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Abstract: Remote sensing image semantic segmentation plays a crucial role in various fields, such
as environmental monitoring, urban planning, and agricultural land classification. However, most
current research primarily focuses on utilizing the spatial and spectral information of single-temporal
remote sensing images, neglecting the valuable temporal information present in historical image
sequences. In fact, historical images often contain valuable phenological variations in land features,
which exhibit diverse patterns and can significantly benefit from semantic segmentation tasks. This
paper introduces a semantic segmentation framework for satellite image time series (SITS) based
on dilated convolution and a Transformer encoder. The framework includes spatial encoding and
temporal encoding. Spatial encoding, utilizing dilated convolutions exclusively, mitigates the loss of
spatial accuracy and the need for up-sampling, while allowing for the extraction of rich multi-scale
features through a combination of different dilation rates and dense connections. Temporal encoding
leverages a Transformer encoder to extract temporal features for each pixel in the image. To better
capture the annual periodic patterns of phenological phenomena in land features, position encoding
is calculated based on the image’s acquisition date within the year. To assess the performance of this
framework, comparative and ablation experiments were conducted using the PASTIS dataset. The
experiments indicate that this framework achieves highly competitive performance with relatively
low optimization parameters, resulting in an improvement of 8 percentage points in the mean
Intersection over Union (mIoU).

Keywords: semantic segmentation; phenology; spatial encoding; temporal encoding; satellite image
time series

1. Introduction

Modern remote sensing satellites possess unprecedented high-frequency access capa-
bilities, thereby obtaining multi-temporal remote sensing imagery that encapsulates vast
amounts of information about features on the Earth’s surface in both space and time [1].
Fully harnessing this spatio-temporal information will further enhance the applications of
remote sensing imagery in environmental monitoring, urban planning, and agricultural
land classification.

Food security serves as a crucial foundation for national security, and arable land
stands as the lifeline of food production. As a result, governments worldwide have consis-
tently placed great emphasis on the supervision of arable land protection and have imple-
mented strict measures to ensure the sustainable utilization of arable land resources [2].
However, the ”non-grainification” [3] phenomenon in arable land, resulting from structural
adjustments in land use within agricultural areas, is challenging to capture in single-
temporal remote sensing images. This limitation often leads to unsatisfactory outcomes in
arable land segmentation. To better monitor arable land protection and effectively manage
arable land resources, it is necessary to employ multi-temporal remote sensing imagery
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for comprehensive analysis [4,5]. This paper examines satellite image time series (SITS) to
acquire information about crop growth, enabling the long-term monitoring of arable land
and elevating the level of agricultural intelligence.

In recent years, the use of deep learning methods for semantic segmentation of re-
mote sensing images has become the mainstream approach for land cover classification.
Researchers in this field have conducted in-depth investigations on single-temporal remote
sensing images and have achieved remarkable results [6,7]. Wang et al. [8] integrated
the Atrous Spatial Pyramid Pooling (ASPP) module, which encodes image-level features,
into the U-Net [9] network, significantly improving the segmentation accuracy of multi-
scale features in the imagery. However, mainstream segmentation networks are unable to
fully recover spatial information discarded in the feature extraction stage, which exacer-
bates the segmentation inaccuracies caused by fuzzy land feature boundaries in the imagery.
To address this, Xu et al. [10] introduced the HRNet network, which better preserves spatial
information during feature extraction, enhancing the accuracy and precision of segmenta-
tion, while also considering global context and multi-scale features. Compared to natural
images, lower-resolution remote sensing imagery relies more on contextual information
for pixel-level classification. Ding et al. [11] introduced the parcel attention module to
enhance the extraction of contextual information through local attention, and the attention
embedding module to fuse semantic information at different levels. The remote sensing
field has continuously been seeking new methods to enhance the accuracy and efficiency of
remote sensing image segmentation. With the tremendous success of Transformer models
in the field of computer vision, applying them to remote sensing image segmentation has
become a trend. By studying the performance of remote sensing images within Transformer
models, we can gain a deeper understanding of how Transformer models work and their
characteristics, further promoting their application and development in the remote sensing
domain [12]. To fully leverage the capabilities of convolutional neural networks (CNNs)
in local feature extraction and the advantages of the Transformer [13] in capturing global
contextual information, the fusion of both is a viable choice. Wang et al. [14] proposed the
CCTNet, which combines the local detail features from the CNN and the global contextual
information from the Transformer, effectively mitigating the misclassifications of small
objects and gaps in the imagery. Zhang et al. [15] used the Swin Transformer as an encoder
to extract features, while the CNN was employed for multi-scale feature extraction and
served as the decoder. Li et al. [16] introduced the dual-encoder structure, which utilizes
the Transformer to cross-fuse global multi-scale semantic information and employs ASPP
to extract context information with high-level semantics. GLFFNet [17] is another approach
that combines two different network architectures, the Transformer and CNN, to extract
global high-level interaction features and obtain low-level local features. He et al. [18]
embedded the Swin Transformer into the classical U-Net network, creating a dual-encoder
structure wherein the extracted global contextual information compensates for the local
nature of the convolution.

