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Abstract: One of the fundamental goals of materials science is to understand and predict the formation
of complex phases. In this study, FeSi2 is considered as an illustration of complex phase formation.
Although Fe and Si both crystallize with a simple structure, namely, body-centered cubic (bcc A2)
and diamond (A4) structures, respectively, it is rather intriguing to note the existence of two complex
structures in the Si-rich part of the phase diagram around FeSi2: α-FeSi2 at high temperatures (HT)
with a slight iron-deficient structure and β-FeSi2 (also referred to as Fe3Si7) at low temperatures
(LT). We re-analyze the geometry of these two phases and rely on approximant phases that make the
relationship between these two phases simple. To complete the analysis, we also introduce a surrogate
of the C16 phase that is observed in FeGe2. We clearly identify the relationship that exists between
these three approximant phases, corroborated by a ground-state analysis of the Ising model for
describing ordering that takes place between the transition metal element and the “vacancies”. This
work is further supported by ab initio electronic structure calculations based on density functional
theory in order to investigate properties and transformation paths. Finally, extension to other alloys,
including an entire class of alloys, is discussed.

Keywords: complex alloys; stability; phase transformation; crystallography

1. Introduction

Knowledge accumulated over decades of preparation and characterization of a vast
number of inorganic compounds has been used to predict new structures, and consequently,
new ways of looking at complex structures have emerged. As a general rule, despite the
complexity and the incredible stoichiometry of some of these compounds [1,2], simpler
structures can be utilized to characterize them. One promising approach that follows
Hilbert’s ideas on geometry [3,4] has been to describe them in terms of polyhedral packing,
and this has given rise to various topological approaches [2,5–8]. However, defects, which
are so important to understanding the formation of many of these structures, are not
yet fully appreciated. One other class of approaches used to confirm and predict the
formation of a complex structure (i.e., for specific chemical composition, temperature, and
pressure, and possibly other external variables for which a structure displays the lowest
minimum Gibbs energy) is to make use of modern tools based on quantum mechanics
and computational optimization that rely on the calculation of Gibbs free energy and the
exploration of the energy landscape. Finally, the use of empirical correlations and data
mining can be useful to establish structural maps and predict, to some extent, new alloy
compositions among structures, being part of the already-existing catalog on which the
maps are based.

Appl. Sci. 2023, 13, 12669. https://doi.org/10.3390/app132312669 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312669
https://doi.org/10.3390/app132312669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5290-6136
https://orcid.org/0000-0002-5280-003X
https://doi.org/10.3390/app132312669
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312669?type=check_update&version=3


Appl. Sci. 2023, 13, 12669 2 of 24

In this work, we ask the following question: Starting from simple, structure-based
pure elements that make up an alloy at a given composition, what is the pathway to a struc-
tural transformation that leads to the formation of a complex structure at thermodynamic
equilibrium for some specific alloy compositions? To better justify this question, here are
some facts: Very often, the mixture between a transition metal (TM) and an sp-type element
leads to the formation of simple (ordered) phase(s) for TM-rich alloys, whereas complex
phases form for sp-like element-rich alloys. Note that Zn is not a TM, despite being part of
the d block.

Examples include Al-Ni, Al-Cu, Cu-Zn, Fe-Zn (not shown here), and Fe-Si, whose
assessed phase diagrams are displayed in Figure 1 (Refs. [9–14], respectively).
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In the case of Al-Ni, where both Al and Ni are face-centered cubic (fcc) elements, com-
plex phases are stabilized on the Al-rich side of the diagram beyond a body-centered, cubic
(bcc)-based, ordered-phase B2 (CsCl-type, cP2, Pm-3m) around an equi-atomic composi-
tion with two compounds, Al3Ni (D011, Fe3C-type, oP16, Pmma), and Al3Ni2 (D513-type,
Al3Ni2-type, hP5, P-3m1), whereas in the Ni-rich region of the diagram, an fcc-based,
ordered-phase L12 (L12, AuCu3-type, cP4, Pm-3m) forms.

For Al-Cu, once again, both of the pure elements exhibit an fcc structure, whereas at
least nine complex phases form at various alloy compositions, particularly a tetragonal
θ-Al2Cu-phase (CuAl2-type, tI12, I4/mcm, C16) also found in FeGe2.

For Cu-Zn, Cu and Zn exhibit fcc and hexagonal close-packed (hcp) structures, respec-
tively, whereas an ordered bcc-based B2 phase forms around the equi-atomic composition,
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and three complex phases form in the Zn-rich part of the phase diagram: D82-γ (Cu5Zn8-
type, cI52, I-43m), δ (CuZn3 (at HT), hP3, P-6), and A3-ε (Mg-type, hP2, P63/mmc), which
is, in fact, based on a distorted hcp structure.

In the case of Fe-Zn, the pure elements are based on bcc (low-temperature phase) and
hcp structures, respectively, whereas, as a function of alloy composition, four complex
phases form: D82-Γ (Cu5Zn8-type, cI52, I-43m), D81-Γ1 (Fe3Zn10-type, cF408, F-43m), δ
(hP555, P63/mc), and, finally, ζ (mC28, C2/m).

Finally, in the case of Fe-Si, Fe stabilizes with a low-temperature bcc structure, whereas
Si has a cubic diamond structure (C-type, cF8, Fd-3m). As a function of alloy composition,
at least four complex phases form in this system: on the Si-rich side of the phase diagram,
a semiconducting orthorhombic β-FeSi2 (or Fe3Si7; LT, FeSi2, oS48, Cmca, #64) and a
metallic tetragonal α-FeSi2 (actually a slightly off-stoechiometric-phase α-FeySi2, y < 1,
with vacancies on the Fe sublattice; HT, Fe0.92Si2, tP3, P4/mmm, #123) are present in
addition to a nearby equiatomic-phase ε-FeSi (B20, cP8, space group P213, #198) that is
derived from the rock salt structure (Fm-3m, P213, #225). On the Fe-rich side of the diagram,
Fe5Si3 (Mn5Si3-type, hP16, P63/mcm) and Fe2Si (Ni2Al-type, hP6, P-3m1), and at higher Fe
composition (not shown in Figure 1), ordered B2 and D03 (BiF3-type, cF16, Fm-3m) phases
based on the bcc structure are present. For this binary alloy, besides the two forms of FeSi2,
it is worth noting the observation of the cubic fluorite γ-FeSi2 phase (C1, CaF2-type, space
group, cF12, Fm-3m, #225) that exists in epitaxially stabilized thin-film configuration [15] or
as small coherent precipitates [16,17] due to the small misfit to the silicon substrate lattice
parameter. This phase will be re-examined in Section 2.

