the measurement data
from Step 1. Figure 8 presents a conceptual diagram of the neural network. During the
learning process of the neural network, parameters are first input at the input layer. Then,
in the hidden layer, “weights” are applied to each parameter, forming hidden neurons.
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The number of these hidden neurons can be pre-specified. Based on these hidden neurons,
a single predicted value (PPV) is output in the output layer. The output predicted value is
compared with the actual value to calculate the error. The neural network is then feedback-
adjusted to optimize the “weight magnitude” for each parameter. This is the learning
cycle of ANN. In our proposed method, the “weight magnitude” calculated by this ANN
is quantified as the degree of influence on PPV, and the normalization value range is
changed according to this weight magnitude. Parameters with a large influence on PPV are
prioritized, and their normalization value range is made larger to prioritize their learning
in WNMF. The method of normalization is min–max normalization. When aligning the
value aij of the parameter at measurement point oi to an arbitrary value range [bmax, bmin],
the normalized value Normalized(aij) is determined using Equation (8).

Normalized(aij) =
aij −min(pj)

max(pj)−min(pj)
(bmax − bmin) + bmin (8)

Here, pj indicates the set of values for the jth parameter. max(pj) represents the
maximum value of pj, and min(pj) denotes its minimum value. In our proposed method,
the impact on PPV is evaluated in three stages. Parameters with the highest influence have
their normalization value range set to [1, 11], the second highest to [1, 6], and all other
parameters to [1, 2]. The normalization value range for PPV is also set to [1, 2].

Figure 8. Memory settings.

5.2.3. Step 3: Matrix Creation

In Step 3, a measurement data matrix is created based on the normalized parameter
values. At this point, the PPV of the prediction site is integrated into the measurement data
matrix as a missing value (shown as 0 in Figure 8). By applying WNMF to this measurement
data matrix, the missing PPV can be predicted.

5.2.4. Step 4: PPV Prediction

In Step 4, the measurement data matrix, which includes missing values, is approxi-
mated into two matrices using WNMF. These approximated matrices are in a state where all
values are filled. By multiplying these two matrices, the missing PPV is predicted. This is
tried for all possible ranks, and the prediction error of PPV is calculated each time. The rank
with the smallest prediction error is regarded as the optimal model, and the PPV value at
that time is the final prediction result. Our proposed method can accommodate changes in
quarry shape or the surrounding environment through integrating and corresponding.
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6. Experiments and Results
6.1. Determination of Normalized Value Range

To determine the normalized value range for each parameter, training was performed
using an ANN. The data used were measurements from 100 sites collected at the Mikura-
hana Quarry in Akita Prefecture. These data were divided into training data, validation
data, and test data at a ratio of 80:10:10, respectively, and learning was conducted using
MATLAB 2021. During the training of the ANN, the number of hidden neurons that make
up the hidden layer of the neural network was varied as 2, 4, 6, 8, 10, and 12 to compare
the prediction accuracy of each model. The mean square error (MSE) and the coefficient
of determination (R2) were used as evaluation metrics. A prediction model with an MSE
close to 0 and R2 close to 1 indicates a high prediction accuracy for PPV. As a result of
the training, the predictive model with six hidden neurons showed the highest accuracy.
Table 3 shows the learning results of the ANN. As shown in Table 3, the predictive model
with six hidden neurons had an MSE of 0.0245 and R2 of 0.8740, showing higher accuracy
compared to other models. The sum of the weights (absolute values) of each parameter
extracted from the predictive model with six hidden neurons is shown in Figure 9. As a
result, it became clear that the weights of “MIC”, “Distance”, and “Longitude of the mea-
surement point” were relatively large. Furthermore, although the weight for “Direction”
was not as large compared to the previous three parameters, it showed a larger weight than
the other parameters. Based on these results, it was judged that these four parameters have
a large influence on PPV. Therefore, the normalization value ranges for “MIC”, “Distance”,
and “Longitude of the measurement point”, which had the largest total weight value, were
set to [1, 11], “Direction” to [1, 6], and all other parameters to [1, 2].

Figure 9. Memory settings.

Table 3. Comparison result of prediction model.