As described in the aforementioned literature, local information, multi-scale features,
and global context all play indispensable roles. However, the diverse phenological phe-
nomena [19–21] of crops should not be overlooked. Their complex temporal patterns
can be accurately represented through SITS [22]. Therefore, for the segmentation of agri-
cultural land in remote sensing images, relying solely on spatial and spectral features is
not sufficient. It is also crucial to consider the annual cyclic phenological characteristics
of crops. Moreover, capturing the phenological characteristics of various land features
as they change over time in SITS can effectively mitigate the challenges posed by the
“same material, different spectra; different material, same spectra” issue encountered in
single-temporal remote sensing imagery. This approach also enhances the utility of remote
sensing imagery.

In the early stages of land cover classification using SITS, the conventional approach
involved extracting time, statistical, and spectral index information for each pixel from the
imagery to create time series. These data were then combined with classical machine learn-
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ing algorithms for classification [2,19,23,24]. Garnot et al. [25] introduced a method based
on ensemble encoders that successfully extracted statistical information about spectral
distribution within the spatial extent of land parcels. They organized this statistical data
into time series and applied a time attention encoder for classification. The aforementioned
methods, utilizing feature engineering, made use of time information to a certain extent.
However, with the continuous development of deep learning technology, an increasing
number of studies have begun to explore the use of deep learning models to extract time
features from SITS. U-TAE [1] represents the first end-to-end pixel-level segmentation
framework for agricultural land within SITS. This framework includes an encoder for
image time series, which employs convolutional blocks and a lightweight time attention
encoder (L-TAE) to extract rich multi-scale spatio-temporal features. Additionally, they
publicly released the first SITS dataset with semantic annotations, known as PASTIS [1].
While the use of L-TAE significantly reduces computational complexity, it fundamentally
relies on learned weights for the fusion of feature map time series and does not consider or
extract the time series features within SITS.

In this paper, we introduce a novel end-to-end pixel-level semantic segmentation
framework for SITS called the spatio-temporal encoding neural network (STENN). The
framework is designed to reveal the representation of intrinsic temporal patterns of land fea-
tures in images, addressing the limitations of previous methods in exploiting the potential
information along the temporal dimension of images and, consequently, the underutiliza-
tion of spatio-temporal information. The framework comprises two encoding modules:
a dilated convolution-based spatial encoding module and a Transformer encoder-based
temporal encoding module. In the spatial encoding module, we utilize dilated convolutions
to rapidly increase the receptive field, capture deep semantic information, and circumvent
spatial information loss [26] and up-sampling caused by down-sampling. Within the tem-
poral encoding module, we employ the Transformer encoder to extract temporal features
for each pixel in the feature map time series and perform pixel-wise classification based on
the spatio-temporal features. Finally, we validate the effectiveness of our proposed model
on the PASTIS dataset.

The main contributions of this paper are as follows:

1. We propose a novel backbone network for semantic segmentation tailored for pixel-
level classification tasks sensitive to spatial information. This network abandons
down-sampling, which may lead to unrecoverable spatial information loss, and in-
stead combines dilated convolutions and dense connections to rapidly expand the
receptive field and obtain multi-scale features.

2. For the first time, we utilize a Transformer encoder to extract temporal features for
each pixel. To emphasize the annual cyclic patterns of crops, position encoding is
calculated based on the position of the acquisition date within that year.

3. We provide an open-source implementation of the model based on PyTorch on GitHub,
which can be found at the following URL: https://github.com/ThinkPak/stenn-
pytorch (accessed on 25 October 2023).