These examples illustrate the fact that, for many TM-X alloys where TM is a d-like
transition metal element and X is an sp-like element (e.g., Al, Ge, Si, Zn, etc.), there is
formation of complex phases, especially at X-rich compositions, in contrast to the situation
in TM-rich compositions, where simple (ordered) phases tend to form. This would also
be the case for, e.g., Cu-Ge, Fe-Ge, and Ti-Al, among many others. Therefore, the question
becomes the following: Why is it that, although the pure elements stabilize in a simple
structure such as fcc, bcc, or hcp, complex phases form when these elements become
constituents of an alloy?

Here, we will focus on the following question: Starting from simple, structure-based
pure elements that make up an alloy at a given composition, what is the pathway to a struc-
tural transformation that leads to the formation of a complex structure at thermodynamic
equilibrium around a specific composition? FeSi2 will be used as a template.

First-principles calculations were used to investigate the stability and the structural,
elastic, and electronic properties of β-FeSi2 [18–22], γ-FeSi2 [21,23], and α-FeSi2 [21]. The
first-principles approach and the Debye model were combined to predict the vibrational
thermodynamic contribution for Fe-Si compounds [24]. In a semi-empirical tight-binding
scheme, the total energy and elastic constants of γ-FeSi2 were calculated [25]. This scheme
was also employed to (1) investigate the transformation of the electronic structure when
the original calcium-fluorite structure is distorted into the orthorhombic one [26], and
(2) analyze the leading role of the electron–phonon interaction in promoting the structural
distortion from fluorite (γ-) to orthorhombic β-FeSi2 [27]. Semi-empirical tight-binding
molecular dynamics simulations were carried out to investigate the γ-to-β structural trans-
formation [23,24], confirming that the driving force leading to the metal–semiconductor
structural phase transition originates from a local Jahn–Teller distortion [28,29].

The literature data were analyzed, and it was concluded that the γ-to-β transformation
path, the behavior of the FeSi2 phases at high temperatures, their stability, and their ther-
modynamic and mechanical properties were not yet investigated in the framework of the
same first-principles approach. To fill this gap, we will use first-principles calculations that
include structural optimization and molecular dynamics to study FeSi2. This will enable us
to explain the origin of the intermediate phases that arise during first-principles molecular
dynamics (FPMD) simulations of the γ and β phases, to suggest possible mechanisms of
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the γ→ β and β→ α transformations and to analyze the thermodynamic and mechanical
properties of FeSi2 phases.

The paper is organized as follows. In Section 2, we revisit the crystallography of
the two polytype forms of FeSi2, and define simpler forms (approximants) of these two
compounds with their relationships to other possible related phases. In Section 3, we
present the details of first-principles calculations. In Section 4, the structural, mechanical,
thermodynamic, and electronic structural properties of the α, β, and γ forms of FeSi2 are
presented. Finally, in Section 5, a summary of the present study is discussed.

2. Crystallographic Examination and Relationships

As was said before, there are two polytypes of bulk crystalline iron disilicide (FeSi2):
the semiconducting orthorhombic β-phase (oS48, space group Cmca, #64), stable below
TC~1275.5 K (1002.5 ◦C), and the metallic tetragonal α-phase (tP3, space group P4/mmm,
#123; α-FeySi2, (y < 1 − ν), with vacancy composition, ν, on the Fe sublattice, stable above
1233 K (960 ◦C) and up to 1484 K (1211 ◦C), in addition to a nearby equiatomic-phase ε-FeSi
(cP8, space group P213, #198), stable up to 1682 K (1409 ◦C). The thermodynamic reactions
that take place in the Si-rich part of the phase diagram are:

eutectoid: α-FeSi2 → β-FeSi2 + Si at 1233 K (960 ◦C)
peritectoid: ε-FeSi + α-FeSi2 → β-FeSi2 at 1275.5 K (1002.5 ◦C)
eutectic: liquid→ α-FeSi2 + FeSi at 1479 K (1206 ◦C)
eutectic: liquid→ α-FeSi2 + Si at 1482 K (1209 ◦C)
congruent melting: α-FeSi2 → liquid at 1484 K (1211 ◦C)

The orthorhombic β-phase has 48 atoms in the unit cell with the following lattice
parameters: a = 9.863, b = 7.791, and c = 7.833, in Å [30,31], described in Table 1 with 16 Fe
sites and two types of Fe sites (Fe1 and Fe2), and with 32 Si sites with two types of Si sites
(Si1 and Si2). This complex structure can be viewed in a first approximation as a stacking
of Si-occupied cubes of parameter a′ = a/4 with an alternate occupation of the cube centers
by Fe and vacancy, V . A detailed description of this structure can be found in Ref. [30].

Table 1. Description of the β-FeSi2 structure with cell content of (0 0 0) + (1/2 1/2 0) and the
coordinates of the current (C) structure in units of the lattice parameters a, b, and c of the 24-atom
unit cell, and those of the approximant (A) one within the unit cell.

Site xC yC zC xA yA zA

Fe1 0.2146 0 0 1/4 0 0
Fe, 8d Fe1 0.7854 0 0 3/4 0 0

Fe1 0.7146 0 1/2 3/4 0 1/2
Fe1 0.2854 0 1/2 1/4 0 1/2

Fe2 1/2 0.3086 0.1851 1/2 1/4 1/4
Fe, 8f Fe2 0 0.3086 0.3149 0 1/4 1/4

Fe2 1/2 0.1914 0.6851 1/2 1/4 1/4
Fe2 0 0.1914 0.8149 0 1/4 3/4

Si1 0.1282 0.2746 0.0512 1/8 1/4 0
Si1 0.8718 0.2746 0.0512 7/8 1/4 0
Si1 0.6282 0.2746 0.4488 5/8 1/4 1/2

Si, 16g Si1 0.3718 0.2746 0.4488 3/8 1/4 1/2
Si1 0.1282 0.2254 0.0512 1/8 1/4 1/2
Si1 0.8718 0.2254 0.0512 7/8 1/4 1/2
Si1 0.6282 0.2254 0.9488 5/8 1/4 1
Si1 0.3718 0.2254 0.9488 3/8 1/4 1
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Table 1. Cont.