Hidden Neuron MSE R2 Best Epoch

2 0.0587 0.493 4
4 0.0381 0.837 8
6 0.0245 0.874 17
8 0.0816 0.605 5
10 0.123 0.724 9
12 0.121 0.566 7
14 0.200 0.497 3

6.2. Effectiveness of Normalization Using ANN

To verify the effectiveness of normalization using an ANN, the prediction accuracy of
PPV under three conditions was compared: the proposed method (Nor-ANN), a method in
which the normalization value range of parameters is uniformly set to [1, 11] (Nor-1-11),
and a case where normalization is not performed (Nor-None). In the experiment, PPV
data randomly extracted from the measurement data matrix was replaced with unmea-
sured values (=0), and PPV prediction was performed using WNMF. This allowed for a
comparison between the actually measured PPV and the predicted PPV. The number of
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unmeasured values (hereafter referred to as the number of unmeasured values) was set to
10, and the prediction accuracy of the WNMF for the number of unmeasured values was
compared under each condition. When executing WNMF, the rank number was changed
from 1 to 8, and the prediction accuracy for each rank was calculated. When comparing
each condition, the rank with the highest prediction accuracy was used. The Root Mean
Squared Error (RMSE) was used as an evaluation metric for prediction accuracy. RMSE is a
metric commonly used to evaluate the prediction accuracy in recommendation systems.
The calculation formula for RMSE is shown in Equation (9).

RMSE =

√
1
t ∑ (Y− Ŷ)2 (9)

where Y represents the actual value of PPV, Ŷ represents the predicted value of PPV, and t
represents the number of missing values. As a result of WNMF, when normalization was
performed using ANN, a higher prediction accuracy was shown than when normalization
was uniformly performed or when normalization was not performed. Table 4 shows the
PPV prediction results using WNMF. RMSE indicates higher prediction accuracy as the
value is smaller. As shown in Table 4, Nor-ANN, Nor-1-11, and Nor-None all showed
the smallest RMSE at rank 7. As a result of comparing the RMSE of each condition at
rank 7, Nor-ANN showed a smaller value than Nor-11 or Nor-None. The results comparing
the error ranges (difference between the actual value and the predicted value) for each
condition are shown in Table 5. As a result, the error range of Nor-ANN was from −0.2281
to 0.2024, and the difference was 0.4306. This shows a smaller error range than Nor-1-11
or Nor-None. Through the above results, it became clear that the prediction accuracy of
PPV improves more when normalized using ANN than when normalized uniformly or
not normalized.

Table 4. Prediction results of PPV using WNMF (comparison between Nor-ANN and Nor-1-11,
Nor-None).

Number of Rank Nor-ANN Nor-1-11 Nor-None

1 0.509 0.313 0.359
2 0.520 0.299 0.332
3 0.517 0.297 0.318
4 0.264 0.366 0.272
5 0.184 0.357 0.269
6 0.245 0.448 0.362
7 0.143 0.273 0.222
8 0.225 0.341 0.275

Table 5. Range of error for Nor-ANN, Nor-1-11, and Nor-None.

Cases
Range of Error

Difference
Min Max

Matrix100 −0.226 0.410 0.636
Matrix80 −0.334 0.188 0.522
Matrix60 −0.310 0.106 0.417
Matrix40 −0.784 0.899 1.683
Matrix20 0.476 1.273 0.798

6.3. Relationship between the Amount of Data and Prediction Accuracy

In this section, we examined the relationship between the amount of data used in the
measurement data matrix and the prediction accuracy of the proposed method. Weighted
Non-negative Matrix Factorization (WNMF) is a form of unsupervised learning. It can
perform matrix factorization (i.e., prediction) even with a small amount of data. However,
previous studies have not clearly shown how much the amount of data affects the predic-
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tion accuracy of WNMF. For this purpose, we prepared several measurement data matrices
with different numbers of measurement points (rows) and conducted PPV prediction using
WNMF. This allows us to verify the prediction accuracy of the proposed method according
to the amount of data used in the measurement data matrix. Specifically, against the Ma-
trix100 (100 rows × 9 columns) which uses all measurement data, we prepared conditions
of Matrix20 (20 rows × 9 columns), Matrix40 (40 rows × 9 columns), Matrix60 (60 rows
× 9 columns), and Matrix80 (80 rows × 9 columns). The measurement points (rows) to
be deleted were randomly selected. Note that the measurement data of 100 points used
in Matrix100 is one of the benchmarks for the amount of data required to create a PPV
prediction model using ANN (refer to Section 2.2). Therefore, by comparing the prediction
accuracy of PPV using Matrix100 and other conditions, we can clarify the effectiveness of
the proposed method.