The subsequent sections of this paper are organized as follows: In Section 2, we will
provide a detailed introduction to the PASTIS dataset, including information about the
study area and the organizational structure of the dataset. In Section 3, we will outline
the research background of the proposed model and provide detailed explanations of the
model’s two encoders: the spatial encoder and the temporal encoder. Section 4 will cover
the evaluation metrics used, experimental details, and the results obtained. In Section 5,
we will extensively discuss the experimental results, focusing on key observations and
insights gained from analyzing the SITS data. Finally, in Section 6, we will summarize the
main contributions of this paper, address its limitations, and provide recommendations for
future research.

https://github.com/ThinkPak/stenn-pytorch
https://github.com/ThinkPak/stenn-pytorch


Appl. Sci. 2023, 13, 12658 4 of 16

2. Study Area and Dataset
2.1. Study Area

The SITS data for PASTIS are obtained from four distinct Sentinel-2 tiles situated in
various regions within the French metropolitan territory, as illustrated in Figure 1a. These
regions exhibit diverse climates and crop distributions. The Sentinel tiles cover an area of
more than (4000 km2) with a spatial resolution of 10 m per pixel. Each pixel is characterized
by 13 spectral bands. For the PASTIS dataset, we utilize all bands except the atmospheric
bands B01, B09, and B10. Each of these tiles is divided into square patches measuring
1.28 km× 1.28 km, resulting in a total of approximately 24,000 patches. Only 2433 patches
were chosen, constituting 10% of all the patches. The 2433 selected patches were randomly
divided into five splits, enabling us to conduct cross-validation, as illustrated in Figure 1b.
The selection criteria prioritize patches that include rare crop types to mitigate the severe
class imbalance present in the dataset. As shown in Figure 1.

(a) Location of the four tiles. (b) Selected patches. (c) The parcel retention principle.

Figure 1. PASTIS data information. The spatial distribution of the four parcels corresponding to the
PASTIS dataset (a). A patch distribution within a parcel (b). The patch retention principle (c); if most
of the land features are located outside the patch boundary (red circle), they are labeled as “void”. If
most of the land features are located inside the patch boundary (green circle), the patch is considered
a valid parcel and retained. The legend refers to Figure 2 for reference.

Figure 2. Land class codes and their corresponding colors, along with the number of parcels corre-
sponding to each land class.
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2.2. Dataset

Based on the distribution of crop categories contained in the selected parcel samples,
we chose 18 categories for the parcel recognition system in France. As shown in Figure 2,
parcels that did not belong to these 18 categories were labeled as “void”.

In Figure 3, a yearly image time series reveals the annual cyclical changes in crops and
also highlights how different land features have similar representations in single-temporal
remote sensing images. Based on these observations, this study selects SITS as the focus of
research for agricultural land semantic segmentation.

The dataset used in this study is PASTIS, which comprises SITS and labels for the
semantic segmentation of agricultural land. The image data were collected using Sentinel-2
and consist of 2433 multi-spectral image sequences. Each image in the sequence comprises
10 channels, and during training, normalization is required for each channel of the image.
Each image consists of 128× 128 pixels. The data were collected from September 2018 to
November 2019, with varying observation frequencies ranging from 38 to 61 times and
an average interval of 5 days. Each multi-spectral image sequence is organized into a
four-dimensional tensor of shape T × 10× 128× 128, where T represents the number of
observations (T ∈ [38, 61]). There are 19 annotated classes in total, including 18 different
crop classes and one background class. The class labels were sourced from a publicly
available land parcel identification system in France, with an accuracy rate exceeding 98%.

Figure 3. This image excellently illustrates the annual cyclic variations of crops in the SITS dataset.
From the image, it is evident that even though different crops may exhibit similar spectral charac-
teristics in single-temporal remote sensing images (as indicated by the red circles), their patterns of
change throughout the annual cycle vary significantly. This cyclical variation not only reflects the
unique growth habits of various crops but also provides us with rich information for understanding
and predicting the dynamics of agricultural production.

3. Methodology
3.1. Related Work

In this section, we have introduced some of the state-of-the-art works related to spatial
encoding and temporal encoding, including models based on CNN and models based
on Transformers. These models have provided valuable insights and references for us in
extracting spatio-temporal features from SITS.