Site xC yC zC xA yA zA

Si2 0.3727 0.0450 0.2261 3/8 0 1/4
Si2 0.6273 0.0450 0.2261 3/8 0 1/4
Si2 0.8727 0.0450 0.2739 7/8 0 1/4

Si, 16g Si2 0.1273 0.0450 0.2739 1/8 0 1/4
Si2 0.6273 0.04550 0.7261 3/8 1/2 3/4
Si2 0.3727 0.04550 0.7261 3/8 1/2 3/4
Si2 0.1273 0.04550 0.7739 1/8 1/2 3/4
Si2 0.8727 0.04550 0.7739 7/8 1/2 3/4

The tetragonal α-phase has two atoms in the unit cell with the following lattice
parameters: a = 2.7047, b = 2.7047, and c = 5.1430, in Å [31–33], described in Table 2 with
one Fe site and one Si site. The α-FeSi2 structure can be viewed as a defected CsCl-type
order with alternate layers of Cs (Fe) in the c direction omitted. As a result, the axial ratio
c/2a is slightly less than unity, and the Si layers are displaced towards each other. Thus
in the [001] direction, the structure is made up of a 44 Fe layer surrounded on either side
by 44 Si layers displaced (a + b)/2 relative to the Fe layer, giving three-layer units. Fe has
eight Si neighbors at a distance of about 2.3 Å, and Si has four Fe neighbors [6]. Note
that α-FeSi2 is a slightly iron-deficient structure and is formed of FeSi8-joined face-sharing
cubes that are very nearly regular (whereas the empty cubes along the c direction, due to
Si-Si bonds, are squeezed). On the other hand, in β-FeSi2, the FeSi8 cubes that are joined by
edge-sharing, as in the fluorite type, are very severely distorted, although the fluorite CaF2
structure (γ-phase) is still recognizable [30].

Table 2. Description of the α-FeSi2 structure with the coordinates of the current (C) structure in units
of the lattice parameters a and c of the 2-atom unit cell, and those of the approximant (A) structure
within the unit cell. V refers to vacancy.

Site xC yC zC xA yA zA

Fe 0 0 0 0 0 0
Si 1/2 1/2 0.280 1/2 1/2 1/4
V 1/2 1/2 0.720 0 0 3/4

To complete the list of possible structures at this 1:2 composition, one would have
expected to find a similar situation for Fe-Ge. This is not the case; instead, a Θ-FeGe2 phase
(C16, Al2Cu-type, tI12, I4/mcm, #140) forms, described in Table 3 with 12 atoms in the unit
cell [34,35]. Figure 2 shows the three phases described so far.

To define approximants for these three structures, small atomic displacements and
local rotations applied to them are required. With the appropriate atomic displacements
applied to the different inequivalent sites of the oC48 β-FeSi2 structure depicted in Figure 2
(such that the coordinates are expressed in units of n/4, where n is an integer), one obtains
a cubic γ-FeSi2 CaF2-type structure, usually defined on an fcc lattice (space group Fm-3m,
#225), given in Figure 3.

If the tetragonality of the tP3 α-FeSi2 structure is ignored and the Si species are located
at the center of the cubes, i.e., if the structure is described on a bcc lattice, the resulting
arrangement of the three different species (Fe, Si, and vacancies, V) is given in Figure 3.

Finally, to complete the description, if one applies two so-called clockwise (z = 1/4) and
anti-clockwise (z = 3/4) Hyde rotations on the Archimedean square antiprisms (indicated
in Figure 2), where tan(δ) = (1 − 4α)/(2 − 4α), with an angle of α~0.1586, δ~14.987◦, and
distance adjustment from d = (2α2 – α + 1/4)1/2 = 0.37644 to 0.35355 (with a unit of a), the
body-centered tetragonal C16 Θ-CuAl2-type structure can also be described on an fcc (or a
bcc) lattice. Indeed, note that for all three cases, the structural representation can be indeed
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described on an fcc or a bcc lattice by considering a Bain transformation [36,37], and the
results are shown in Figure 3.

Table 3. Description of the Θ-CuAl2 structure with the coordinates of the current (C) structure in
units of the lattice parameters of the 12-atom unit cell with 8h Al and 4a Cu (with α = 0.1586), and
those of the approximant (A) structure within the unit cell. V refers to vacancy.

Site xC yC zC xA yA zA

Cu 0 0 0 0 0 0
Cu 1/2 1/2 0 1/2 1/2 0
Cu 1/2 1/2 1/2 1/2 1/2 1/2
Cu 0 0 1/2 0 0 1/2
Al α 1/2 − α 1/4 1/4 1/4 1/4
Al 1/2 − α 1/2 + α 1/4 1/4 3/4 1/4
Al 1/2 − α α 1/4 1/4 1/4 1/4
Al α 1/2 + α 3/4 1/4 3/4 3/4
Al 1 − α 1/2 − α 3/4 3/4 1/4 3/4
Al 1/2 + α 1 − α 3/4 3/4 3/4 3/4
V - - - 1/2 0 0
V - - - 0 1/2 0
V - - - 1/2 0 1/2
V - - - 0 1/2 1/2
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Figure 2. Crystallographic descriptions of β-FeSi2 (top left), α-FeSi2 (top right), and Θ-C16 (bottom).
(For interpretation of the references to colors in this figure, the reader is referred to the web version of
this article).

These three types of ordering on one of the simple cubic sublattices that constitute
the bcc lattice (the other simple cubic sublattice is, in the three cases, fully occupied by the
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Si species) correspond to three possible ground states on the simple cube at composition
c = 1/2 for the overall system given by the formula (TM1-cVc)4Si8. It is also interesting to
note that the three types of chemical arrangements associated with the approximants of
β-FeSi2, α-FeSi2, and Θ can be analyzed as multilayer-type sequencing with one layer of
transition metal and one layer of vacancies (V ) along the (110), (001), or (111) direction,
respectively, as shown in Figure 3.
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TM) along the [001] direction. (For references to colors in this figure, the reader is referred to the web
version of this article).

3. Computational Aspects

First-principles calculations of FeSi2 structures were performed using the quantum
ESPRESSO code [38] imposing periodic boundary conditions. Vanderbilt ultra-soft pseu-
dopotentials were used [39], and the generalized gradient approximation (GGA) of Perdew,
Burke, and Ernzerhof (PBE) for the exchange-correlation energy and potential [40] was
selected. The criterion of convergence for the total energy was 1.36 × 10−6 eV/formula
unit. To speed up the convergence, each eigenvalue was convoluted by a Gaussian with a
width σ = 0.272 eV. The cut-off energy was 489.6 eV. Structural optimization was carried out
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using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [41] by simultaneously
relaxing both the cell basis vectors and the atomic coordinates. Structural optimization was
considered to be complete when the atomic forces were less than 7 meV/Å, the stresses
smaller than 0.05 GPa, and the total energy during the structural optimization iterative
process was changed by less than 1.36 meV. Brillouin zone integration was carried out
using the Monkhorst–Pack special sets of k points with (4 4 4), (8 8 6), (8 8 8), and (4 4 8)
grids for the 48- and 45-atom supercells, tetragonal 3-atom cell, and 12-atom cubic and
monoclinic cells, respectively.

