
Citation: Piątkowski, J.; Szymoniak,

S. Methodology of Testing the

Security of Cryptographic Protocols

Using the CMMTree Framework.

Appl. Sci. 2023, 13, 12668. https://

doi.org/10.3390/app132312668

Academic Editors: Frederico Branco,

José Martins and Henrique Mamede

Received: 16 October 2023

Revised: 16 November 2023

Accepted: 23 November 2023

Published: 25 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Methodology of Testing the Security of Cryptographic Protocols
Using the CMMTree Framework
Jacek Piątkowski † and Sabina Szymoniak *,†

Department of Computer Science, Częstochowa University of Technology, 42-200 Częstochowa, Poland;
jacek.piatkowski@icis.pcz.pl
* Correspondence: sabina.szymoniak@icis.pcz.pl
† These authors contributed equally to this work.

Abstract: Internet communication is one of the significant aspects of modern civilization. People
use banking, health, social, or shopping platforms and send a lot of data. Each communication
should be secured and protected against dishonest users’ activities during its transfer via network
links. Cryptographic protocols provide such security and protection. Because of the evolution of
the vulnerabilities and attackers’ methods, the cryptographic protocols should be regularly verified.
This paper presents a methodology for testing the security of cryptographic protocols using the
CMMTree framework. We developed and adapted a software package for analyzing cryptographic
protocols regarding compatibility with the CMMTree framework using a predicate according to the
approach described in Siedlecka-Lamch et al.’s works. We optimized and strengthened the mentioned
approach with tree optimization methods and a lexicographic sort rule. Next, we researched the
well-known security protocols using a developed tool and compared and verified the results using
sorted and shuffled data. This work produced promising results. No attacks on the tested protocols
were discovered.

Keywords: Conditional Multiway Mapped Tree; security protocols; hierarchical data dependency
analysis; verification

1. Introduction

One of the significant aspects of modern civilization is Internet communication. People
worldwide send vast amounts of information over the Internet at any given moment. Com-
puter network users use banking, health, social, and shopping platforms and communicate
via instant messaging. We can also observe the rapid development of communication
between devices that make up the Internet of Things or Wireless Sensor Networks. Such
networks connect various devices and sensors to exchange information between the devices
and between them and other networks, nodes used to process and store data [1–3].

First, some honest users want to exchange data with other users or network nodes.
However, on the web, we can meet rogue users called Intruders. The activity of an Intruder
in the network depends on his imagination, needs and abilities. For example, an attacker
might intercept messages sent by honest users, attempt to read, modify, and forward them,
or intercept communications and retransmit messages to trick other network users. We
should always be concerned that online activity can lead honest users to many losses, such
as data loss and identity or material damage if an Intruder acquires credentials with a
bank [4].

For this reason, securing communication between users plays an essential and pivotal
role in exchanging messages. The communication course is supervised by complex commu-
nication protocols, constituting a message exchange sequence between users. Nevertheless,
security protocols are used to secure essential parts of such communication. Such protocols
may be one-way, mutual authentication, or establishing and exchanging a session key [5,6].

Appl. Sci. 2023, 13, 12668. https://doi.org/10.3390/app132312668 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312668
https://doi.org/10.3390/app132312668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5243-050X
https://orcid.org/0000-0003-1148-5691
https://doi.org/10.3390/app132312668
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312668?type=check_update&version=2

Appl. Sci. 2023, 13, 12668 2 of 23

In recent decades, numerous security protocols have been put out (see [7–13]). Each
of them has been thoroughly tested regarding the level of security that a given protocol
should provide. The provided studies suggested that the protocols could be broken in
many cases (for example, Ref. [7]). The broken protocols have some vulnerabilities, thanks
to which an Intruder can intercept and use data transferred between users, modify them,
and transmit them again.

The problem of potential attacks by dishonest users is related to verifying protocol
security levels constantly. With this need in mind, we present a security protocol veri-
fication tool in this article. Primarily, this tool uses the Conditional Multiway Mapped
Tree (CMMTree) methodology described in [14]. CMMTree is the primary framework that
defines the structure and mechanism of operation of all the software we have created. The
solution allows building trees reflecting various relationships between the processed data.

Moreover, the implemented tool considers the approach proposed by Siedlecka et al.
in [15,16], enabling the modelling of information about the security protocol execution
step. In the proposed approach, a single statement about the protocol execution step
describes all actions performed by users during the protocol step (generating confidential
information, knowledge acquisition) and the conditions for executing the protocol step
(knowledge needs of the sender). This approach is advantageous and practical because,
thanks to it, we can model each piece of information necessary to find an attack upon
the protocol. Therefore, we decided to strengthen the mentioned approach with tree
optimization methods (pruners) and a lexicographic sort rule and implement an automated
security protocol verification tool according to the CMMTree methodology.

The main contributions of our article are as follows:

• development and adaptation of a software package for the analysis of cryptographic
protocols in terms of compatibility with the CMMTree framework [14];

• definition and implementation of the predicate for CMMTree according to the ap-
proach described in [15,16];

• strengthening of the mentioned approach with tree optimization methods (pruners)
and a lexicographic sort rule;

• research conducted on the set of well-known security protocols using a developed tool;
• comparison and verification of research using sorted and shuffled data.

The rest of this article is organized as follows. Section 2 will present the related works
associated with verifying the security protocols. We will consider several methods and
tools used for the mentioned issue. Section 3 will introduce an example of a security
protocol: the Needham Schroeder Public Key (NSPK) protocol [7]. The NSPK protocol is
the best example for research concerned with security protocol verification. In Section 4,
we will present the implemented methods. We will describe how CMMTree works and
how we build the predicate for CMMTree. Section 5 will present the obtained results. We
will present a parametric description of the execution tree shapes for the tested protocol.
Also, we will describe the algorithms of the predicate function. In the last section, we will
consider our conclusions and future work.

2. Related Works

Verifying the communication and security protocols is essential in securing network
communication. Each network and used protocol are exposed to many attacks, for example,
an impersonation attack during which the dishonest network user uses the identities of
other network users. The choice of a security protocol depends on the implementation
of the network and its purpose. Networks, like the Internet of Things or Wireless Sensor
Networks, require secure authentication to protect the network against network node
capture attacks. They use one protocol type. The vast area networks, where each stage
of communication requires an appropriate level of security, will use different kinds of
protocols (for example, communication, authentication, or key distribution) [1,3,17].

So far, many methods of verifying cryptographic protocols have been proposed.
Among them, some approaches use timed automata. Thanks to these methods, it is possible

Appl. Sci. 2023, 13, 12668 3 of 23

to demonstrate time’s influence on communication security. In [18], Ali proposed a method
translation attack tree into timed automata. The author can verify security protocol vulner-
abilities using a set network of timed automata. Also, Andre et al. in [19] proposed attack
tree models. Moreover, in [20], Siedlecka-Lamch employed probabilistic timed automata
for security protocol verification. The author tried to find the probability of breaking the
encryption key.

To verify the security of the protocol, we can also use formal proofs, e.g., BAN logic [21],
Real-Or-Random (ROR) [22], Random Oracle Model (ROM) [23], or Syverson–Van Oorschot
(SVO) [24]. However, these proofs are very complex, so for verifying protocols, we mostly
used the tools that automatically implement the described methods for verifying protocols
(Scyther [25,26], Tamarin [27,28], ProVerif [29–31], AVISPA [32], or the tool mentioned
in [5]).

It is worth pointing out that Siedlecka-Lamch et al. proposed an interesting security
protocol modelling and verification method in [15,16]. Authors consider the protocol step a
tuple that includes information about each cryptographic primitive and users’ activities.
The tuple consists of information about:

• execution and step;
• sender and receiver;
• sender’s needs, i.e., those cryptographic primitives that the sender should know before

step execution;
• cryptographic primitives that should be generated before step execution;
• receiver knowledge, i.e., those cryptographic primitives the receiver learns during

step execution.

The included information is enough for step definition because it describes each
activity users perform during step execution. Also, they offer conditions and restrictions
for step execution. Thanks to them, it is possible to create a protocol execution tree (ET)
and find if there is any attack upon the security protocol. We observed that building a
tree of each possible security protocol execution using CMMTree lets us thoroughly check
all possible combinations of steps of these executions. For this reason, we decided to use
Siedlecka-Lamch et al.’s approach as a predicate for CMMTree and find if the CMMTree
model is suitable for security protocol verification.

