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Abstract: Scale variation presents a significant challenge in object detection. To address this, multi-
level feature fusion techniques have been proposed, exemplified by methods such as the feature
pyramid network (FPN) and its extensions. Nonetheless, the input features provided to these
methods and the interaction among features across different levels are limited and inflexible. In order
to fully leverage the features of multi-scale objects and amplify feature interaction and representation,
we introduce a novel and efficient framework known as a multi-resolution and semantic-aware
bidirectional adapter (MSBA). Specifically, MSBA comprises three successive components: multi-
resolution cascaded fusion (MCF), a semantic-aware refinement transformer (SRT), and bidirectional
fine-grained interaction (BFI). MCF adaptively extracts multi-level features to enable cascaded fusion.
Subsequently, SRT enriches the long-range semantic information within high-level features. Following
this, BFI facilitates ample fine-grained interaction via bidirectional guidance. Benefiting from the
coarse-to-fine process, we can acquire robust multi-scale representations for a variety of objects. Each
component can be individually integrated into different backbone architectures. Experimental results
substantiate the superiority of our approach and validate the efficacy of each proposed module.

Keywords: object detection; scale variation; transformer; multi-level fusion

1. Introduction

Object detection, a crucial task in computer vision, entails the classification and lo-
calization of pertinent objects within an image. As convolutional neural networks (CNN)
and vision transformers have experienced significant advancements, object detection meth-
ods have made considerable progress, contributing to the enhancement of recognition
performance across diverse visual tasks. Numerous methods [1–4] have been proposed
to enhance performance from various perspectives, demonstrating remarkable results on
popular benchmarks like MS-COCO [5].

The object detection task involves predicting objects in natural and real-world scenes,
which encompasses objects of varying scales. Nevertheless, scale variation poses a chal-
lenging dilemma that hampers the performance of detection methods. Several studies [6,7]
have confirmed the sensitivity of CNNs to object scale and image resolution. Moreover,
following a series of pooling and convolution operations on the input image, the fea-
tures lose a noticeable amount of information, particularly pertaining to the fine details of
microscopic objects. Furthermore, there is an imbalance of information across different lev-
els. High-level features encompass semantic information, albeit lacking in spatial details,
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while low-level features preserve detailed information but grapple with capturing seman-
tic context. The aforementioned issues have emerged as bottlenecks for contemporary
detection algorithms.

The implementation of multi-level feature integration serves as an effective strategy
to mitigate these issues. For instance, FPN [8] employed a top-down feature integration
method to combine features at different scales. Nonetheless, the input features of FPN
are directly extracted from the backbone network. They may have already lost original
information during the inference process. Additionally, some studies [9] have validated
the significance of semantic information in the high-level features. However, there exists
insufficient exploration and utilization of the high-level features in FPN. Additionally, the
merging approach incorporates a rigid fusion of two features, neglecting the variability
in features across different levels. Relying solely on high-level features to direct low-level
features leads to an absence of low-level spatial information in the high-level features.
Moreover, the direct fusion process from top to bottom may dilute the semantic information
within the high-level features. This suggests an insufficient interaction among multi-level
features. As depicted in Figure 1, the baseline network (FPN) in the left column struggles
to effectively address multi-scale object challenges, resulting in numerous false positive
cases. This is primarily due to the underutilization of features and the absence of precise
object representations.
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Figure 1. Visual Comparison of Results. The top row displays the detection outcomes of Faster
R-CNN using FPN (left) and MSBA (right). The MSBA-based results exhibit a significant reduction in
false positives and a qualitative performance enhancement. APS, APM, and APL denote the AP of
small, medium, and large objects. In the bottom row, a similar trend is observed for Mask R-CNN,
where our approach (right) consistently outperforms the baseline (left). AP bbox and APS bbox pertain
to detection performance and bbox AP for small objects. AP mask and APL mask correspond to
instance segmentation performance and mask AP for large objects.
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To mitigate the constraints of current approaches, we introduce a novel and potent
framework, termed a multi-resolution and semantic-aware bidirectional adapter for multi-
scale object detection (MSBA). More precisely, this framework comprises three sequential
components: multi-resolution cascaded fusion (MCF), a semantic-aware refinement trans-
former (SRT), and bidirectional fine-grained interaction (BFI). Respectively, these three
components target the input, enhancement, and interaction aspects of the feature inte-
gration process through a coarse-to-fine strategy. The MCF component receives inputs
in the form of multi-stage features and multi-resolution images from the backbone. It
then adaptively extracts suitable multi-level features tailored to distinct object instances
through a cascaded fusion strategy involving multiple receptive fields. Additionally, SRT is
introduced to enhance the multi-scale semantic representation by refining both detailed
and global semantic information while minimizing computational costs. SRT is designed
with a semantic association strategy and employs multi-branch attention to effectively
integrate semantic information across diverse scales. Moreover, to achieve a versatile and
effective feature interaction, we introduce BFI, a mechanism for establishing a bidirectional
flow of information. The bottom-up interaction is intended to furnish spatial guidance
transitioning from low-level to high-level layers, fostering interaction across multiple lev-
els. By leveraging intricate spatial information from low-level layers, high-level layers
can effectively identify salient regions and provide enhanced semantic information with
greater accuracy. Conversely, the top-down interaction is employed to establish semantic
enhancement from high-level layers to low-level layers. Building upon the copious se-
mantic information in the high-level layers, low-level layers can exhibit a comprehensive
comprehension of object instances. In conclusion, the introduced coarse-to-fine process
allows for the attainment of a more potent representation of objects across multiple scales.