In the first-principles molecular dynamics (FPMD) simulations, we considered the
initial 48-atom tetragonal supercells constructed of the tetragonal 6-atom γ- and α-cells via
the (2 × 2 × 2) translation. One-step FPMD simulations at different temperatures were
carried out using the NPT ensemble (constant number of atoms–pressure–temperature).
Pressure was applied via the Parrinello and Rahman method [42]. The time step was about
10−15 s. The system temperature was kept constant by rescaling the velocity with a tolerance
of ±50 and ±100 K for low- and high-temperature simulations. All structures reached
their time-averaged equilibrium, and afterwards, the total energy and cell volume of the
structures fluctuated only slightly around that equilibrium value. The Γ point was used to
save computing time without compromising on accuracy. After FPMD simulations, all the
structures were relaxed. The β-FeSi2 structure was generated after FPMD simulations of
the 48-atom γ-supercell at 200 K with subsequent relaxation.

The quantum ESPRESSO code was employed to study the phonon spectra of the α-
and γ-phases in the framework of the density-functional perturbation theory (DFPT) [43].
The phonon densities of states (PHDOS) of β-FeSi2 and α-FeSi2 were determined using the
Phonopy code [44]. The elastic moduli were calculated using the ElaStic code [45]. Given
the calculated elastic moduli and cell volumes, the fracture toughness was estimated using
the procedure described in Ref. [46].

Intermediate phases were identified at certain stages of FPMD simulations. The
identification of these structures was carried out via group-theoretical analysis using the
“ISOTROPY” code [47] and following the rule discussed in Ref. [48]. The XcrySden code [49]
was used to visualize the structures. A detailed description of the applied procedures for
the identification of different structures was given in our previous papers [48,50].

4. Results and Discussion
4.1. Ground State Analysis of the Ising Model

Based on the description of the three approximants given in Section 2, ordering pro-
cesses can be treated as a lattice problem, i.e., in terms of an Ising model on the partially
occupied TM-V sublattice, as was successfully carried out in the case of carbide and nitride
compounds [51]. From this point of view, the Si sublattice is ignored in the atomic descrip-
tion of the model. In this Ising model, the configurational (C) part of the energy [52,53] can
be written, up to a constant, as:

∆EC ∼ 1
2∑R qR.JR (1)

where JR is the pair interaction between TM atoms separated by a distance R on the simple
cubic lattice, and qR corresponds to the number of TM atomic pairs. The search for the most
stable ordered structures at T = 0 K for a finite set of interaction parameters and a given
composition reduces to the problem of finding the ground states of this Ising model [52].
This problem has been solved exactly in the case of the simple cubic lattice in the whole
range of interaction parameters and composition with first- and second- [54] and up to
third-neighbor pair interactions [55]. The results of the analysis are shown in Figure 4,
where the ground-state (top) structures are shown together with an ordering map (bottom)
that indicates the zones of existence of the various ground states in the space spanned
by J1 and J2. Most relevant to this study where the focus is on TMSi2, i.e., for which the
composition is set to the generic composition (TM1-cVc)8Si8 with c = 1/2, only three ordered
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configurations are found, namely, phases IV, V, and VI, that correspond to the approximant
of bcc-based β-FeSi2, α-FeSi2, and Θ-C16, respectively. It is worth noting that all three
ordered structures are fully described with only first- and second-pair interactions.
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Figure 4. Ground-state (top) structures as obtained from the analysis of the Ising model described
with first and second nearest neighbor pair interactions J1 and J2, which are defined for one of the
simple cubic (sc) sublattices. This structure analysis applies to the study of the possible ordering
between the Fe species (black circles) and the vacancies (open circles, V ) for the alloy of generic
composition (Fe1-c nc)8Si8. Phases I, IV, V, and VI refer to B2-FeSi (or pure sc Fe; Segregation), and the
bcc-based approximants of β-FeSi2, α-FeSi2, and CuAl2-type (or Θ-C16) of FeSi2, respectively (see
Figure 3). The ordering map (bottom) indicates the zones of existence of the various ground states in
the space spanned by J1 and J2 (see Equation (1)). The labeling of the sites is given in Figure 3. (For
references to colors in this figure, the reader is referred to the web version of this article).

For each position on the {J1,J2} map, the sequence of ordered structures is indicated
within a definite range of composition (here, c = 0 (or 1), 1/4 (or 3/4), or 1/2), and for an
intermediate composition, a most stable structure is identified as a mixture of these ordered
structures. The following are based on the results displayed in Figure 4:

• Phase IV (bcc-based β-FeSi2 or C1) is found for J1 > 0, J2 < 0 and J1 > 0, J2 > 0,
J1/J2 > 1/4;

• Phase V (bcc-based α-FeSi2) for J1 < 0, J2 > 0, 2J2/ < |J1| > 4J2 and J1 < 0, J2 > 0,
|J1| > 2J2;

• Phase VI (bcc-based Θ-C16) for J1 > 0, J2 > 0, J1/J2 < 4.

4.2. Structural Properties

In Figure 5, the 48-atom supercells of the β-, γ-, and α-structures of FeSi2 are displayed
in preparation for the electronic structure-based calculations presented below. Besides
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the small reshuffle of the atoms inside the γ-unit cell (C1, CaF2-type) to obtain the atomic
configuration of the β-phase, it is worth noting that the creation of antiphase boundaries
every two planes along the (100) direction leads to transformation from the approximant
α-FeSi2 to β-FeSi2, and similarly, the creation of antiphase boundaries along the (011)
direction every two planes transforms the approximant β-FeSi2 in the one of the Θ phase
(C16, Al2Cu-type), as shown in Figure 6. Strong similarities between these three structures
are observed despite their original complexity. Below, we will show that γ↔ α and β↔ α

transformations can also occur through monoclinic-type deformation of the unit cells.
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4.3. Electronic Structural Properties

For the FeSi2 phases, the symmetry and the structural and energetic parameters are
summarized in Table 4, and the β-structures that were identified during FPMD simulations
at 1400 K (β-1400) and 1800-200 K (β-1800) are also included.