3. Needham Schroeder Public Key Protocol

In recent decades, numerous communication protocols have been proposed and devel-
oped. Security or cryptographic protocols are part of large and complex communication
protocols that aim to authenticate, establish, or exchange symmetric keys. The most known
and tested security protocol is probably the Needham Schroeder Public Key protocol [7].
It is well-known that its original version is not a perfect protocol, and it can be broken.
Nevertheless, in our opinion, it is very useful. It is like the fruit flies used in countless
studies by biologists, geneticists, and other scientists.

This protocol is the best research example because it shows the main ideas of security
protocols. It allows tracking the process and progress of protocol breaking, which is very
useful in testing solutions for protocol analysis.

The NSPK protocol aims for mutual authentication with public keys.

α1 A→ B : 〈NA, i(A)〉KB ,
α2 B→ A : 〈NA, NB〉KA ,
α3 A→ B : 〈NB〉KB .

In this notation:

• 〈M〉K means the message M encrypted by key K, for example, 〈NA, i(A)〉KB means
the message composed by nonce NA and identifier i(A) encrypted by key KB.

• A and B mean the honest protocol participants.
• i(u) means the text identifier of the user u, for example, i(A) means user A’s identifier.

Appl. Sci. 2023, 13, 12668 4 of 23

• Nu means the nonce generated by user u, for example, N(A) means the nonce gener-
ated by user A.

• Ku means a public key of user u, for example, KA means a public key of user A.

During this protocol, users A and B authenticate to each other. Authentication takes
place with the use of users’ nonces.

The NSPK protocol was widely used and acknowledged as secure for almost two
decades. In 1995, Gavin Lowe found an attack upon this protocol [33]. This attack involves
two concurrent executions, during which the Intruder tries to cheat honest users. The attack
upon the NSPK protocol can be represented in Alice–Bob notation:

α1 A→ I : 〈NA, i(A)〉KI
β1 I(A)→ B : 〈NA, i(A)〉KB ,
β2 B→ I(A) : 〈NA, NB〉KA ,
α2 I → A : 〈NA, NB〉KA ,
α3 A→ I : 〈NB〉KI ,
β3 I(A)→ B : 〈NB〉KB .

We added to the earlier notation the following designations that refer to the Intruder’s
role in the protocol:

• I means the Intruder that occurs as himself;
• I(u) means the Intruder that impersonates user u during the protocol’s execution, for

example, I(A) means that the Intruder impersonates user A during communication.

In this attack, the Intruder sends during β execution messages received from user A in
α execution. The Intruder impersonates user A in β execution. User B thinks he is commu-
nicating with user A, and both users are unaware of the dishonest user between them.

Next, in [34], Gavin Lowe proposed a corrected version of the NSPK protocol. The
author suggested that an additional identifier in the second step would prevent honest
users from engaging in dishonest activities. The structure of the corrected second step in
Alice–Bob notation is as follows:

α2 B→ A : 〈NA, NB, i(B)〉KA .

To date, no documented attacks have been reported against the revised iteration of the
NSPK protocol.

4. Description of the Methodology

As mentioned, the main tools used in this work were the proprietary ProToc [35] and
the Conditional Multiway Mapped Tree (CMMTree) [14]. The ProToc is our universal
language used to encode cryptographic protocols.

CMMTree was the main framework defining the structure and mechanism of operation
of all the software we created. This solution allows building trees reflecting various
relationships between the processed data.

To test our solution, we choose well-known protocols such as Andrew Secure RPC
protocol [36] (Andrew), Lowe modified BAN concrete Andrew Secure RPC protocol [37]
(AndrewLowe), Carlsen’s Secret Key Initiator protocol [38], KaoChow v1 protocol [10],
Needham Schroeder Public Key protocol [7] (NSPK), Needham Schroeder Symmetric
Key protocol [7], Wide-Mouthed Frog protocol [39], Lowe modified Wide-Mouthed Frog
protocol [40], Woo Lam Pi protocol and its first, second, and third versions [9], Yahalom
protocol [39], BAN simplified version of Yahalom protocol [39], Lowe’s modified version of
Yahalom Lowe’s protocol [41], and Paulson’s strengthened version of Yahalom protocol [42].

In the following subsection, CMMTree will be briefly described. More details on this
solution are presented in [14].

Appl. Sci. 2023, 13, 12668 5 of 23

4.1. Properties and Functionalities of the CMMTree Model

In this section, we would like to present in the shortest possible way what CMMTree is,
that is, an original solution; it has already been described in more detail in [14]. Although
we are aware that some of the information presented here will repeat what is written in [14],
we have decided that in the context of the entire work, a brief description of this solution
is necessary. This is because CMMTree is a general tool designed to build and analyze
multi-way conditional trees, and its key component is the predicate function, which can
be formulated in many ways—better or worse—as we will try to show in the following
sections. We deliberately decided to use many of the same symbols or phrases (as in [14])
so that a person who wants more details about CMMTree can quickly find them in [14].

In general, the CMMTree logic model is described by:

CMMTree = (D, p, T) (1)

where:

D = {d1, ..., dx} is a collection of a unique input data values;
T = {νi : 0 ≤ i < n} is the tree structure of relationships between input data;
p : Dk × T → {true, f alse}, (k = 1, ..., x) is a predicate that defines the rules for joining
T nodes.

In this model, three layers are clearly distinguished (see Figure 1): the data layer,
predicate layer, and relationship layer. The elements of the input dataset D should be
unique; however, their representations (references to individual values) may occur multiple
times in the T structure. For example, in Figure 1, node ν1 represent the value d1, node ν2
the value d2, and so on.

The processed data are not required to be exactly the same type, and they can generally
be of different types as long as they belong to a defined class hierarchy. A vector of pointers
to them can easily represent such a set of data—see Figure 1. In the present case of the
study of cryptographic protocols, the input data were a set of chain objects, described in
Section 4.2.

Figure 1. The logical structure of the CMMTree model.

Appl. Sci. 2023, 13, 12668 6 of 23

The rules for joining subsequent nodes of the tree T are defined in a two-argument
predicate function p:

p(α, β) =

{
true if defined conditions are met
f alse otherwise

(2)

where:

α represents the current node and the set of information available through this node;
β represents the successive elements of the set D (candidates to be the α node child).

Each decision on whether another node can be attached is made based on the infor-
mation accumulated so far in tree T and the information provided by candidate β. The
amount and scope of information taken from the tree can be varied. Data can be extracted
from a single node, nodes on a path, as well as any other combination of nodes. Moreover,
if the analyzed data form a class hierarchy, then information about the type of an object
or group of objects can also be used by the predicate function p and (if necessary) will be
able to operate polymorphically at run-time. The predicate function p (PF) must always be
defined. As said before, the situation in which it returns a true value may depend on the
required or already existing structure of the relationship between the data. In the simplest
variant, p can always return false, but in this scenario, tree T will consist of only the root
node. Such an implementation of the p function, although not interesting from a practical
point of view, is very helpful in the process of code development and testing.

There are many ways to implement multi-way trees, and some of the most commonly
used include left-child/right-sibling [43–46] (also known as first_child/next_sibling [47]), array
of pointers [44], and dynamic array-based list of child pointers [45]. In CMMTree, however, a
different solution was used. All nodes of tree T are free-stored objects, allocated on the
heap. CMMTree does not use node linking specific to binary tree linking [43–45,47]. Each
node (except the root) stores the address of its parent and the address of a dynamic vector
containing the addresses of its children—see Figure 2.

Figure 2. The CMMTree relationship layer implementation diagram. The mark (*) in the jagged table
means that each row is a vector of firstborn node addresses.

Each node also stores the address to the appropriate element dx of the input dataset
D. In this way, data from the data layer are isolated from the structure created in the
relationship layer. Since each node has the direct address of its parent, it is possible to
directly determine paths (from a given node to the root) in O(i) time.

Appl. Sci. 2023, 13, 12668 7 of 23

The tree construction algorithm was implemented using the level-order strategy.
However, unlike the traditional approach [46–48], in which the set of nodes from the last
level of the tree is remembered, a custom solution was used in which the set of addresses of
only the firstborn nodes is stored [14]—see Figure 2. By using the address of any firstborn
node, we gain access to its parent, the parent’s children, i.e., siblings of the firstborn, the
parent’s parent, and so on. Gaining access to the selected node, we immediately know
what the size of the vector of addresses of its children is, that is, how many children it has
or that it is a leaf. If we have a set of addresses of all the firstborns of one level (l) of the
tree T, we can also determine the number of all nodes of this level and the number of leaves.
Consequently, the set of firstborn addresses from all levels of the tree (see Figure 2) maps
the entire structure T. Thus, we can see that the single-node structure presented earlier as
well as the implementation of interconnections between nodes makes it possible, with the
help of firstborn node addresses, to “look deep” into any part of the tree. This eliminates
the need for time-consuming traversing of the tree, which in traditional solutions would
always have to begin from the root node.