Based on CNN spatial encoding. The conventional approach to semantic segmentation
involves using pretrained image classification networks such as VGG [27] and ResNet [28]
as backbone networks. These networks are characterized by multiple rounds of convolu-
tional layers and down-sampling layers, which expedite the expansion of the receptive
field and, consequently, the extraction of deep but low-resolution semantic information
from images. While this semantic information is beneficial for image classification tasks,
it is not suitable for dense pixel-level classification tasks. To adapt these networks for
semantic segmentation, it is necessary to compensate for the loss of spatial resolution
caused by down-sampling. Primarily in the decoding phase, this is achieved by integrating
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mid- to high-resolution feature maps generated at various stages of the encoder using
skip connections, as seen in typical networks like FCN [29] and U-Net [9]. FCN, as the
first network to perform end-to-end segmentation using fully convolutional layers, revolu-
tionized research in semantic segmentation. The U-Net, originally designed for medical
image segmentation, employs a symmetric network structure, comprising a contracting
pathway to capture contextual information and an expanding pathway symmetric to it to
support precise localization. By combining deep, low-resolution semantic information with
shallow, high-resolution surface information through skip connections, U-Net is capable
of performing dense and fine-grained segmentation tasks. Consequently, convolution has
become the foundation for semantic segmentation tasks [30], and the encoder–decoder
architecture has become a popular framework for semantic segmentation networks. The en-
coder is responsible for feature extraction, and the decoder projects the high-level semantic
features learned by the encoder into high-resolution pixel space to achieve dense, fine-
grained classification. For example, SegNet [27] utilizes the index of max-pooling from
the encoding phase in its up-sampling process, reducing the number of parameters and
computational workload compared to transposed convolution. However, down-sampling
in classification networks results in irreversible spatial information loss. DeepLab V1 [31]
introduced dilated convolutions to mitigate the reduction in spatial resolution and spatial
insensitivity caused by down-sampling. DeepLab V2 [32] proposed the ASPP module for
multi-scale targets, consisting of four parallel dilated convolutions modules with different
dilation rates to extract multi-scale features. In addition to adjusting the dilation rates of
the ASPP module, DeepLab V3 [33] added a global pooling layer to extract image-level
features. DeepLab V3+ [34], building upon DeepLab V3’s encoder, introduced depth-
wise separable convolution to reduce the number of parameters and included a decoder
module to refine object boundaries, significantly enhancing the network’s segmentation
performance. While skip connections and up-sampling gradually restore deep semantic
information to high-resolution space, the loss of spatial information in feature maps due to
down-sampling is an irreversible process, and the lost high-resolution spatial information
cannot be fully recovered.

Image classification tasks involve making classification decisions by comprehensively
considering the information across the entire image. Therefore, down-sampling can be
utilized to expedite the enlargement of the receptive field, enabling the extraction of more
abstract and robust semantic information without excessive concern for spatial resolution
loss. However, for semantic segmentation tasks, which require precise classification for
each pixel in an image, spatial precision is of utmost importance. As a result, we believe
that improvements should not be limited to enhancing image classification networks but
should focus on constructing networks tailored to semantic segmentation, a task highly
sensitive to spatial information.

Dilated convolutions were introduced to address image segmentation problems. Un-
like the combination of convolutional and pooling layers, dilated convolutions have the
advantage of rapidly increasing the receptive field while maintaining the feature map’s
size, thus avoiding the irreversible loss of spatial accuracy caused by down-sampling [33].
To mitigate gradient vanishing and enhance the utilization of feature maps, the output of
each dilated convolution block is directly concatenated with the input of all subsequent
dilated convolution blocks, without the need for up-sampling to ensure consistent feature
map sizes [35]. Since the input of each dilated convolution block contains the original
image, and the dilation rates increase progressively, the network can extract a rich set of
multi-scale features to cope with the significant variation in object sizes within remote
sensing imagery.

Based on Transformer temporal encoding. Research into time series data classification
initially focused on discovering specific patterns within the time series data, such as
periodic and trending patterns, and performing classification by identifying these patterns.
These methods have been superseded by more effective deep learning techniques that
allow neural networks to automatically learn complex features within time series data,
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eliminating the need for manual feature engineering and selection. Models like LSTM [36]
and Transformer [13] can capture dependencies and dynamic changes within time series
data, enabling more accurate classification. Compared to recurrent neural network models,
Transformers are more proficient at modeling long-range dependencies between elements
in input sequences and support parallel processing of sequences, greatly enhancing model
performance and efficiency. In particular, the Transformer encoder, through positional
encoding and self-attention calculations, captures correlations between time series data.
During self-attention calculations, the data are divided into multi-head, creating various
subspaces. This enables the model to capture information from different perspectives,
resulting in a more comprehensive understanding of the data. Finally, the information
from these subspaces is integrated, and the encoded results are fed into a classifier for
classification, as depicted in Figure 4.

Figure 4. Transformer encoder sequence data classification model includes an embedding layer, posi-
tional encoding, multi-head self-attention layer, feedforward fully connected layer, and linear layer.