Table 4. Symmetry and structural and energetic characteristics of different phases of FeSi2: Na is the
number of atoms in a unit cell; a, b, and c are the lattice parameters (in Å); V is the cell volume (in
Å3/atom); ∆ET is the total energy (in eV/atom) relative to that of β-FeSi2. The angles α = β = γ = 90◦,
except for β-1400 (β = 101.33◦) and β-1800 (β = 111.70◦). The α-Fe0.8Si2 structure is represented by
the 48-atom a-supercell in which three Fe atoms were removed.

Structure Na Symmetry a (Å) b (Å) c (Å) V (Å3/atom)
∆ET

(eV/atom)

9.874 7.769 7.819 12.495
β-FeSi2 24 Cmca, #64 (9.863) a (7.791) a (7.833) a (12.540) a 0.0000

(9.869) b (7.774) b (7.846) b (12.540) b

β-1400 12 C2/m, #12 9.612 7.669 4.068 12.247 0.0357
β-1800 6 C2/m, #12 6.889 3.834 6.520 12.584 0.1064

2.705 2.705 5.143 12.541
α-FeSi2 3 P4/mmm, (2.690) c (2.690) c (5.130) c 12.374 0.0564

#123 (2.710) d (2.710) d (5.140) d 12.583
α-Fe0.8Si2 45 P1, #1 2.680 2.680 5.129 12.280 * -
γ-FeSi2 3 Fm3m, #225 5.400 5.400 5.400 13.122 0.1743

(5.400) d (5.400) d (5.400) d (13.122) d

* The cell volume of the 45-atom cell was divided by 48. a Ref [30], experiment; b Ref. [22], DFT; c Ref. [56],
experiment; d Ref. [21], DFT.

Figure 7 shows the densities of states (DOS) of different phases of iron disilicide. We
compared the calculated DOSs with those reported in other theoretical investigations [21,29]
for the stoichiometric α-, β-, and γ-phases, and found that they are in good agreement (not
shown here) with those reported here. Our results show that the β-phase is semiconducting,
while the γ-phase should display metal conductivity. For β-FeSi2, the band gap narrows
with temperature before its disappearance at T = 1800 K. Both α-FeSi2 and α-Fe0.8Si2 exhibit
the properties inherent to semimetals.
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Based on these DFT results, total energies versus atomic volume are displayed for
β-FeSi2, α-FeSi2, and γ-FeSi2, and their bcc- and fcc-based approximant counterparts in
Figure 8. As expected, the stability of FeSi2 increases from Θ-C16 to α, and to β, which is
the ground state at 0 K. Then, the next class of stable structures is bcc based, followed by the
class associated with fcc-based structures. This is a posteriori expected, since intrinsically,
the two constitutive elements, Fe and Si, have the signature of the bcc phase (and not the
fcc one). This result justifies the ground-state analysis of the Ising model discussed in
Section 4.1 on the simple cubic lattice, since the other simple cubic lattice is fully occupied
by Si atoms and therefore can be ignored in the search for ground-state configurations
made of Fe atoms and vacancies.
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As shown in Table 4, the calculated lattice parameters for α-Fe0.8Si2 are closer to those
obtained experimentally for the α-phase than the calculated values for α-FeSi2, which is
explained by the fact that the high-temperature α-phase has vacancies primarily located
on the Fe sublattice [18,57,58]. The most stable phase among those listed in Table 4 is
β-FeSi2. However, there is an unexpected result: the total energy of the intermediate phase,
β-1400, is lower compared to that of the a-phase that was revealed in the experiment at
T > 1240 K [59]. This fact will be discussed below.

4.4. Mechanical Properties

The calculated Hill elastic moduli, Poisson ratio, and fracture toughness are listed in
Table 5 in comparison with those obtained by other authors. A comparison of our data with
the few available experimental results shows that good agreement is observed between the
calculated and experimental characteristics.
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Table 5. Calculated Hill bulk (B), shear (G), and Young (E) moduli (in GPa); Poisson ration (σ); and
fracture toughness (KIC) (in MPa·m1/2) for the α-, β-, and γ-phases of FeSi2.

Structure B G E σ KIC

β-FeSi2
180.8 128.1 310.9 0.21 2.3

(172.8) a (130.1) a (312.0) a (0.20) a

α-FeSi2
177.0 129.4 312.1 0.21 2.3

(172) b (2.5) d

γ-FeSi2
173.5

(167) b 29.8 84.6 0.42 1.1
(206) c

a Ref. [22], DFT; b Ref [21], DFT; c Ref. [25], theory, tight-binding; d Ref. [60], experiment.

Regarding the elastic properties, the small value of G for γ-FeSi2 indicates that this
phase can be unstable against a small shear strain. Given the calculated elastic constants for
the orthorhombic β-FeSi2 phase, the anisotropic factors are estimated [61] for the (100) facet
(A100 = 0.960); for the (010) facet (A010 = 0.943); and for the (001) facet (A001 = 1.013). The
value Ai = 1 suggests completely isotropic properties. In the case of β-FeSi2, we observe
anisotropy for each facet. Judging from the calculated anisotropic factors, most likely
the (010) and (100) facets will be the main sliding planes. Based on the elastic constants,
the linear bulk moduli along the different axes were also estimated: along the a-axis,
Ba = 464.8 GPa; along the b-axis, Bb = 621.8 Gpa; and along the c-axis, Bc = 557.9 Gpa. This
finding indicates that the compressibility of β-FeSi2 is anisotropic.

In Table 5, the estimated fracture toughness is presented for the three phases of FeSi2
in comparison with available experimental values. For α-FeSi2, the predicted value is in
good agreement with the experiment. The fracture toughness of the γ-phase is the smallest
compared to the values of KIC for the α- and β-phases. The latter phases exhibit fracture
toughness comparable to that of TiC (2–3 MPa·m1/2) [46].

4.5. Stability and Thermodynamic Properties

To investigate the stability and thermodynamic properties of the α- and β-phases, we
calculated their phonon densities of states (PHDOS). Since β-FeSi2 is a large-unit system, we
used, for this purpose, the Phonopy code. The calculated phonon spectrum was compared
with that obtained in the theoretical investigation of [24], and we found that they are in
good agreement. For α-FeSi2, the PHDOS was calculated using the DFPT approach for the
3-atom cell and the Phonopy code for the 48-atom supercells. The results are presented
in Figure 9. One can note that, for α-FeSi2, both methods provide similar results, and in
further investigations, the PHDOSs were calculated using the Phonopy code. The gap
between 12 THz and 14.5 THz in the PHDOS of α-FeSi2 is lacking in the spectrum of the
β-phase because of the large number of inequivalent sites with different surroundings.