The collection of addresses of all firstborn nodes (see Figure 2, jagged table) is a kind
of view of the whole tree T. The jagged table is indexed. Thus, it gives free access to the
tree T of relationships existing between the input data. It directly provides information
about the height h of tree T:

h = MTree.size()-1

as well as the number of firstborns (Φl) of the selected tree level l:

Φl = MTree[l].size().

By selecting any firstborn node address (from the jagged table), we can check the
number of all the parent’s children Xl,j:

Xl,j = children
(

parent(ϕl,j)
)
= MTree[l][j]->parent->children_num(),

where children_num() is a member function of the class node. We can also gain direct access
to the brother or sister νl,k:

νl,k = k_child
(

parent(ϕl,j), k
)
= *(MTree[l][j]->parent->children)[k].

From the above, we can see that each address of the firstborn node ϕl,j (MTree[l][j])
maps a particular group of nodes, i.e., the parent and its children. This means that the set
of addresses of all firstborn nodes maps the entire tree T.

Using Formula (3) allows us to determine the total number of nodes Nl of the selected
tree level l, and Equation (4) can be used to determine the total number of leaves Λl at
this level.

As a result, the shape of an entire tree T or forest F can be (parametrically) described
using Formula (5).

∧
l∈N, 0≤l≤h

Nl =
nl−1

∑
x=0

νl,x ; nl =

1 if l = 0
Φl−1

∑
j=0

Xl,j if l > 0
(3)

∧
l∈N, 0≤l≤h

Λl = ∑
i

λl,i =

Nl −Φl+1 if l < h

Nl if l = h
(4)

∧
l∈N, 0≤l≤h

shape(T)l = {Nl , Φl , Λl} (5)

Appl. Sci. 2023, 13, 12668 8 of 23

Thanks to the parametric form of the CMMTree shape description (5), it is easy to
identify nodes that have a significant impact on the shape of the tree. In this way, it is
possible to selectively choose those places that should be analyzed first in order to obtain
the relevant information. It is especially useful when the examined trees contain tens or
hundreds of millions of nodes.

The research in [14] also proposes other measures using Nl , Φl , and Λl parameters to
facilitate the study of huge trees. In this study, these measures were used at the stage of
PF optimization.

4.2. Primary Structures and Generalization of the Problem

The implementation of the CMMTree model is written in C++. Its main component is
a two-parameter class template:

template <class X, template<typename> class pred_type>
class CMMTree{/* ... */};

The first parameter (X) is a type parameter. It represents the type of data for which
(as a result of source code compilation) a particular version of the CMMTree class will be
created. The second (pred_type) is a template parameter, i.e., a template of the type parameter,
that—in this particular case—is parameterized by the first parameter of the CMMTree class
template. By the second parameter, a predicate is passed that specifies the conditions for
connecting the tree’s nodes. More details on the implementation of the PF are provided
in [14].

Various types of so-called primitive structures are used to describe protocol specifica-
tions [49,50]. Each of these structures, to a greater or lesser extent, differs from the others
regarding the scope of information stored and how to implement specific functionalities.
For example, the decryption of messages encrypted with an asymmetric key and those
encrypted with a symmetric key must be implemented differently. For this reason, at first
glance, specifying only one type of parameter for a solution that is supposed to process
many different types of data seems inconvenient. In practice, however, it is quite the
opposite, because using the general programming technique allows the code developed
in this way to operate on any data structure, provided that it meets certain syntactic and
semantic requirements [51]. Therefore, it was decided that the primitives used to record
the input data would have to form a hierarchy of classes, shown in Figure 3.

Figure 3. Class hierarchy of processed data.

From the perspective of generalizing the problem of cryptographic protocol processing,
the content class plays the main role. It is an abstract base class whose main (and only)
task is to provide a common interface for the other derived classes. Appropriate objects of
derived classes store the real data.

Table 1 presents brief information on classes inheriting from the content class. If
only because of the volume, their detailed description goes beyond the scope of this work.
However, how objects of these types are used is important. Therefore, to be able to use

Appl. Sci. 2023, 13, 12668 9 of 23

the described solution for examining various protocols, the input data (steps of generated
protocol executions) are converted into the chain type—see Figure 1.

class chain{
player sender, recipient;
int execution, step;
std::vector<content*> needs, products, knowledge;
/* ... */
};

Table 1. Class hierarchy prepared for protocol predicate.

Class Description

player information about honest and dishonest protocol participants
antichain information about the ways of step execution by Intruder
id information about the identifiers of protocol participants
aKey information about users’ asymmetric keys
nonce information about the random number that is used only once during the protocol execution
sKey information about users’ symmetric keys
tStamp information about the user timestamp that indicates the moment of the message creation
stepMess information about messages sent during the step
text information about the message part that will be sent as plain text
aCryptogram information about cryptogram encrypted by asymmetric key
sCryptogram information about cryptogram encrypted by symmetric key

In this class, all information, the quantity, type, and scope of which are not known
beforehand, is represented by the vectors of pointers to the content type. Having the
addresses of individual objects, the polymorphism of virtual functions and the RTTI (Run-
Time Type Information—a mechanism that provides information about an object’s data
type at run-time) mechanism [51] can be employed to extract detailed information specific
to the actual type of data being processed.

Vector needs represent (that is, contain the addresses of the relevant objects) a col-
lection of objects that the sender needs to complete a step. For example, this vector may
contain addresses of nonce, tStamp, aCryptogram, or sCryptogram class objects. However,
it cannot contain addresses of objects that represent publicly known objects to protocol
participants (public keys, identifiers).

Vector products represent objects that the sender must generate before the protocol
step execution. These objects are also needed for the sender to complete the protocol step.
Usually there are addresses of objects of type tStamp, nonce, or sKey.
The knowledge vector is intended for objects containing information the recipient learns
during a given protocol step. For instance, these can be objects of classes nonce, tStamp,
or aCryptogram.

The antichain class refers to objects representing how an Intruder can execute a
protocol step depending on his knowledge. For example, if an Intruder should send
the following message < NA · NB >KAB according to the execution structure, he has two
possible ways to execute this step. Firstly, he can send the message if he knows the entire
ciphertext. In a second method, he can send the message if he has in his knowledge each
element forming a ciphertext (NA, NB, and KAB). Analogous to the chain class, vectors
of pointers represent the primitives whose actual type can be known only during input
processing to the content class.

At the predicate optimization stage, we used lexicographic sorting of protocol exe-
cutions. The consistent use of a specific order of marking executions and steps definitely
facilitates the analysis of both the tested protocol and the PF code under test. We compared
the obtained ETs with trees built for randomized data to check the performance of the
created PF.

Appl. Sci. 2023, 13, 12668 10 of 23

Each analyzed chain is uniquely identified by a pair of (execution_number, step_number).
The key to sorting the execution of the protocol is information identifying players and
information provided by sets of cryptographic objects that the Intruder can use during the
execution of the protocol.

Also, it is worth mentioning that our methodology considers four Intruder models.
The set of executions contains honest and dishonest (with Intruder) executions. Executions
with Intruder are generated for the following Intruder models:

• Dolev-Yao model—in which the Intruder controls the network, accesses transmitted
messages, can intercept, block, and process messages against the protocol, but requires
a decryption key for ciphertext information [52].

• Lazy Intruder—which can be considered a type of virus that can deliver complete
messages, yet cannot alter or modify them [53,54].

• Restricted Dolev-Yao—enabling a feature that the Dolev-Yao Intruder may only access
messages specifically directed to them [5].

• Restricted Lazy Intruder—enabling a feature that the Lazy Intruder may only access
messages specifically directed to them [5].

For example, in the NSPK protocol, we have two players (A and B). We add an
Intruder (I) to the players’ set. The sorted player set has an Intruder on zero indexes. Next,
based on the players’ set, we generate a set of all possible executions using variations
without repetition. In this way, we obtained the following sorted set of executions (using
sender→ recipient designation):

I → A, I → B, A→ I, A→ B, B→ I, B→ A.