As for the experimental method, as in the previous experiment, 10 PPV data points
were randomly extracted from each measurement data matrix condition and replaced with
unmeasured values, and PPV prediction was performed using WNMF. When executing
WNMF, the rank number was changed from 1 to 8, and the prediction accuracy for each
rank was calculated. When comparing each condition, the rank with the highest prediction
accuracy was used. RMSE was used as the evaluation metric for prediction accuracy.

As a result of WNMF, higher prediction accuracy was shown when using a smaller
amount of data (60, 80 points) than the amount of data required for ANN learning
(100 points of measurement data). On the other hand, low prediction accuracy was shown
when using an extremely small amount of data (20, 40 points). Table 6 shows the PPV
prediction results using WNMF. From Table 6, Matrix100, Matrix80, and Matrix40 showed
the smallest RMSE at rank 7, Matrix60 at rank 6, and Matrix20 at rank 4. Therefore, this rank
was used for comparison of prediction accuracy. As a result of comparing the prediction
accuracy of Matrix100 with other conditions, Matrix80 and Matrix60 showed a smaller
RMSE than Matrix100. On the other hand, conditions with extremely small amounts of
data, Matrix40 and Matrix20, showed a larger RMSE than Matrix100. Table 6 shows the
results of comparing the error range of each condition. As a result, Matrix80 and Matrix60
showed a smaller error range than Matrix100. On the other hand, Matrix40 and Matrix20
showed a larger error range than Matrix100.

Table 6. Prediction results of PPV using WNMF (Comparison between Matrix100 and Matrix20–80).

Number of Rank
RMSE

Matrix100 Matrix80 Matrix60 Matrix40 Matrix20

1 0.463 0.490 0.578 0.524 0.715
2 0.469 0.554 0.605 0.432 0.507
3 0.453 0.352 0.602 0.330 0.519
4 0.279 0.261 0.370 0.394 0.363
5 0.278 0.204 0.289 0.468 55,392.383
6 0.278 0.166 0.138 0.494 0.369
7 0.176 0.166 0.286 0.411 0.393
8 0.255 0.307 0.290 0.493 0.668

From the above results, it became clear that by using the proposed method, it is
possible to predict PPV with a smaller amount of data (60, 80 points) than the amount of
data (100 points of measurement data) required for ANN learning. On the other hand, it
became clear that the prediction accuracy of the proposed method decreases when using
an extremely small amount of data (20, 40 points).

7. Discussion
7.1. Rank

In this experiment, the highest prediction accuracy was often observed when the
rank was either 6 or 7, suggesting that an appropriate rank was selected. Many matrix



Appl. Sci. 2023, 13, 12674 15 of 17

factorization methods, including WNMF, have the characteristic of changing prediction
accuracy depending on this rank. Generally, it is said that as the rank number increases,
the prediction accuracy improves, and as the rank number decreases, the prediction accu-
racy drops [23]. However, an excessively large rank number might increase the computa-
tional cost, possibly reducing the prediction accuracy. Thus, selecting the appropriate rank
number is crucial. In this experiment, the prediction accuracy was compared by changing
the rank number from 1 to 8. Given that the highest prediction accuracy was observed
at ranks 6 and 7, it can be inferred that the appropriate rank was chosen. Nonetheless,
such a trial-and-error method requires significant time and computational cost. Assuming
that the proposed method is used in actual settings, this approach could pose a significant
challenge. Therefore, future research needs to develop a method to estimate the rank before
executing WNMF. Already, cases where the rank is estimated before matrix factorization
have been reported [23]. Building on these, the development of an optimal rank estimation
method and the improvement of the proposed method are future challenges.