In this study, we primarily explore the use of dilated convolutions as a substitute
for down-sampling operations, facilitating the rapid expansion of the receptive field. We
achieve this by employing dense connections and varying dilation rates to obtain multi-
scale features. Lastly, we employ the Transformer encoder to extract temporal features for
each pixel, which are utilized for pixel-level classification.

3.2. STENN Architecture

In this section, we primarily introduce a shared dilated convolution spatial encoder
for SITS and a Transformer encoder for time encoding. The input consists of SITS X, which
is a four-dimensional tensor with a shape of T × C× H ×W. Here, T represents the length
of the time series, C is the number of channels in the image, and H ×W denotes the shape
of the image.

As shown in Figure 5, our STENN model encodes the sequence X in three steps:

• First, it undergoes spatial encoding. We employ multi-level shared dilated convolu-
tional layers, simultaneously processing each frame of the SITS, generating feature
map time series with channel numbers of 16, 32, 32, and 64.

• Next is temporal encoding. We concatenate the results of spatial encoding along the
channel dimension, obtaining a feature map time series with 144 channels. Then, we
reshape this sequence into a time series for each pixel, and after positional encoding,
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it is fed into the Transformer encoder. Subsequently, the encoded results are averaged
along the time dimension, ultimately generating a single feature map.

• Finally, through the semantic segmentation head, we map the feature map containing
spatio-temporal information into segmentation results.

Figure 5. STENN consists of both a spatial encoding and a temporal encoding. The spatial encoding
abandons down-sampling, ensuring consistent feature map sizes, and simultaneously enhances
feature map utilization through dense connections, enabling the extraction of rich multi-scale features.

3.2.1. Spatial Encoding with Dilated Convolution

Dilated Convolution: Dilated convolutions were introduced for image segmentation
tasks, and they ensure that model parameters and feature map resolution remain unchanged
while effectively controlling the receptive field of convolution to capture multi-scale infor-
mation. Compared to the common approach of using pooling layers and convolution layers
to increase the receptive field, dilated convolutions avoid the irreversible loss of spatial
precision that occurs when feature maps are first reduced and then enlarged. Additionally,
by setting different dilation rates and using dense connections, it is possible to capture
multi-scale features.

Dense Connection: Dense connections, pioneered by DensNet [22], are a crucial
strategy for information exchange between network layers. This strategy primarily involves
passing the output of each layer directly to all subsequent layers, fully utilizing the feature
maps of each layer and reducing feature redundancy.

Spatial encoding is carried out by the dilated convolution encoder ε, which consists of
N layers (1, . . . , n, . . . , N). Each layer is composed of a series of dilated convolutions with
increasing dilation rates, rectified linear unit (ReLU) activation, and group normalization.
As there is no down-sampling operation employed, the feature map size remains consis-
tent for each layer, facilitating dense connections between the dilated convolution layers,
as shown in Figure 6.
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Figure 6. Spatial encoding with dilated convolution. The feature map at each layer is obtained by
concatenating the input and output along the channel dimension from the previous layer.

For each image in SITS, the feature map f t
n−1, t ∈ [1, T] serves as the input to the

encoder εn, n ∈ [1, N]. The output feature map f t′
n is obtained by concatenating the input

feature map f t
n−1 and the output feature map f t

n along the channel dimension, and it
becomes the input for the subsequent encoder εn+1. Its shape is Cn × H ×W, where
Cn = Cn−1 + C′n. Finally, the feature maps from each image are stacked together to create
the feature map time series fn for that layer, with a shape of T×Cn×H×W, as represented
in the following formula.

f ′n = concat[εn( f t
n−1)]

T
t=0, n ∈ [1, N] (1)

fn = concat[ fn−1, f ′n], n ∈ [1, N − 1] (2)

where f0 = X. For each layer of the encoder, the concatenated feature map of the input and
output from the previous layer is used as the input. Additionally, the feature maps for each
layer have the same size as the original image.

3.2.2. Temporal Encoding with Transformer Encoder

After multiple layers of dilated convolution encoding, we obtain a feature map time
series with consistent spatial resolution and different depth levels of semantic information,
as well as multi-scale information. Concatenating the feature map time series outputs from
all layers along the channel dimension results in the feature map time series F, with a shape
of T × C′ × H ×W, where C′ = ∑N

n=1 C′n. The concatenated feature map time series is then
reshaped into a time series for each pixel P, with a shape of T × C′, totaling H ×W pixels,
as expressed in the following formula:

F = concat[ f ′n], n ∈ [1, N] (3)

Finally, feature extraction is performed on each pixel’s time series using the Trans-
former encoder, as illustrated in Figure 7.