Also, for each mentioned execution with the Intruder, we generate three parallel
executions different from each other by cryptographic primitives used by the Intruder. For
such an ordered set of possible protocol executions, one of the four paths containing an
attack on the NSPK protocol will be represented by steps (10,1), (8,1), (8,2), (10,2), (10,3),
and (8,3), i.e., step one of execution no. 10, step one of execution no. 8, and so on.

We prepare the set of chains (SoC) for all possible protocol executions. Each chain has
this same structure as described earlier. The content of each vector may be complex, and
everything depends on the protocol structure. Tables 2 and 3 present two fragments of
the SoC for protocol execution involving an Intruder. Both tables have the same structure.
Column Send. → Rec. contains information about the sender and receiver in the current
protocol step. Column Execution & step includes execution and step number information.
The rest of the columns (Needs, Products, and Knowledge) contain information about the
content of corresponding vectors.

Table 2. The fragment of SoC for NSPK protocol (execution no. 1).

Send. → Rec.; Execution & Step; Needs; Products; Knowledge;

I → A; (1, 1); 〈i(I), NI〉K+
A

; ; NI ;
I → A; (1, 1); ; ; NI ;
A→ I; (1, 2); NI ; NA; NA;
I → A; (1, 3); 〈NA〉K+

A
; ; NA;

I → A; (1, 3); NA; ; NA;

Table 2 contains the chains for execution no. 1 generated for the NSPK protocol in
Alice–Bob notation. Each chain from this execution consists of each part described earlier
in this section, separated by semicolons. The Intruder is a sender in the first and third
steps, so he can execute each of these steps in two ways (sending the entire ciphertext or
the ciphertext composed using his knowledge).

Appl. Sci. 2023, 13, 12668 11 of 23

Table 3. The fragment of SoC for KaoChow protocol (execution no. 9).

Send. → Rec.; Execution & Step; Needs; Products; Knowledge;

A→ S; (9, 1); ; NA; NA;
S→ I; (9, 2); NA ; KIA; 〈i(A)|i(I)|NA|KIA〉KAS , i(I), NA, KIA;
I → A; (9, 3); 〈i(A)|i(I)|NA|KIA〉KAS , 〈NA〉KIA ; ; i(I), NA, KIA, NI ;
I → A; (9, 3); KAS, NA, KIA, 〈NA〉KIA ; ; i(I), NA, KIA, NI ;
I → A; (9, 3); 〈i(A)|i(I)|NA|KIA〉KAS , KIA, NA; ; i(I), NA, KIA, NI ;
I → A; (9, 3); KAS, NA, KIA, KIA, NA; ; i(I), NA, KIA, NI ;
A→ I; (9, 4); NI ; ; NI ;

Table 3 contains the chains for execution no. 9, generated for the KaoChow protocol in
Alice–Bob notation. The KaoChow protocol has a different and more complex structure
than the NSPK protocol, so this chain contains more entries and objects in individual
vectors. The Intruder is a sender in the third step only, but he can execute this step in four
ways when his knowledge contains the following objects:

• two entire ciphertexts;
• the objects from the first ciphertext and the entire second ciphertext;
• the entire first ciphertext and objects from the second ciphertext;
• the objects from both ciphertexts.

In our opinion, the above-described method of combining many different data types
into a hierarchy of classes that inherit from a very general base class is a very flexible
solution. If a new data type appears, it is enough to “put” it in the right place in such
a hierarchy to be able to study the impact of the new data on the overall structure of
the relationship between all data. However, in each case of the use of any particular non-
abstract type of data, we assume that it is provided with the right set of functionalities—that
is, functions which, if necessary, can “cooperate” with other types of that hierarchy.

4.3. Predicate Function: Searching for the Best Possible Solution

The predicate function p (2) (PF) plays a key role in the CMMTree model (1). The
rules for connecting successive tree nodes written there will directly impact the correctness
of the obtained results and the data analysis time. It will depend on these rules whether
analyzing a given problem at all with specific computing resources will be possible.

For such special data as chains of protocol executions, the use of only rules “for
yes”—according to the general principle (if the conditions are met, the node can be
attached)—is clearly insufficient. This is due to the fact that the ETs will grow to gi-
gantic sizes, and very often, they will grow indefinitely. Therefore, rules “for not” are also
necessary for the PF, to allow effective pruning of “non-perspective” branches during the
construction of the ET.

One of the main goals of this work was to develop and test a tool that would allow the
study of various cryptographic protocols. Therefore, it was necessary to find a compromise
between a solution specialized for a specific protocol and a generalized solution allowing
processing and analyzing a broader spectrum of protocols.

We used an approach in which our solution (and related protocol analysis) was tested
in four main stages.

The text-encoded protocol (in the ProToc language [35]) was loaded into the program
at stage one. There, its validation was carried out for the correctness of the writing. Then the
protocol was converted into object (binary) form, according to the class hierarchy described
in Section 4.2. From this point on, all subsequent protocol processing was carried out using
objects of this class hierarchy.

In the second step, the original form of the protocol was processed into a set of protocol
executions. These executions were ordered lexicographically (at the stage of searching for
the best possible form of the PF) or shuffled when a given form of the PF was evaluated.

Appl. Sci. 2023, 13, 12668 12 of 23

In the third step, the input data were transformed into a set of chains, according to the
methodology described in [15,16].

In the last—fourth—stage of our research, different variants of the protocol ETs were
created and evaluated.

It was at this stage that the general CMMTree model—along with its functionalities
(see Section 4.1)—was concretized for the chain type containing primitives (see Section 4.2)
defining individual protocols.

We tested various conditions that decide the attachment of subsequent tree nodes.
These conditions were evaluated for their impact on tree construction time and the time to
find possible attacks, as well as their impact on the overall size of the ET.

We tried to prune the branches of each tree as much as possible (during its con-
struction), ensuring that no important data were unnecessarily omitted at any stage of
data processing.

As already mentioned, the executions of each tested protocol were first sorted lexico-
graphically. Thanks to this, we were able to ensure the repeatability of testing conditions
for both the protocol and the PF. Then, the tested version of the PF was run several times
on randomized data. We used the std::mersenne_twister_engine algorithm [55] to shuffle
the set of chains of all possible protocol executions.

We considered a tested rule to be valuable (in the context of the entire predicate) if the
use of a given version of the PF allowed us to:

• find attacks for those protocols for which attacks are known;
• significantly reduce the size of the ET of each of the tested protocols;
• obtain ETs with the same CMMTree shape description (5), both for sorted and shuf-

fled data.

We have also implemented mechanisms to prevent the tree from growing indefinitely,
i.e., time safeguard and protection that controls the total number of nodes in the tree. The
program stopped its work after saving all current results when 3 h of operation elapsed (for
one protocol) or the tree reached one billion nodes. The values of these protections were
determined experimentally for the computer we used. It was a desktop computer with an
AMD Ryzen 9 3900X processor (12 cores, 24 threads) and 64 GB RAM, with the Linux Mint
20.3 operating system. The CMMTree construction algorithm has been implemented as a
single separate thread of the program. Separate threads responsible for implementing the
protections mentioned above did not block the processed data.

Figure 4 illustrates the main idea behind the pruning process of the protocol ET. An
example is the ET (a small fragment of it, to be precise) of the NSPK protocol. Here we
can see that the CMMTree is actually a forest, that is, a collection of the root node subtrees.
This is a case where the CMMTree root node does not represent any element from the input
dataset. The nodes corresponding to the possible executions of the first step of the protocol
are the roots of these subtrees. CMMTree takes the form of a forest with other protocols as
well. We also see two exemplary protocol paths, resulting in the execution of its last step,
and one path that can be considered “non-perspective” and suitable for pruning. The path
of steps (18,1), (18,2), and (18,3) is the proper realization of the protocol. The path of (10,1),
(8,1), (8,2), (10,2), (10,3), and (8,3) is the realization of the protocol with the participation
of the Intruder, which ends with a successful attack. The path of (10,1), (1,1), (3,1), and so
on is not prospective because it does not guarantee the expected progress in the execution
of the protocol. Furthermore, each of these nodes could be treated as the root of another
subtree, and thus, the forest would grow to infinity.

Direct analysis of trees containing millions or tens of millions of nodes is beyond
human perceptual capabilities—certainly beyond our abilities. Therefore, to evaluate the
effects of our experiments, we used quantitative and qualitative measures describing the
shape of created trees, as discussed in [14]. These measures are based on the parametric
form of the CMMTree description expressed by Formula (5). Among other things, they
allow us to immediately identify places where—in general—something happened, or
something started to happen. Since CMMTree is a mapped structure, such a place can be

Appl. Sci. 2023, 13, 12668 13 of 23

reached in O(1) time without traversing the entire tree, which would always have to start
at the root.