In Figure 10 the calculated heat capacity as a function of temperature is shown for the
β-phase in comparison with the experimental results [62,63]. Although the experimental
data are scattered, the calculated curve in the temperature region up to 1000 K reproduces
the overall temperature evolution of the experimental Cv(T) rather well. Thus, the simplest
model based on phonon spectra is capable of describing the thermodynamic properties of
β-FeSi2 with acceptable accuracy in a temperature range up to 1000 K.
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4.6. Temperature-Induced Phase Transformation in γ-FeSi2
In this Section, we will consider the temperature-induced phase transformations in

γ-FeSi2, and then, we will describe the possible phase transitions in the β- and α-phases.
FPMD simulations were performed for γ-FeSi2 at different temperatures from 100 K to
2400 K. Using group-theoretical analysis and visualization of the atomic configurations
at different stages of the simulations, the possible intermediate and final structures that
formed during the simulations at a certain temperature were identified. In Figure 11, the
total energy and structural parameters are shown for the 48-atom supercell of γ-FeSi2 as
functions of the time of FPMD simulations (t) at 200 K. For comparison, Figure 11 shows
the ET(t) dependences determined at 600 K and 1400 K. An analysis of the results of the
FPMD simulations enabled us to select a time interval between 300 fs and 600 fs, during



Appl. Sci. 2023, 13, 12669 15 of 24

which the system reached local stability (“plateau” in the ET(t) dependences in Figure 11).
During this interval, at T < 800 K, the γ1–γ3 intermediate structures were identified. A
description of the intermediate structures is given in Table 6. One can see from this table
that the P-1 (α-Fe0.8 Si2) and C2/m intermediate phases with different numbers of atoms in
the unit cell form at temperatures higher than 100 K. The β-phase was the final structure
at temperatures up to 400 K and, at T ≥ 400 K, the final 12-atom C2/m structures (γ4,
γ5) formed (cf. Table 6). Note that the P-1 and C2/m space groups are sub-groups of the
Fm-3m and Cmca space groups [47]. These results clearly indicate that the intermediate
structures are temperature-dependent.
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To clarify the possible origin of the identified structures, the phonon spectrum of the
γ-phase was investigated. The calculated phonon dispersion curves for γ-FeSi2 are shown
in Figure 12. The points Γ, X, and L and directions ∆, Σ, and Λ in the Brillouin zone are
associated with imaginary frequencies of the phonon modes. The phonon modes, such
as Γ5+, X5−, L3−, and Σ3(1/2 1/2 0) with imaginary frequencies (cf. Figure 12) could be
responsible for the phase transformations in γ-FeSi2. Here, it should be noted that the
semi-empirical phonon spectrum in Ref. [27] also has imaginary frequencies at these points,
except at the L point in the present results. In Table 7, the possible structures that could
arise due to the softening or condensation of the Γ5+ and L3− phonon modes are listed.
The Γ5+ optic mode was selected, although it has a high real frequency since, at finite
temperatures, its softening can cause spontaneous strains and structural changes [47]. The
results presented in Table 7 clearly indicate that the direction vector of a phase transition, P
(cf. Refs. [47,48,50] for more details), is very sensitive to temperature and associated with
different combinations of phonon modes activated at different temperatures. Here, we
note that the formation of the γ1 and γ2 phases could only exist because of the monoclinic
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strains εxy 6= εyz 6= εxz (γ1) and εxy 6= εyz = εxz (γ2), since the monoclinic strains have Γ5+
symmetry [47]. Indeed, Figure 11 shows that the intermediate-phase γ2 forms due to a
change in cell angles α ≈ β 6= γ associated with εxy 6= εyz = εxz strains.

Table 6. Structures of the intermediate and final structures identified during FPMD simulations of
γ-FeSi2 at different temperatures (T). The space groups of the identified structures were Fm-3m (γ),
P-1 (γ1), and C2/m (γ2–γ5).

Phase,
Temperature (K)

a, b, c
(Å)

α β, γ
(Degree) Wyckoff Position

γ 5.400 5.400 5.400 90.00 90.00 90.00 Fe 1a 0.000 0.000 0.000
T < 100 Si 2c 0.250 0.250 0.250

γ1 3.319 3.523 3.552 94.56 116.79 116.60 Fe 1h 0.500 0.500 0.500
100 ≤ T < 200 Si 1i 0.003 0.776 0.230

γ2 4.731 5.268 3.234 90.00 129.854 90.00 Fe 2d 0.000 0.500 0.500
200 ≤ T < 400 Si 4g 0.000 0.226 0.000

γ3 Fe 4i 0.186 0.000 0.726
400 ≤ T ≤ 800 6.333 3.742 5.974 90.00 118.44 90.00 Si 4i 0.598 0.000 0.875

Si 4i 0.827 0.000 0.643

Fe 4i 0.243 0.000 0.881
γ4, γ5 Fe 4h 0.000 0.783 0.500

T > 800 K 7.125 9.342 3.756 90.00 100.44 90.00 Si 8j 0.278 0.126 0.414
Si 4g 0.000 0.119 0.000
Si 4g 0.000 0.634 0.000
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Table 7. Symmetry, number of atoms in the unit cell (Na) of the γ1–γ5 phases that could form as a
result of softening or condensation of the Γ5+ and L3− phonon modes coupled to subsequent strains
e0 = εxx + εyy + εzz, e1 = εxx + εyy – 2εzz, e2 = 31/2(εxx–εyy), εxy, εyz, εxz according to a direction
vector (P) [47].