Thorough experiments are carried out to validate the efficacy of the proposed approach.
The introduced MSBA serves as a plug-and-play framework that seamlessly integrates
with diverse backbones and detectors. On the MS COCO dataset, our method consistently
outperforms state-of-the-art methods, achieving superior performance across different
backbones and detectors, without any additional bells and whistles. As depicted in Figure 1,
our detection results, presented in the second column, demonstrate superiority in accurately
detecting multi-scale objects. In summary, this study offers the following key contributions:

• To mitigate the challenge of scale variation, we introduce a novel multi-resolution and
semantic-aware bidirectional adapter for multi-scale object detection, referred to as
MSBA. It alleviates the scale-variant issue by addressing the input, refinement, and
interaction facets of feature integration.

• Our proposition, MSBA, is composed of multi-resolution cascaded fusion (MCF), a
semantic-aware refinement transformer (SRT), and bidirectional fine-grained interac-
tion (BFI). SRT is dedicated to refining the multi-scale semantic representation, while
BFI is employed to foster ample interaction across various levels. Importantly, all
these modules are pluggable.

• The proposed method is rigorously evaluated on the widely used MS-COCO dataset,
demonstrating its superiority over state-of-the-art approaches. Thorough ablation
experiments are conducted to confirm the efficacy of the proposed modules within
the MSBA framework.

2. Related Work

Object detection is a fundamental task in computer vision that finds wide application
in other visual fields, including remote sensing [10,11] and self-driving [12,13] technologies.
It involves identifying and classifying objects of interest within an image. Object detection
has made remarkable advancements in terms of accuracy and speed, thanks to convolution-
based and transformer-based algorithms.
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2.1. Object Detection

In the field of object detection, when it comes to the convolution-based network
architectures, most detectors can be organized into two types: two-stage detectors [14–17]
and one-stage detectors [18–21]. Two-stage detectors can achieve better performance with
longer computation time, and the one-stage detectors show superiority in speed with
inferior accuracy. In terms of the representation of the object, there can be divided into
anchor-based and anchor-free detectors. Anchor-based [16,20] methods employ a multitude
of anchor boxes to classify and locate objects, while anchor-free methods [22–24] utilize
key points (e.g., center or corner points) for detection rather than relying on intricate
manual design and hyperparameter settings. ATSS [25] has been proposed as a flexible
label assignment method to narrow the discrepancy between anchor-free and anchor-
based approaches. Recently, transformer-based methods [4,26–30] have made significant
advancements. DETR [4] is the first end-to-end detector based on transformer blocks that
achieves comparable performance at a high computation cost. Subsequently, deformable
DETR [26] is proposed to enhance performance while mitigating computation costs through
the use of deformable attention strategies. Additionally, Sparse R-CNN [27] employs sparse
boxes to accomplish multi-stage refinement using a combination of self-attention modules
and iterative structures. MCCL [31] is introduced to apply a novel training-time technique
for reducing calibration errors. NEAL [32] is dedicated to training an attentive CNN
model without the introduction of additional network structures. PROB [33] presents a
novel probabilistic framework for objectness estimation within the context of open-world
object detection.