Figure 4. Illustration of the CMMTree pruning process.

In further explanations, we will also use:

∆Φ = Φl − Φl−1 and ∆Λ = Λl − Λl−1.

Figure 5 and Table 4 portray three examples of CMMTree shape descriptions of the
execution tree (ET) of the NSPK protocol obtained during the development of the predicate
function (PF).

Figure 5a is an image of the ET constructed using the PF without conditions that cause
the pruning of branches—without “for not” conditions. Tree construction was terminated
(on tree level l = 10) after exceeding the 1 billion node limit. The tree building time was
almost 1005 s, and the entire CMMTree structure took 50.7 GB of RAM.
This graph clearly shows the exponential increase in the number of nodes at each tree level.
Each level has an average of 10 times more nodes than the previous level. The tree grows
almost symmetrically. Up to level 5, each node has descendants. This is obvious because
the Λl , and consequently Λl/Nl measures (see Table 4, part 1), have values equal to zero.
As can be seen, the measure Φl/Nl runs nearby values of 0.1, so each node has an average
of 10 children. A careful analysis of the Φl/Nl and ∆Φ/(Φl + Φl−1) measures shows a
slight decrease in the tree’s growth dynamics, but this tendency is practically insignificant.
Most of the leaves appeared on level 9. This is directly due to the activation of the safety
mechanism against the unlimited growth of the tree.

Figure 5b presents a tree image obtained during the evaluation of one of the variants
of the PF using a lexicographically sorted set of input data. As in the previous case, the tree
construction was terminated at level 10. This time, however, it resulted from activating one
of the “for not” conditions, one of the applied pruning conditions (PCs). The tree contains
11,139 nodes. It was built in 65 milliseconds. Four expected attack paths were found in
this tree.

Comparing Figure 5a,b, we can immediately see that the use of a few other PCs
significantly changes the size and shape of the ET that is created. If we look at the measure
Φl/Nl , we can see that from level 3, its value is greater than 0.5, meaning that from level 2,
the average parent node has no more than two children. By analyzing the Λl/Nl measure,
it can be seen that pruning at levels 2 and 3 proved to be the most important. Thirty-
seven percent of level 2 nodes and almost thirteen percent of level 3 nodes are leaves. The
identified four leaves at level 6 (see Table 4, part 2) correspond to the four executions of the
protocol with a successful attack.

Appl. Sci. 2023, 13, 12668 14 of 23

Table 4. The CMMTree shape descriptions of the NSPK protocol execution tree: part 1—the ET
constructed without using PCs; part 2—the ET pruned using one of the tested sets of PCs; part 3—the
ET pruned using the final set of PCs and the final form of the PF.

Level Nl Φl Λl Φl /Nl Λl /Nl ∆Φ/Nl ∆Λ/Nl
∆Φ

(Φl+Φl−1)
∆Φ

(Nl+Nl−1)

0 1 1 0 1 0 1 0 1 1
1 14 1 0 0.071429 0 0 0 0 0
2 162 14 0 0.086420 0 0.080247 0 0.866667 0.073864
3 1638 162 0 0.098901 0 0.090354 0 0.840909 0.082222
4 15,066 1638 0 0.108722 0 0.097969 0 0.82 0.088362
5 132,304 15,066 0 0.113874 0 0.101494 0 0.803879 0.091118
6 1,145,680 132,304 4 0.115481 3.49 × 10−6 0.102330 3.49 × 10−6 0.795535 0.091737
7 9,954,076 1,145,676 124 0.115096 1.25 × 10−5 0.101805 1.21 × 10−5 0.792948 0.091297
8 87,538,106 9,953,952 2278 0.113710 0.000026 0.100622 0.000025 0.793565 0.090349
9 782,124,012 87,535,828 769,269,060 0.111921 0.983564 0.099194 0.983561 0.795795 0.089209
10 119,088,942 12,854,952 119,088,942 0.107944 1 −0.627102 −5.45962 −0.743902 −0.082867

0 1 1 0 1 0 1 0 1 1
1 14 1 0 0.071429 0 0 0 0 0
2 162 14 60 0.086420 0.370370 0.080247 0.370370 0.866667 0.073864
3 140 102 18 0.728571 0.128571 0.628571 −0.3 0.758621 0.291391
4 206 122 4 0.592233 0.019418 0.097087 −0.067961 0.089286 0.057804
5 324 202 0 0.623457 0 0.246914 −0.012346 0.246914 0.150943
6 532 324 4 0.609023 0.007519 0.229323 0.007519 0.231939 0.142523
7 876 528 0 0.602740 0 0.232877 −0.004566 0.239437 0.144886
8 1492 876 0 0.587131 0 0.233244 0 0.247863 0.146959
9 2624 1492 0 0.568598 0 0.234756 0 0.260135 0.149660
10 4768 2624 4767 0.550336 0.999790 0.237416 0.999790 0.275024 0.153139

0 1 1 0 1 0 1 0 1 1
1 14 1 0 0.071429 0 0 0 0 0
2 44 14 0 0.318182 0 0.295455 0 0.866667 0.224138
3 78 44 10 0.564103 0.128205 0.384615 0.128205 0.517241 0.245902
4 108 68 30 0.62963 0.277778 0.222222 0.185185 0.214286 0.129032
5 90 78 56 0.86667 0.622222 0.111111 0.288889 0.068493 0.050505
6 34 34 34 1 1 −1.29412 −0.647059 −0.392857 −0.354839

Despite finding attack paths (also for shuffled data) and a huge reduction in the
number of tree nodes and their construction time, the examined PF could not be considered
satisfactory by us for two main reasons. First, if the condition interrupting the tree’s
construction at level l = 10 had not been applied, it could have continued to grow. No leaf
was identified for the next three levels of the tree; the Λl and Λl/Nl measures have values
equal to zero. This means that none of the tree’s other branches have been pruned, i.e.,
none of the remaining paths have been terminated. The second reason was the change in
the parameters of the tree shape description after applying the input data shuffle operation.

Figure 5c shows a table of the parameters of the CMMTree shape description for sorted
data and three samples of shuffled data. We can see that changing the processing order of
chains of the protocol executions caused (small, but noticeable) changes in parameters Nl ,
Φl , and Λl . Nevertheless, this should not be the case when processing the same data.

Figure 5d presents the description of the CMMTree shape obtained using the final form
of PF. This tree contains 369 nodes. It was built in about 5 milliseconds, and the parametric
description of its shape does not depend on the order in which the input data are processed.
Its construction was completed at level l = 6 after exhausting the possibilities of connecting
further nodes without using any additional PCs that would be conditions of a safeguard
nature. This graph shows that parameter Nl reaches its maximum value at level l = 4 and
then decreases. From level l = 3, measure Λl/Nl takes on increasing values, meaning that
more nodes of a given level become leaves. At level l = 6, measures Φl/Nl and Λl/Nl take

Appl. Sci. 2023, 13, 12668 15 of 23

the value 1. This means that each node of this level is a firstborn node and has no more
descendants.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5. The example of the CMMTree shape descriptions of the NSPK protocol execution tree.

Appl. Sci. 2023, 13, 12668 16 of 23

5. Experimental Results

The obtained results seem to be promising. They allow us to conclude that the
solutions we use make it possible to generalize research on cryptographic protocols. For
the CMMTree we were using, we were able to formulate one form of the predicate function
(PF) that we could use to analyze sixteen different protocols. We were able to correctly find
attacks for the Andrew, AndrewLowe, and NSPK protocol. For these protocols, we have also
shared “draft reports” (https://cloud.icis.pcz.pl/s/zZmiiBA2YqxDprC, accessed on 14
November 2023) received during the operation of our software. They contain visualizations
of the various stages of data processing, starting from the protocol encoded in the Protoc
language, through chains of executions, parametric description of the CMMTree, and
finally execution paths leading to attacks. These data allow us to see the difference between
sorted and randomized data for building the tree. Input data used for building the tree
are between headers “CHAINS—input data:” and “The time of the CMMTree calculation:”
(for the NSPK protocol: lines 361–438, for the Andrew protocol: lines 608–767, and for
AndrewLowe: lines 608–767).