Figure 7. Temporal encoding with Transformer encoder. After spatial encoding, the feature map time
series is organized into a feature sequence for each pixel. Following positional encoding, this sequence
is fed into the Transformer encoder, and the obtained results are reshaped to the original dimensions.

The images in SITS are arranged in chronological order based on their acquisition
dates, and their position indices can directly correspond to their order in the sequence. Al-
ternatively, position indices can be determined by calculating the number of days between
each image’s acquisition date and a fixed reference date. However, in order to capture the
annual phenological patterns of crops within the image time series, the position index pos



Appl. Sci. 2023, 13, 12658 10 of 16

is calculated based on the image’s acquisition date t and the New Year’s Day tnewyear of
the same year. This ensures that the position of the images in the sequence corresponds
to the growth stages of the represented crops. In other words, the image sequence is
arranged based on the chronological order of crop growth stages, rather than the sequence
of collection dates. The formula for calculating pos is as follows:

pos = (t− tnewyear) · days (4)

As shown in Table 1, the process begins with data preprocessing to obtain an SITS
X ∈ RT×C×H×W for each land parcel, arranged by acquisition time, where T represents
the number of image acquisitions, and the lengths may vary. Following this, the feature
maps fn, n ∈ [1, N] are obtained through the dilated convolution encoder εn, n ∈ [1, N].
The feature maps from each layer are then concatenated along the channel dimension
to form the feature map F ∈ RT×C′×H×W . Subsequently, the feature map F is reshaped
into a time series for each pixel, resulting in P ∈ RT×C′ , where the time series has a
length of T and a feature dimension of C′. The pixel-wise time series data P, along with
position encoding, is fed into the Transformer encoder, which processes all pixel-wise data
to generate spatio-temporal features for the entire image, producing the spatio-temporal
feature map F′ ∈ RT×C′×H×W . Finally, the spatio-temporal feature map F′ undergoes
temporal averaging and convolution to yield the final segmentation result R.

Table 1. STENN training process.

Training STENN for SITS Semantic Segmentation

Input: SITS data X; Ground truth labels Y

Output: Semantic Segmentation R

1. Load the training dataset X, configure model parameters, and initialize the weights of the
STENN model.

2. While step ≤ Epoch:

3. Iterate through all the data in X, and utilize the STENN model to generate the segmentation
result R.

4. Calculate the loss between R and Y using the specified loss function and update the entire
model’s parameters based on the computed loss.

5. End the training loop once the defined number of training steps (epochs) has been reached.

6. Validate and test the trained STENN model, and save all the results.

4. Experiments and Analysis
4.1. Evaluation Metric

We employed four quantitative metrics to assess the performance, which include
model parameter count, inference time (IT) on SITS, overall accuracy (OA), and the mean
Intersection over Union (mIoU). The number of parameters is a measure of the model’s
size, with smaller models being more resource-efficient. Inference time solely considers
the time required for the model to process the data, and shorter inference times indicate
faster prediction speeds for individual time series. OA evaluates the global accuracy of the
extraction results, while mIoU quantifies the overlap between the predicted results and the
ground truth labels. The expressions are as follows:

OA =
TP + TN

TP + TN + FP + FN
(5)

mIoU =
1
N

N

∑
i=1

(
TPi

TPi + FPi + FNi
) (6)
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In which TP (true positives) represents the correct identification of positive instances,
TN (true negatives) signifies the correct identification of negative instances, FP (false
positives) denotes the erroneous identification of negative instances as positive, and FN
(false negatives) indicates the erroneous identification of positive instances as negative. N
is the number of categories, TPi represents the true positives for the i category, FPi signifies
the false positives for the i category, and FNi denotes the false negatives for the i category.

All experiments were conducted on a desktop system with an Intel(R) Xeon(R) Gold
6130 CPU and NVIDIA Tesla V100-32G GPU.

4.2. Experimental Detail

The parameters for the six comparative algorithms were set according to the referenced
papers. For our proposed STENN model, the parameter settings are as shown in the
following table:

In Table 2, the number of dilation rates determines the frequency of dilated convolu-
tions. In our experiments, we employed the Adam optimizer with default parameters, set
the batch size to two, and defined the learning rate as 0.001. Considering that the images in
each sequence were captured at different time points, there may be variations in the sample
distribution within each batch. To address this issue, we incorporated group normalization
in the encoder, specifying four groups, instead of using batch normalization.