2.2. Approaches for Scale Variation

Scale variation in object instances poses a significant challenge in object detection,
hindering the improvement of detection accuracy. Singh et al. introduces SNIP [6] and
SNIPER [34] as solutions to address this issue. The proposed method acknowledges the
sensitivity of CNN to scales and advocates for detecting objects within a specified scale
range. Consequently, a scale normalization training scheme is devised to facilitate the
detection of objects at varying scales. These concepts have been widely adopted to acquire
multi-scale information. However, SNIP exhibits high complexity, limiting its suitability
for certain practical applications. FPN [8] introduces a novel feature pyramid architecture
to solve the problem of scale variation by merging adjacent layers from top to bottom. It
has achieved significant advancements and serves as a fundamental structure in many
detectors. However, there is still room for performance improvement. PANet [35] is subse-
quently proposed to enhance FPN by introducing a new bottom-up structure that shortens
information propagation. Moreover, FPG [36] stacks multi-pathway pyramids to enrich
feature representations. DSIC [37] utilizes a gating mechanism to dynamically control
the flow of data, enabling the automatic selection of different connection styles based on
input samples. Furthermore, to address scale variation, PML [38] designs an enhanced
loss function by modeling the likelihood function. HRViT [39] combines high-resolution
multi-branch architectures with vision transformers (ViTs). MViTv2 [40] includes residual
pooling connections and decomposed relative positional embeddings. In contrast to the
aforementioned methods, our approach highlights the roles of different layers and maxi-
mizes information exchange between high-level and low-level layers to enhance feature
representations. In contrast to the aforementioned methods, our approach incorporates
both multi-stage features and multi-resolution images as suitable inputs, employing a
cascaded fusion strategy. Furthermore, the proposed MSBA highlights the roles of different
layers and maximizes information exchange between high-level and low-level layers to
enhance feature representations.

2.3. Vision Transformer

The application of transformers in diverse visual tasks has made significant advance-
ments. ViT [41] employs a standard transformer backbone for image classification, but this
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approach incurs significant computational overhead. Subsequently, a series of studies are
conducted to enhance ViT. For instance, T2T-ViT [42] divides the image into overlapping
patches as tokens, enhancing token interactions. TNT [43] investigates both patch-level
and pixel-level representations using nested transformers. Additionally, CPVT [44] in-
troduces implicit conditional position encodings that depend on the local context of the
input token. Notably, the Swin transformer [45] introduces a hierarchical approach that
incorporates multi-level features and window-based attention. Moreover, the application
of the transformer to other vision tasks has achieved remarkable progress, such as video
captioning [46,47], vision-language navigation [48,49], and visual voice cloning [50,51].
These excellent works have witnessed the milestone success of the vision transformer.
Furthermore, numerous endeavors [52–54] have been dedicated to leveraging the strengths
of both the CNN and transformer, resulting in improved performance while reducing
computational overhead. However, the majority of the aforementioned studies concentrate
on enhancing the attention mechanism within individual feature states, disregarding the
variations among features across different receptive fields. Conversely, our transformer-
based approach can amalgamate global and local semantic information within high-level
features, due to the proposed effective attention mechanism. Furthermore, our proposed
method places greater emphasis on exploring interactions among diverse receptive fields
and accentuating the reusability of features to enhance their representational capacity.

3. The Proposed Method
3.1. Foundation

The overview of the proposed MSBA is illustrated in Figure 2. As depicted in
Figure 2a, MCF comprises two feature information streams. The

{
C′2, C′3, C′4, C′5

}
indicate

the features derived from the multi-resolution input image, processed through multiple
convolutions to capture sufficient coarse-grained information. {C2, C3, C4, C5} represent
features from distinct stages of the single-resolution image undergone by the backbone
network. In Figure 2b, to ensure consistent notation within the same module, we em-
ploy

{
M′2, M′3, M′4, M′5

}
in BFI to denote features derived from MCF’s output. SRT con-

centrates on enhancing the multi-scale semantic representation in the high-level feature,
specifically targeting C5. Besides, Additionally, BFI encompasses pixel-level filter interac-
tion (PLI) and channel-wise prompt interaction (CWI). The output of PLI is denoted as
{M2, M3, M4, M5}, where M2 remains unchanged (M′2) without any further operations.
Similarly,

{
P′2, P′3, P′4, P′5

}
mirrors {M2, M3, M4, M5} and represents features resulting from

PLI’s output. Additionally, {P2, P3, P4, P5} signify features enriched with meticulous se-
mantic prompt information, primed for predictions.