Figure 6 presents a parametric description of the shape of the execution trees (ETs) of
these three protocols. Next to the columns with the values of parameters Nl , Φl , and Λl ,
the creation times of these trees are also included. The time in the row with index 0 refers
to the tree created based on lexicographically sorted data. Rows indexed by 1, 2, and 3 refer
to results obtained from shuffled data. The result in row no. 4 is the arithmetic mean of the
previous values.

Figure 6. Parametric description of the execution tree shape for Andrew, AndrewLowe, and NSPK
protocol obtained using the PF implementing our proposed pruning rules.

As we can see, the ETs of these protocols contain a negligible number of nodes. The vast
majority of non-perspective paths have been successfully removed. However, all relevant
data remained, and we could find all possible attack paths for each of these protocols.

It may be interesting to note that although protocols Andrew and AndrewLowe are
considered to be two different protocols, both the average times of tree creation and the
parametric description of their shape (5) are identical.

In addition to paths representing attacking executions, our tool found paths that
represent executions between honest users (A → B and B → A in Alice–Bob notation).
They appeared at the level indicating protocol step number. For Andrew and AndrewLowe
protocols, at l = 4 in column Λl , we have two paths that represent honest executions. We
have ten paths for the NSPK protocol at l = 3 in column Λl . Two of them represent honest
executions, and the rest of them represent paths with an Intruder.

For the other thirteen protocols tested, we did not find attacks. But it is probably good
news that we did not find them.

In the discussed CMMTree model, the PF is provided as a function object. In practice,
it is implemented as a function called operator overloading. In its final form, which is the
result of the tests described in Section 4.3, the PF can be written according to Algorithm 1.

https://cloud.icis.pcz.pl/s/zZmiiBA2YqxDprC

Appl. Sci. 2023, 13, 12668 17 of 23

Algorithm 1: bool predicate<chain>::operator()(α, β)
Data:
α—current node,
β—candidate to be the current node child.
Result: true or f alse

1 begin
2 {
3 P← path(α) ;
4 if (length(P) > 0) then
5 {
6 if (check_attack(P, β)) then
7 {
8 AP← add_next_attack_path(P, β) ;
9 }

10 /*
11 The safeguard functions can be
12 included here–-if necessary
13 */

14 if (chronology(β, P)
15 and needs(β, P)
16 and nonces(β, P)
17) then
18 {
19 return true ; /* β may be attached */
20 }
21 }
22 else
23 {
24 if (needs(β) = ∅ and step(β) = 1) then
25 {
26 return true ; /* β may be attached */
27 }
28 }

29 return false ;
30 }

At this point, we would like to remind the reader that CMMTree does not store data
in the literal sense. Individual nodes only contain addresses to other data (see Figure 2).
Thus, paths are also sets of corresponding addresses. We use pointers and references
everywhere because there is no point in copying data objects that have already been created.
Furthermore, the run-time polymorphism we use is available by late-binding function calls
using only pointers or references.

However, to simplify the description of the presented algorithms, we will treat the
nodes of the CMMTree, nodes on paths, etc., as objects (of the chain type) that store
relevant data.

In Algorithm 1, we can see that this is a two-argument function, where the first
argument represents the successive nodes of the current tree form, while the second
argument represents the successive values from the input dataset (set of chains, in this
case). It returns true if an element from the input dataset can be considered a descendant
of the current node. P is a set of nodes on the path from the current node to the root
(P[0]—current, P[1]—previous, and so on). So it is a set of information that was collected

Appl. Sci. 2023, 13, 12668 18 of 23

after performing a certain number of steps of the protocol being tested. We can also see
that attaching subsequent nodes can be carried out in two general cases:

• there are no nodes on the path (length(P) = 0),
and the current chain (as a candidate) is the chain of the first step of the protocol
(step(β) = 1),
and the set of needs necessary to perform the first step is the empty set (needs(β) = ∅);

• there are appropriate nodes in the path (length(P) > 0),
and connecting the next node will not disturb the chronology (defined by the protocol)
of the steps on the path (chronology(β, P)),
and on the path, there is a set of information that allows satisfying the set of needs
necessary to connect the next node (needs(β, P)),
and the number of nonces generated by one user on the path matches the number of
nonces per user declared in the protocol structure (nonces(β, P)).

The instructions in lines 6–9 do not affect the result returned by the operator(). They
are auxiliary. They allow for potential attack paths (AP) to be remembered already during
the construction of the tree.

Below, but always before the instructions of lines 14–20, safety functions can be placed.
Meeting the conditions they check should always cause the operator() to return false. We
used such functions in the initial stages of studying different variants of the whole PF. For
example, we were finishing a tree construction at level 10.

Since CMMTree is a mapped structure (see Section 4.1), such controlled stopping
of its construction allowed us to select single paths for detailed analysis to look for ex-
ploitable regularities.

The need to use security functions in the PF considered the target indicates that the PF
can still be improved.

We are convinced that a properly defined PF does not require any additional protection
against the uncontrolled expansion of the tree.

We also tested a predicate function using only the pruning rules proposed by Möder-
sheim in [56], just as rules to prevent unlimited tree growth. Comparing the results obtained
(see Figures 6 and 7), we found that our algorithm builds ETs much faster with fewer nodes.
For example, we found attacks upon the AndrewLowe protocol more than 160,000 times
faster than using the pruning rules from [56], creating a tree with 278,848 times fewer nodes.

Figure 7. Parametric description of the execution tree shape for Andrew, AndrewLowe, and NSPK
protocols obtained using the PF implementing only pruning rules proposed in [56].

We also see clearly that Andrew and AndrewLowe protocols are in fact two different
protocols, and how different the parametric descriptions are of the shape of their ETs.

In Algorithm 2, we have specified the function chronology in pseudo-code. This func-
tion checks whether the candidate (β) for the current node’s child matches the chronology
of the information increment on the path.

Appl. Sci. 2023, 13, 12668 19 of 23

Algorithm 2: bool predicate<chain>::chronology(β, P)
Data:
β—candidate to be the current node child,
P—data on path.
Result: true or f alse

1 begin
2 {
3 L← length(P);

4 for i = 0 to L− 1 do
5 {
6 if (β_exec() == P[i]_exec()) then
7 {
8 for j = i to L− 1 do
9 {

10 if (can_be_prune(β, P[j])) then
11 {
12 return false ;
13 }
14 }
15 if (β_step() == (P[i]_step() + 1)) then
16 {
17 return true ;
18 }
19 }
20 else
21 {
22 for j = i to L− 1 do
23 {
24 if (can_be_prune(β, P[j])) then
25 {
26 return false ;
27 }
28 }
29 if (β_step() == 1) then
30 {
31 return true ;
32 }
33 }
34 }

35 return false ;
36 }

In this function, we have placed the rules “for not”, as mentioned in Section 4.3, i.e.,
rules that result in pruning non-perspective branches. Here, we mainly rely on informa-
tion regarding the protocol execution and step numbers. This information is returned,
respectively, by the functions exec() and step().

The general rule is very simple. If the compared chain objects come from the same
execution (β_exec() == P[i]_exec()), and candidate (β) will not disturb the chronology
of the data on the path (the can_be_prune(β, P[j]) function returns false), then adding
a new node is possible if the candidate’s step is 1 larger than the last step executed
(β_step() == (P[i]_step() + 1)).

Appl. Sci. 2023, 13, 12668 20 of 23

However, if the candidate is an object from another execution, it must be an object
representing the first step of the protocol (β_step() == 1). As in the previous case, we
call a function that checks whether this new path can be pruned before deciding to attach
another node.

Algorithm 3, shown below, is pseudo-code of the can_be_prune(β, P[j]) function. Here
the role performed by the Intruder is checked. As mentioned earlier, the Intruder can
impersonate an honest participant in the protocol. However, he cannot once again perform
a step that was already performed by the other participant, regardless of whether it was
a step performed by the sender or the receiver. Any such path, which after joining the
candidate (β) could contain nodes of repeated steps, was classified as prunable, i.e., a path
with a disturbed order of the steps performed.

Algorithm 3: bool predicate<chain>::can_be_prune(β, P[j])
Data:
β—candidate to be the current node child,
P[j]—j-th chain on the path.
Result: true or f alse

1 begin
2 {
3 if (β_step() == P[j]_step()
4 and
5 (β_recipient()_role() ==
6 P[j]_recipient()_role()
7 or
8 β_recipient()_role() ==
9 P[j]_sender()_role()

10)
11) then
12 {
13 return true ;
14 }

15 return false ;
16 }

6. Conclusions

This paper offers a comprehensive exposition and evaluation of cryptographic proto-
cols. We have adapted the methodology described in [15,16] to the principles of generalized
programming and clearly distinguish the individual stages of the protocol study. We have
proposed a way to group the primitive structures used to describe protocols into a coherent
class hierarchy. This approach allowed us to make successive transformations of data types
(not only and only their values), adapting them to a form convenient to use at a given level
of abstraction.