Phonon Mode Γ5+ L3−

Phase γ1 γ2 γ3 γ4 γ5
P-1, #2 C2/m, #12 C2/m, #12 C2/m, #12 C2/m, #12

Na 1 1 6 12 12

P S1(a,b,c) C2(a,a,b) P2(a,a,000000) C12(a,b,a,b,0,0,0,0) C18(a,b,b,a,0,0,0,0)

Strain e0, e1, e2, e0, e1, e0, e1, e2, e0, e1, e2, εxy e0, e1, −εxz + εyz, −εxy
εxy, εyz, εxz εxz + εyz, εxy εxz + εyz, εxy
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As for the X5− phonon mode, it is worth noting that the collapse of the X5− mode
could also lead to the formation of 12-atom C2/m structures according to the C15 direction
vector [47]; however, it is highly unlikely since the phonon anomaly at the L point is deeper
than at the X-point. In Ref. [27], it is assumed that the formation of the β-phase could be
due to softening of the optical phonon at the Σ(1/2 1/2 0) point. Indeed, according to our
analysis, the γ-to-β transition could be caused by the collapse of the Σ3(1/2 1/2 0) mode
according to the direction vector P5; however, this transition will occur without a coupling
to strains [47], which is in contradiction with experiments [57,58,62] and our data. The
FPMD simulations of γ-FeSi2 show that, at T < 400 K, the following transformation paths
take place: Fm-3m→ P-1→ Cmca and Fm-3m→ C2/m→ Cmca. This indicates that the
γ-to-β transition that allows the formation of intermediate structures is more favorable
than the direct transformation due to softening of the Σ3(1/2 1/2 0) mode, as in the case of
the Fm-3m-to-R-3m transition in B1-SiC [48].

4.7. Structural Transformations in β-FeSi2 and α-FeSi2
Now let us return to the analysis of the β-to-α transition. The goal is to under-

stand which of the two scenarios is the most likely—(1) β-FeSi2 → α-FeSi2, and then,
α-FeSi2 → α-FeySi2 + ε-FeSi (direct transition), or (2) β-FeSi2 → α-FeySi2 + ε-FeSi (indirect
transition)—since experiments never definitely answered this question [57,58,62]. Hence,
the following investigations were carried out. First, the stability of both the β- and α-phases
was estimated by comparing their Gibbs free energies; then, the optimum composition
of α-FeySi2 in the reaction α-FeSi2 → α-FeySi2 + ε-FeSi was found, and the γ-phase was
shown to possibly transform into the α-phase under strain. Second, FPMD simulations of
the β structure at different temperatures up to 2400 K were performed.

The difference in the Gibbs free energies of β-FeSi2 and α-FeSi2 (∆G) as a function
of temperature is shown in Figure 13. The calculated transition temperature TC = 1825 K
was found to be higher compared to that obtained in the experiment (~1240 K) [57,58,62]
and in the calculations based on the Debye model (1140 K) [24]. This finding indicates the
possibility of a direct β-FeSi2 → α-FeSi2 transition.

Once it is assumed that the stoichiometricα-FeSi2 phase could be stabilized at high tem-
perature, let us consider the possibility of its decomposition into ε-FeSi and α-FeySi2 [57,58].
For this purpose, one writes the formation energy of the ε-FeSi + α-FeySi2 system, ∆G, as:

∆G(y, T) = 1/3 ·
[
x · ET

(
α− FeyV1−ySi2

)
− x · T · ∆S

(
α− FeyV1−ySi2

)
+ z · ET(ε− FeSi)− ET(α− FeSi2)

]
(2)

where x = (2 − y)−1, z = 2·(1 − x), V denotes a vacancy on the iron sublattice, ET is
the total energy, and ∆S is the configurational entropy. The α-FeyV1−ySi2 phases were
described based on a 45-atom supercell, in which the vacancies in the Fe sublattice were
distributed randomly. The lattice parameter of the cubic eight-atom e-FeSi structure (space
group P213 #198) is found to be 4.450 Å, which is very close to the experimental and other
theoretical values of 4.489 Å [56] and 4.41–4.47 Å [21], respectively. Expression (2) was
derived under the condition that a number of atoms in the system are preserved before
and after the structural transformation, and this condition implies that the α-FeySi2 phase
after decomposition should have vacancies on the iron sublattice.

A negative value of ∆G means that α-FeSi2 will decompose into α-FeyV1−ySi2 and
ε-FeSi with the fractions of x and z, respectively. In Figure 14, ∆G is shown as a function of
the iron composition in the a-phase at different temperatures. One can see that in the range
800–1000 K, the stoichiometric α-phase should decompose into ε-FeSi and α-FeyV1−ySi2,
for y~0.8. This finding is in good agreement with the conclusion that, at temperatures
higher than 1240 K, two phases, ε-FeSi and α-Fe2Si5 (α-Fe0.8Si2, as in our case), form. The
decomposition temperature of the stoichiometric a-phase is seen to be lower than the
temperature TC of the β-FeSi2-to-α-FeSi2 transformation, indicating that the latter phase
transition is unlikely.
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Now let us analyze two possible paths for the β→ α transformation: the diffusion
path and the deformation path. For this purpose, we considered the 6-atom fluorite cell (cf.
Figure 5b). There are two cases: when the Fe atom in the cell center is moved towards the
facet in the z-direction (diffusion path), and when the cell is under monoclinic (100)[001]
strain. Both paths lead to the formation of the α-phase, and the energetics of these two
paths is shown in Figure 15. It is seen that the deformation path is more energetically
favorable than the diffusion one. The ET(ε) dependence has a local minimum at ε = 0.5. All
the strained structures have C2/m symmetry.

The possibility of a direct β→ α transition under monoclinic strain of the β-phase is
confirmed by the results presented in Figure 16, where the atomic configurations of the
strained β-structures are shown. The shear (001)[100] strain, ε = 1.3, transforms β-FeSi2 into
a distorted α-FeSi2, and after relaxation, into the perfect α-phase. On the other hand, the
β-FeSi2 structure can be formed from α-FeSi2 under the corresponding monoclinic strain
(not shown here).

Finally, attempts were made to promote the transformation of β-FeSi2 into α-FeSi2
by using FPMD simulations. At different temperatures, a strongly distorted version of
the β-phase was revealed. However, at 1400 K, a structural transformation was detected.
The total energy and lattice parameters of β-FeSi2 are shown in Figure 17 as a function
of simulation time at 1400 K. After about 1500 fs, the system reaches a stable state. This
state after relaxation was identified as a 12-atom C2/m structure. A similar six-atom C2/m
structure was fixed during simulations at 1800 K and 2000 K. The structures revealed at
1400 K and 1800 K are listed in Tables 4 and 8 as β-1400 and β-1800. Here, we note one
characteristic feature: the structural transformations were accompanied by monoclinic-like
strains of the initial unit cells, as in the case of β-FeSi2 (see Section 4.6). For γ-FeSi2, the
driving force for the transformations was the softening of the Γ5+ and L3- phonon modes,
whereas for β-FeSi2, the transformations occurred due to the anisotropy of the elastic
properties of this orthorhombic phase (see Section 4.4).