Table 2. STENN model configuration.

Layer Name Kernel Size Dilation Rate Input Channel Output
Channel

Conv Layer-1 3× 3 {1, 2, 3} 10 16

Conv Layer-2 3× 3 {2, 4, 6} 26 32

Conv Layer-3 3× 3 {2, 4, 6} 58 32

Conv Layer-4 3× 3 {2, 4, 6} 90 64

Concat (dim = channel) & Reshape

Transformer encoder (input = 144, head = 8)

Mean (dim = time) & Reshape

Conv Layer-5 3× 3 {1, 1} 144 20

To quantitatively and qualitatively validate the effectiveness of the STENN model, we
selected U-TAE [1], ConvLSTM [37,38], ConvGRU [39], U-ConvLSTM [40], U-BiConvLSTM [39],
and 3D U-Net [40] as comparative algorithms.

• The backbone network of U-TAE [1] is U-Net. At the lowest resolution, the attention-
based time encoder generates a set of time attention masks for each pixel. After spatial
interpolation, these attention masks fuse the feature map time sequences at all resolu-
tions into a single feature map. In the coding branch, four sets of group normalization
are utilized, while batch normalization is employed in the decoding branch. A tem-
poral encoding approach employing an L-TAE with 16 heads and a key-query space
dimensionality of four was chosen.

• ConvLSTM [37,38] and ConvGRU [39] are recurrent neural networks, primarily re-
placing all linear layers in the model with convolutional layers. Their hidden sizes are
set to 160 and 188, respectively.

• U-ConvLSTM [40] and U-BiConvLSTM [39] use U-Net as their backbone network,
replacing L-TAE in the network with ConvLSTM [37] or bidirectional ConvLSTM.
In comparison to the original method, batch normalization in the encoder is replaced
with group normalization. Like the U-TAE, the Backbone utilizes the U-Net architec-
ture, simply replacing the L-TAE with ConvLSTM or BiConvLSTM in their respec-
tive positions.
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• The encoding space of 3D U-Net [40] is three-dimensional, allowing it to simultane-
ously process spatial and spectral dimensions. Finally, it performs mean fusion in
the temporal dimension. The network comprises five consecutive 3D convolutional
blocks, conducting spatial down-sampling after the second and fourth blocks. Each
convolutional block doubles the channel count of the processed feature maps, with the
innermost feature map having a channel size set at 128. Leaky ReLU and 3D batch
normalization are employed within the convolutional blocks of this architecture.

4.3. Results

The second part of Table 3 displays the results of ablation studies, where

• VGG Backbone: The spatial encoding is replaced with the first 10 layers of VGG-16,
and the network width has been adjusted accordingly to maintain a similar parameter
count. The feature maps at each stage are up-sampled to match the original image
resolution, and after channel-wise concatenation, they undergo temporal encoding.

• No Dense Connection: Remove the dense connections from the spatial encoding,
where the input of each layer is only the output of the previous layer.

• No Transformer encoder: Remove the Transformer encoder and directly perform
temporal mean fusion on the feature map time series obtained after spatial encoding.
Then, obtain the final segmentation result through convolution.

• Single Date (August): Select one image from SITS taken in August for training, and the
model produces segmentation results after spatial encoding.

• Single Date (May): Select one image from SITS taken in May for training.

Table 3. Segmentation result of different approach. The best performance is displayed in bold, and the
second best performance is underlined.

Model Param (×1000) OA mIoU IT (ms)

STENN (Ours) 447 79.37 55.8 322

U-TAE 1087 79.31 47.82 88

ConvLSTM 1009 77.47 54.06 163

ConvGRU 956 70.31 36.93 141

U-ConvLSTM 1521 75.27 36.19 110

U-BiConvLSTM 1210 76.14 42.32 104

3D U-Net 1554 76.92 47.21 96

VGG Backbone 401 78.18 55.26 193

No dense connection 403 77.26 53.16 245

No Transformer encoder 289 73.41 31.91 153

Single Date (August) 289 58.75 31.12 151

Single Date (May) 289 55.16 30.43 151

5. Discussion

Comparison Analysis. In Table 3 and Figure 8c, the performance of ConvLSTM and
ConvGRU demonstrates that LSTM performs better in handling time series data. Further-
more, the combination of using U-Net as the backbone for spatial feature extraction and
extracting temporal features through ConvLSTM or Bidirectional ConvLSTM does not
yield satisfactory results. The 3D U-Net can simultaneously handle both 2D spatial and
1D spectral data, providing shorter inference times and good performance. Our proposed
model has less than half the number of parameters compared to U-TAE. Furthermore,
under the same OA conditions, our model’s mIoU outperforms the U-TAE by 8 percentage
points. This indicates that, when dealing with complex land parcels, our model excels in
the delineation of land object boundaries, exhibiting superior robustness and generaliza-
tion capabilities.
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(a) The OA values of the STENN model. (b) The mIoU values of the STENN model. (c) The mIoU values for all models.