7.2. Normalization

Without normalization, the PPV prediction accuracy declined compared to using
ANN for normalization. A possible reason is that the value ranges differed significantly
among parameters, making it challenging to lead to an appropriate solution. In WNMF,
the difference between the original matrix and the decomposed matrix is defined as the
loss function, and updates are repeated to minimize it. If the value range in the original
matrix varies greatly due to parameters, the computational cost increases, and there might
be cases where it does not converge to the optimal solution. The data used in this study
varied greatly in value range depending on the parameters, which could have led to a
decline in prediction accuracy. Moreover, uniformly performing normalization resulted in
a lower PPV prediction accuracy compared to using ANN for normalization. This could be
attributed to setting the same normalization value range for all parameters. Despite each
parameter possibly having different impacts on the PPV, the same normalization range
was set for all parameters. It can be presumed that focusing on learning from parameters
that have a significant impact on PPV would improve prediction accuracy. In contrast,
with ANN-based normalization, the weights calculated by ANN were quantified as the
impact on PPV, and the normalization value range was varied according to those weights.
As a result, it’s conceivable that normalization using ANN resulted in higher prediction
accuracy than uniform normalization.

7.3. Data Volume

In this experiment, Matrix100 showed a decline in PPV prediction accuracy compared
to Matrix80 or Matrix60, which had less data. This might be because the large volume of
data increased the computational load for WNMF, preventing the solution from converging.
As previously mentioned, WNMF is an optimization problem that minimizes a loss function.
However, this loss function may have local minima, and repeating the calculations might
lead to different results [30]. In this experiment, since Matrix100 had more data than
other matrices, it might have converged to a local solution. On the other hand, the PPV
prediction accuracy for Matrix20 was clearly lower than for other matrices. The PPV
prediction accuracy at rank 5, in particular, dropped significantly. This could be because
the data volume used for the matrix was extremely limited, making WNNMF learning
inadequate and preventing the solution from converging. Thus, while WNMF can learn
with less data compared to ANN, there is a potential for non-convergence with extremely
limited data.

8. Conclusions

In this study, we proposed a PPV (Peak Particle Velocity) prediction method using
Weighted Non-negative Matrix Factorization (WNMF) based on measurement data from
urban crushed stone sites. The method was further enhanced by normalization with
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Artificial Neural Networks (ANNs) to improve PPV prediction accuracy. This approach
is particularly useful in scenarios where extensive measurement data are unavailable or
contain missing values. The effectiveness of the proposed method was verified through
various experiments, leading to the following key findings:

1. Normalization with ANN resulted in higher accuracy compared to non-normalized
methods. The PPV prediction error (root mean square error—RMSE) improved from
0.2219 to 0.1426.

2. The method demonstrated high accuracy even with reduced measurement data
(60 points) for ANN learning, decreasing the PPV prediction error from 0.1759 (with
100 points) to 0.1378 (with 60 points).

3. The accuracy decreased when using extremely small amounts of measurement data
(20 points), with the PPV prediction error increasing from 0.1759 (100 points) to 0.3630
(20 points).

Moreover, our proposed method is versatile, capable of predicting any parameter
within the matrix. This feature can extend its application beyond PPV prediction. For in-
stance, it can estimate the amount of explosives within a specific vibration value or predict
the reach of vibrations over distance. We anticipate its future role as a valuable tool in blast-
ing design for blasters. Further research should concentrate on enhancing the predictive
accuracy and functional aspects of this method as a system.

Previous PPV prediction models, which relied on experimental, statistical methods,
and ANN, faced issues like low prediction accuracy or the necessity for extensive data for
accurate modeling. This study’s comprehensive verification of our method using actual
data from urban crushed stone sites suggests a potential resolution to these longstand-
ing challenges.

Nevertheless, our proposed method can be improved, particularly in establishing a
rank estimation method for WNMF execution. The current practice of testing all conceivable
ranks to select the one with the smallest prediction error is impractical due to its time
and computational demands. Future research should aim to establish a more efficient
rank estimation method, refining our approach into a highly accurate and universally
applicable tool.
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