Using the proprietary CMMTree framework and its tools, we were able to focus on the
analysis of the tested protocols. Without interfering with the code responsible for creating
trees, often containing huge numbers of nodes, we could study both sorted and randomly
shuffled data. We could examine selected parts of the ETs of these protocols to look for
patterns, which we later used to create rules used to prune paths “leading nowhere”.

We tested our solution using 16 protocols. We could define a general form of the
predicate function (which defines the rules for creating protocol ETs), which allowed us
to test these protocols. We were able to find attacks for three of them correctly. We were
surprised by how effectively non-perspective paths can be pruned while leaving all relevant
data in the ET.

Appl. Sci. 2023, 13, 12668 21 of 23

We are aware that there may or will be other protocols for which our solutions may
not be effective or efficient enough. We are convinced, however, that in the approach we
propose, it is possible to find a compromise between a solution specialized for one protocol
and a general solution for a wider group of protocols.

Author Contributions: Conceptualization, J.P. and S.S.; methodology, J.P.; software, J.P.; validation,
J.P. and S.S; formal analysis, S.S.; investigation, J.P. and S.S.; resources, S.S.; data curation, J.P. and
S.S.; writing—original draft preparation, J.P. and S.S.; writing—review and editing, J.P. and S.S.;
visualization, J.P.; supervision, J.P. and S.S.; project administration, J.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://cloud.icis.pcz.pl/s/zZmiiBA2YqxDprC (accessed on 14 November 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BAN logic Burrows, Abadi, and Needham logic
CMMTree Conditional Multiway Mapped Tree
ET Execution Tree
NSPK protocol Needham Schroeder Public Key protocol
PC Pruning condition
PF Predicate Function
ROM Random Oracle Model
ROR Real-Or-Random
RTTI Run-Time Type Information
SoC Set of Chains
SVO Syverson–Van Oorschot logic

References
1. Attkan, A.; Ranga, V. Cyber-physical security for IoT networks: A comprehensive review on traditional, blockchain and artificial

intelligence based key-security. Complex Intell. Syst. 2022, 8, 3559–3591. [CrossRef]
2. AbuAlghanam, O.; Qatawneh, M.; Almobaideen, W.; Saadeh, M. A new hierarchical architecture and protocol for key distribution

in the context of IoT-based smart cities. J. Inf. Secur. Appl. 2022, 67, 103173. [CrossRef]
3. Mo, J.; Hu, Z.; Shen, W. A Provably Secure Three-Factor Authentication Protocol Based on Chebyshev Chaotic Mapping for

Wireless Sensor Network. IEEE Access 2022, 10, 12137–12152. [CrossRef]
4. Kubanek, M.; Bobulski, J.; Karbowiak, L. Intelligent Identity Authentication, Using Face and Behavior Analysis. In Proceedings

of the Effectiveness of ICT Ethics—How Do We Help Solve Ethical Problems in the Field of ICT?—ETHICOMP, Turku, Finland,
26–28 July 2022; pp. 42–51.

5. Szymoniak, S. Security protocols analysis including various time parameters. Math. Biosci. Eng. 2021, 18, 1136–1153. [CrossRef]
[PubMed]

6. Szymoniak, S. Amelia—A new security protocol for protection against false links. Comput. Commun. 2021, 179, 73–81. [CrossRef]
7. Needham, R.; Schroeder, M. Using Encryption for Authentication in Large Networks of Computers. Commun. ACM 1978,

21, 993–999. [CrossRef]
8. Denning, D.E.; Sacco, G.M. Timestamps in Key Distribution Protocols. Commun. ACM 1981, 24, 533–536. [CrossRef]
9. Woo, T.Y.C.; Lam, S.S. A Lesson on Authentication Protocol Design. SIGOPS Oper. Syst. Rev. 1994, 28, 24–37. [CrossRef]
10. I.-Lung Kao, R.C. An efficient and secure authentication protocol using uncertified keys. ACM SIGOPS Oper. Syst. Rev. 1995,

29, 14–21.
11. Berguig, Y.; Laassiri, J.; Hanaoui, S. Anonymous and lightweight secure authentication protocol for mobile Agent system. J. Inf.

Secur. Appl. 2021, 63, 103007. [CrossRef]
12. Safkhani, M.; Rostampour, S.; Bendavid, Y.; Sadeghi, S.; Bagheri, N. Improving RFID/IoT-based generalized ultra-lightweight

mutual authentication protocols. J. Inf. Secur. Appl. 2022, 67, 103194. [CrossRef]

https://cloud.icis.pcz.pl/s/zZmiiBA2YqxDprC
http://doi.org/10.1007/s40747-022-00667-z
http://dx.doi.org/10.1016/j.jisa.2022.103173
http://dx.doi.org/10.1109/ACCESS.2022.3146393
http://dx.doi.org/10.3934/mbe.2021061
http://www.ncbi.nlm.nih.gov/pubmed/33757179
http://dx.doi.org/10.1016/j.comcom.2021.07.030
http://dx.doi.org/10.1145/359657.359659
http://dx.doi.org/10.1145/358722.358740
http://dx.doi.org/10.1145/182110.182113
http://dx.doi.org/10.1016/j.jisa.2021.103007
http://dx.doi.org/10.1016/j.jisa.2022.103194

Appl. Sci. 2023, 13, 12668 22 of 23

13. Szymoniak, S.; Siedlecka-Lamch, O. Securing Meetings in D2D IoT Systems. In Proceedings of the Effectiveness of ICT
Ethics—How Do We Help Solve Ethical Problems in the Field of ICT?—ETHICOMP, Turku, Finland, 26–28 July 2022; pp. 30–41.

14. Piatkowski, J. The Conditional Multiway Mapped Tree: Modeling and Analysis of Hierarchical Data Dependencies. IEEE Access
2020, 8, 74083–74092. [CrossRef]

15. Siedlecka-Lamch, O.; Szymoniak, S.; Kurkowski, M. A Fast Method for Security Protocols Verification. In Proceedings of the
Computer Information Systems and Industrial Management—18th International Conference, CISIM 2019, Belgrade, Serbia, 19–21
September 2019; pp. 523–534.

16. Siedlecka-Lamch, O.; Szymoniak, S.; Kurkowski, M.; Fray, I.E. Towards Most Efficient Method for Untimed Security Protocols
Verification. In Proceedings of the 24th Pacific Asia Conference on Information Systems, PACIS 2020, Dubai, United Arab
Emirates, 22–24 June 2020; Vogel, D.; Shen, K.N., Ling, P.S., Hsu, C., Thong, J.Y.L., Marco, M.D., Limayem, M., Xu, S.X., Eds.;
Association for Information Systems: Atlanta, CA, USA, 2020; p. 189.

17. Dai, C.; Xu, Z. A secure three-factor authentication scheme for multi-gateway wireless sensor networks based on elliptic curve
cryptography. Ad. Hoc. Netw. 2022, 127, 102768. [CrossRef]

18. Ali, A.T. Simplified timed attack trees. In Proceedings of the International Conference on Research Challenges in Information
Science, Limassol, Cyprus, 11–14 May 2021; Springer: Cham, Switzerland, 2021; pp. 653–660.

19. André, É.; Lime, D.; Ramparison, M.; Stoelinga, M. Parametric analyses of attack-fault trees. Fundam. Inform. 2021, 182, 69–94.
[CrossRef]

20. Siedlecka-Lamch, O. Probabilistic and Timed Analysis of Security Protocols. In Proceedings of the 13th International Conference
on Computational Intelligence in Security for Information Systems (CISIS 2020), Seville, Spain, 13–15 May 2019; Herrero, Á.,
Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E., Eds.; Springer: Cham, Switzerland, 2021; pp. 142–151.

21. Burrows, M.; Abadi, M.; Needham, R.M. A logic of authentication. Proc. R. Soc. Lond. Math. Phys. Sci. 1989, 426, 233–271.
22. Abdalla, M.; Fouque, P.A.; Pointcheval, D. Password-based authenticated key exchange in the three-party setting. In Proceedings

of the International Workshop on Public Key Cryptography, Les Diablerets, Switzerland, 23–26 January 2005; Springer: Berlin,
Germany, 2005; pp. 65–84.