Figure 8. During the training and validation process, the OA (a) and mIoU (b) of the STENN model.
The change in mIoU for all models on the validation set during the training process (c). All models
using the same learning rate may lead to oscillations during the training process for some models
(red circles).

Based on the comparison in Figure 9, it is evident that our model has shown significant
improvements in recognizing many land cover categories, especially Grapevine (8), Winter
durum wheat (11), Fruits, vegetables, flowers (12), Potatoes (13), and Sorghum (18). This
improvement primarily stems from U-TAE harnessing spatial features predominantly, while
training attention weights solely on the temporal dimension. Instances of misclassification
occur when the target land cover shares visual similarities with the background in crucial
temporal segments, leading to erroneous categorization into the background.

(a) Confusion matrix of STENN (b) Confusion matrix of U-TAE

Figure 9. The confusion matrices for STENN (a) and U-TAE (b) display the classification accuracy
of these two models when predicting crop categories. Specifically, each entry in the matrix at the i
row and j column represents the proportion of samples belonging to class j that were classified as
class i. The darker the color, the larger the proportion, indicating better model performance. Figure 2
provides a correspondence between the crop type numbers and their specific crop names.

According to Figure 10, it is visually evident that our model’s segmentation results
outperform other methods significantly. Other methods exhibit clear instances of small
object omissions, large object edge dissolution, and missed areas (highlighted in red circles).
Additionally, comparing the patch with the ground truth, it is apparent that the accuracy of
the PASTIS dataset requires improvement.

Ablation Analysis. First, we replaced the spatial encoding with VGG, and the different
resolution feature maps were simply up-sampled without the gradual resolution restoration
used in FCN or U-Net. We observed a 1% drop in OA. We also verified the effectiveness
of the dense connections. The experimental results show that models without dense
connections decreased by 2% in both OA and mIoU. Extracting temporal features proved
to be necessary, as removing the Transformer encoder resulted in a significant performance
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drop, particularly a 23% drop in mIoU. Additionally, we trained our proposed spatial
encoding module on single temporal images from August and May. We observed a
significant decrease in both OA and mIoU, confirming the importance of the annual
phenological cycle of crops in agricultural land classification.

Figure 10. Qualitative semantic segmentation results. We begin with a single image from the
sequence represented using the RGB channels, and for which we have knowledge of the ground truth
parcel’s boundaries and crop type. Subsequently, we showcase the pixelwise predictions generated
by our approach, as well as those of six other comparative algorithms. The legend refers to Figure 2
for reference. Gridding effect due to downsampling (highlighted in red circles).

6. Conclusions

Historical images encompass the phenological variations of crops over time, which
hold crucial significance for agricultural land segmentation. Based on this observation,
this paper introduces a novel spatio-temporal encoding neural network for semantic
segmentation in SITS. Specifically, the network comprises two critical encoding modules.
The first one is the spatial encoding module, which constructs a high-resolution spatial
feature encoding module using dilated convolutions and dense connections. This module
swiftly increases the receptive field, extracts deep semantic information, and acquires rich
multi-scale features without compromising spatial information. Subsequently, the temporal
encoding module employs a Transformer encoder to extract the temporal features of each
pixel within the feature map time series. Furthermore, we use unique position encoding to
better capture the annual cyclic characteristics of crops. Extensive experiments conducted
on the PASTIS dataset demonstrate that our STENN model not only significantly reduces
the required training parameters but also enhances feature extraction capabilities, resulting
in more satisfactory segmentation performance.

Our team’s next steps include the following two aspects:

• Further optimization of time series models: This involves improvements to the Trans-
former encoder or the exploration of other architectures suitable for time series mod-
eling. This can contribute to reducing computational requirements and memory
demands.

• Integration across diverse data sources: Consider incorporating more data sources
into the framework to further enhance the accuracy of semantic segmentation. For in-
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stance, meteorological data, land-use data, and other sources may provide valuable
information for interpreting land cover phenology.
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