At T > 2000 K, the system has P1 symmetry and resembles a melt. It is hard to estimate
the melting point in our approach; nevertheless, a temperature of about 2400 K can be
estimated, which is much higher than the experimental value of 1453 K. However, this does
not come as a surprise since the real structures contain a number of defects that strongly
affect (reduce) the melting point. So, it is fair to conclude that we failed in reproducing
the β-to-α-phase transition during FPMD simulations at different temperatures; instead,
the final structure leads to monoclinic structures. There are two reasons for this. First, the
system could reach a local minimum, as shown in Figure 15b, and, second, the indirect
transition (see above) β-FeSi2 → α-FeySi2 + ε-FeSi would be most favorable. Also, we
could not transform the α-phase into the β-phase at low temperatures. However, there
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is one interesting feature coming out of our FPMD simulations: the β-1400 structure was
identified to have lower total energy than for the α-phase (cf. Table 4), and this finding
should hopefully encourage researchers to experimentally confirm this phase.
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Thus, extending these results, we conclude that, at high temperature before melting,
the system α-FeySi2 + ε-FeSi is more energetically favorable than the stoichiometric α-FeSi2
phase. Then, taking into account the results of FPMD simulations, it is suggested that β-
FeSi2 should transform according to the deformation path, for example, through twinning.
However, at high temperatures, the Fe atoms will diffuse towards the interfaces, promoting
the formation of the α-FeySi2 + ε-FeSi system. Thus β-FeSi2 will transform to α-FeySi2
and not to α-FeSi2. Finally, we note that the suggested mechanism of the β-to-α-phase
transition is consistent with the crystallography of the β↔ α transformation [18].
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Figure 16. Supercell of β-FeSi2 translated as (2 × 1 × 1): (a) under shear (001)[100] strain, ε = 0;
(b) ε = 1.3: unrelaxed structure; and (c) relaxed structure. The color code is similar to the one
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the reader is referred to the web version of this article).
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Table 8. Structures of the final structures identified during FPMD simulations of β-FeSi2 at different
temperatures (T).

Phase,
Symmetry

a, b, c
(Å)

α, β, γ
(Degree) Wyckoff Position

Fe 8d 0.716 0.000 0.000
γ 9.874. 7.769. 7.818 90.00, 90.00, 90.00 Fe 8f 0.000 0.193 0.313

CmCa Si 16g 0.128 0.274 0.550
Si 16g 0.373 0.448 0.727

Fe 4g 0.000 0.243 0.000
β-1400 Fe 4i 0.309 0.000 0.646
C2/m 9.612. 7.669. 4.068 90.00, 101.33, 90.00 Si 8j 0.630 0.287 0.546

Si 4i 0.421 0.000 0.203
Si 4i 0.149 0.000 0.059

β-1800 Fe 4i 0.188 0.000 0.721
C2/m 6.889. 3.834. 6.520 90.00, 118.70, 90.00 Si 4i 0.405 0.000 0.126

Si 4i 0.830 0.000 0.644

5. Conclusions

For a broad class of TM-X alloys, where TM is a transition metal and X is an sp-type
element (such as Al, Si, etc.), alloy formation is insured by substitutional defects for high
TM composition, whereas for high X composition, vacancy production is responsible for
the formation of usually complex phases, where the complexity is a consequence of atomic
relaxations from generally simple structures such as fcc, bcc, or hcp. Hence, FeSi2, which
is the compound we focused on in this work, can be considered not as a binary but as
a ternary Fe-Si-V system. It appears, prior to any quantum mechanical-based analysis,
that the bcc-based approximants of the three phases, namely, the orthorhombic β-FeSi2,
the tetragonal α-FeSi2, and the tetragonal Θ (C16), display ordering between the TM and
vacancies, V , on one of the two simple-cubic sublattices, whereas the other simple-cubic
sublattice of the bcc structure is fully occupied by the X (Si) atoms. These three types of
ordering are those that result from an “exact” ground-state analysis of the Ising model with
a description of the configurational energy defined by first- and second-pair interactions.
This study allowed us to energetically locate the three ordered states on an ordering map
with constraints on the sign and the amplitude of the first- and second-pair interactions.
This work can be used as a tool to design new alloys with specific ordering and also to
predict, for example, the transition from the β-FeSi2 structure to Θ (C16)via the partial
substitution of an X species such as Si by Ge. These three approximants are also related via
antiphase boundary mechanisms along specific directions, although our first-principles
analysis raised questions on this analysis.

First-principles studies that included geometry optimization and molecular dynam-
ics (FPMD) simulations were carried out to investigate the mechanical, electronic, and
thermodynamic properties of the β-, α-, and γ-phases of FeSi2, and also to establish the pos-
sible mechanisms of temperature-induced phase transformations among them. One-step
molecular dynamics simulations were carried out at different temperatures up to 2400 K.
The results showed that the β-phase is semiconducting, while the γ-phases should exhibit
metallic conductivity, which is consistent with other experimental and theoretical data. For
β-FeSi2, the band gap narrows with temperature until it disappears at T~1800 K. α-Fe0.8Si2
exhibits properties inherent to semimetals. All the structures under consideration were
found to display a low fracture toughness (1.1–2.3 MPa·m1/2) that is comparable to that of
TiC (2–3 MPa·m1/2).

A group-theoretical analysis and visualization of the atomic configurations at different
stages of simulations allowed us to suggest the possible mechanisms of temperature-
induced γ→ β and β→ α transformations through the C2/m intermediate states. For
γ-FeSi2, the driving force for the transformations was the structural instability caused
by the softening of the Γ5+ and L3− phonon modes, whereas for β-FeSi2, the transforma-
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tions occurred due to the isotropy of the elastic properties of this orthorhombic phase.
The results of the FPMD simulations showed that the unstable cubic γ-phase transforms
into the orthorhombic β-phase at temperatures lower that 400 K, and at T ≥ 400 K, it
transforms into a C2/m structure. The final structures of the FPMD simulations of the
β-phase at temperatures up to 2000 K were the 6- and 12-atom C2/m structures. Our
results also predict that, at temperatures higher than 800 K, α-FeSi2 → α-FeySi2 + ε-FeSi
decomposition should occur with an optimum value of y = 0.8. Given these findings, it
was suggested that structural transformations in the β-phase should occur via deforma-
tion of its unit cell, for example, through twinning, accompanied by the diffusion of the
Fe atoms towards interfaces. As a result, the new α-FeySi2 + ε-FeSi system with y = 0.8
should be in agreement with the experiments, and this mechanism would not favor direct
β-FeSi2-to-α-FeSi2 transformation.
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