23. Xue, K.; Meng, W.; Li, S.; Wei, D.S.; Zhou, H.; Yu, N. A secure and efficient access and handover authentication protocol for
Internet of Things in space information networks. IEEE Internet Things J. 2019, 6, 5485–5499. [CrossRef]

24. Syverson, P.F.; Van Oorschot, P.C. On unifying some cryptographic protocol logics. In Proceedings of the 1994 IEEE Computer
Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 16–18 May 1994; pp. 14–28.

25. Barbosa, M.; Barthe, G.; Bhargavan, K.; Blanchet, B.; Cremers, C.; Liao, K.; Parno, B. SoK: Computer-Aided Cryptography. In
Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021; pp. 777–795.
[CrossRef]

26. Cremers, C.; Fontaine, C.; Jacomme, C. A Logic and an Interactive Prover for the Computational Post-Quantum Security of
Protocols. In Proceedings of the S&P 2022—43rd IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 23–25
May 2022.

27. Cortier, V.; Delaune, S.; Dreier, J. Automatic generation of sources lemmas in Tamarin: Towards automatic proofs of security
protocols. In Lecture Notes in Computer Science, Proceedings of the ESORICS 2020—25th European Symposium on Research in Computer
Security, Guilford, UK, 14–18 September 2020; Springer: Cham, Switzerland, 2020; Volume 12309, pp. 3–22. [CrossRef]

28. Basin, D.; Cremers, C.; Dreier, J.; Sasse, R. Tamarin: Verification of Large-Scale, Real-World, Cryptographic Protocols. IEEE Secur.
Priv. 2022, 20, 24–32. [CrossRef]

29. Blanchet, B.; Cheval, V.; Cortier, V. ProVerif with lemmas, induction, fast subsumption, and much more. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P’22), San Francisco, CA, USA, 23–25 May 2022; pp. 205–222.

30. Blanchet, B.; Smyth, B. Automated reasoning for equivalences in the applied pi calculus with barriers. J. Comput. Secur. 2018,
26, 367–422. [CrossRef]

31. Yao, J.; Xu, C.; Li, D.; Lin, S.; Cao, X. Formal Verification of Security Protocols: ProVerif and Extensions. In Proceedings of the
International Conference on Artificial Intelligence and Security, Qinghai, China, 15–20 July 2022; Springer: Cham, Switzerland,
2022; pp. 500–512.

32. Alegria, J.A.H.; Bastarrica, M.C.; Bergel, A. Avispa: A tool for analyzing software process models. J. Softw. Evol. Process. 2014,
26, 434–450. [CrossRef]

33. Lowe, G. An Attack on the Needham-Schroeder Public-Key Authentication Protocol. Inf. Process. Lett. 1995, 56, 131–133.
[CrossRef]

34. Lowe, G. Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR. In Proceedings of the Tools and Algorithms
for the Construction and Analysis of Systems, Passau, Germany, 27–29 March 1996; Margaria, T., Steffen, B., Eds.; Springer:
Berlin/Heidelberg, Germany, 1996; pp. 147–166.

35. Grosser, A.; Kurkowski, M.; Piatkowski, J.; Szymoniak, S. ProToc—An Universal Language for Security Protocols Specifications.
In Proceedings of the ACS, San Francisco, CA, USA, 10–14 August 2014.

36. Satyanarayanan, M. Integrating security in a large distributed system. ACM Trans. Comput. Syst. 1989, 7, 247–280. [CrossRef]
37. Lowe, G. Some new attacks upon security protocols. In Proceedings of the 9th IEEE Computer Security Foundations Workshop,

Haifa, Israel, 7–10 August 1996; pp. 162–169.

http://dx.doi.org/10.1109/ACCESS.2020.2988358
http://dx.doi.org/10.1016/j.adhoc.2021.102768
http://dx.doi.org/10.3233/FI-2021-2066
http://dx.doi.org/10.1109/JIOT.2019.2902907
http://dx.doi.org/10.1109/SP40001.2021.00008
http://dx.doi.org/10.1007/978-3-030-59013-0_1
http://dx.doi.org/10.1109/MSEC.2022.3154689
http://dx.doi.org/10.3233/JCS-171013
http://dx.doi.org/10.1002/smr.1578
http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://dx.doi.org/10.1145/65000.65002

Appl. Sci. 2023, 13, 12668 23 of 23

38. Carlsen, U. Optimal Privacy and Authentication on a Portable Communications System. Oper. Syst. Rev. 1994, 28, 16–23.
[CrossRef]

39. Burrows, M.; Abadi, M.; Needham, R. A Logic of Authentication. ACM Trans. Comput. Syst. 1990, 8, 18–36. [CrossRef]
40. Lowe, G. A Family of Attacks upon Authentication Protocols; Technical Report; Department of Mathematics and Computer Science,

University of Leicester: Leicester, UK, 1997.
41. Lowe, G. Towards a completeness result for model checking of security protocols. J. Comput. Secur. 1999, 7, 89–146. [CrossRef]
42. Paulson, L.C. Relations between secrets: Two formal analyses of the Yahalom protocol. J. Comput. Secur. 2001, 9, 197–216.

[CrossRef]
43. Tremblay, J.P.; Sorenson, P.G. An Introduction to Data Structures with Applications; McGraw-Hill Inc.: Irvine, CA, USA, 1984.
44. Aho, A.V.; Ullman, J.D. Foundation of Computer Science in C; W. H. Freeman and Co.: New York, NY, USA, 1994.
45. Shaffer, C. A Practical Introduction to Data Structures and Algorithm Analysis (C++ Version), 3rd ed.; Department of Computer

Science Virginia Tech: Blacksburg, VA, USA, 2010.
46. Weiss, M. Data Structures and Algorithm Analysis in C++; Addison Wesley: New York, NY, USA, 2014.
47. Kruse, R.L.; Ryba, A.J. Data Structures and Program Design in C++; Prentice-Hall, Inc.: Hoboken, NJ, USA, 2000.
48. Barnett, G.; Tongos, L. Data Structures and Algorithms: Annotated Reference with Examples; NETSlackers: Pierrefonds, CA, USA, 2008.
49. Mileva, A.; Dimitrova, V.; Kara, O.; Mihaljevic, M.J. Catalog and Illustrative Examples of Lightweight Cryptographic Primitives.

In Security of Ubiquitous Computing Systems; Springer: Cham, Switzersland, 2021.
50. Longo, R.; Mascia, C.; Meneghetti, A.; Santilli, G.; Tognolini, G. Adaptable Cryptographic Primitives in Blockchains via Smart

Contracts. Cryptography 2022, 6, 32. [CrossRef]
51. Stroustrup, B. The C++ Programming Language; Addison Wesley: New York, NY, USA, 2013.
52. Dolev, D.; Yao, A.C. On the Security of Public Key Protocols. In Proceedings of the 22nd Annual Symposium on Foundations of

Computer Science—SFCS ’81, Washington, DC, USA, 28–30 October 1981; pp. 350–357.
53. Kassem, A.; Lafourcade, P.; Lakhnech, Y.; Mödersheim, S. Multiple Independent Lazy Intruders. In Proceedings of the 1st

Workshop on Hot Issues in Security Principles and Trust (HotSpot 2013), Rome, Italy, 17 March 2013.
54. Mödersheim, S.; Nielson, F.; Nielson, H.R. Lazy Mobile Intruders. In Lecture Notes in Computer Science, Proceedings of the POST,

Rome, Italy, 16–24 March 2013; Basin, D.A., Mitchell, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7796,
pp. 147–166.

55. Available online: https://en.cppreference.com/ (accessed on 1 September 2023).
56. Mödersheim, S.; Vigano, L.; Basin, D. Constraint differentiation: Search-space reduction for the constraint-based analysis of

security protocols. J. Comput. Secur. 2010, 18, 575–618. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/182110.182112
http://dx.doi.org/10.1145/77648.77649
http://dx.doi.org/10.3233/JCS-1999-72-302
http://dx.doi.org/10.3233/JCS-2001-9302
http://dx.doi.org/10.3390/cryptography6030032
https://en.cppreference.com/
http://dx.doi.org/10.3233/JCS-2009-0351

	Introduction
	Related Works
	Needham Schroeder Public Key Protocol
	Description of the Methodology
	Properties and Functionalities of the CMMTree Model
	Primary Structures and Generalization of the Problem
	Predicate Function: Searching for the Best Possible Solution

	Experimental Results
	Conclusions
	References