The matching gate functions as a controller, aiming to mitigate inconsistencies and
redundancy arising from rigorous interaction between two features. It dynamically mod-
ulates the fusion process in response to the present input. In detail, when provided with
input features X, Y ∈ Rc×h×w as input, the matching gate G (·) can be described as:

G (X, Y) = [Fmul(α
f ine, X) + Fmul(1− α f ine, Y)], (1)

in which α f ine ∈ Rc×1×1 represents the control matrix of X and Fmul means the Hadamard
product. α f ine can be obtained from the switch (S) in the matching gate as:

α f ine = S(X), (2)

S(X) = σ[O(·), X], (3)

where O(·) represents the operations such as 3 × 3 convolution and pooling. σ(·) signifies
a nonlinear activation function, executed as Tanh within our method. The matching gate
adeptly fosters complementarity between the two features.
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Figure 2. The overall architecture of MSBA. There are three components: multi-resolution cascaded
fusion (MCF), semantic-aware refinement transformer (SRT) and bidirectional fine-grained interaction
(BFI). MCF performs an adaptive fusion of multi-receptive-field and multi-resolution features, provid-
ing ample multi-scale information. Subsequently, SRT refines the features by amplifying long-range
semantic information. Moreover, BFI ensures robust interaction by establishing two opposing direc-
tions of guidance for features containing fine-grained information. The pixel-level filter establishes
a bottom-up pathway to convey spatial information from high-resolution levels. Concurrently, the
channel-wise prompt guides low-level semantic information via the top-down structure.

3.2. Multi-Resolution Cascaded Fusion

FPN employs a single-resolution image as its input to create a feature pyramid. It can
partially mitigate the challenge of scale variation. However, this approach is limited since a
single-resolution image can only offer a restricted amount of object information within a
specific scale. Using high-resolution images as input can be advantageous for detecting
small objects, yet it might lead to relatively lower performance in detecting larger objects.
Conversely, utilizing low-resolution images as input may lead to subpar performance in
detecting small objects. Consequently, employing a single-resolution image as input might
not suffice for effectively detecting objects across various scales.

Hence, the inclusion of a multi-scale image input is crucial for detectors to gather
a broader spectrum of object information across different resolutions. This observation
motivates our introduction of the multi-resolution cascaded fusion, which integrates multi-
resolution data into the network architecture, as illustrated in Figure 2a. Initially, the input
image undergoes both backbone processing and direct downsampling to align with the size
of Ci = {C2, C3, C4, C5} from the backbone as Cds′i =

{
Cds′2, Cds′3, Cds′4, Cds′5

}
. Following

this, the downsampled multi-resolution images undergo a sequence of convolution, batch
normalization, and activation operations, culminating in the creation of corresponding fea-
tures imbued with both coarse-grained spatial details and semantic insights. Furthermore,
we employ a matching gate to adaptively manage the fusion process between the generated
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multi-resolution features and the multi-stage features derived from the backbone. This
procedure can be described as:

C′i = ∑
Ψi∈CBR

Ψi(Cds′i). (4)

Here, Cds′i refers to the input image that has been downsampled to align with the
suitable spatial dimensions of Ci, with i representing the feature level index from the
backbone. Ψi(·) represents a sequence of operations, including a 3 × 3 Conv, BN, and
ReLU to produce semantic features. Subsequently, we leverage C′i to merge with the
corresponding Ci using a matching gate, thereby generating a feature that is more effective.
Additionally, we formulate a multi-receptive-field cascaded fusion strategy to extract
multi-scale spatial information from the lower-level features. The entire procedure can be
expressed as follows:

M′i = G (C′i , Ci) + Ri(G (C′i−1, Ci−1)) i = (3, 4, 5), (5)

where R′i signifies the convolution operator applied with different dilation rates. M′i
corresponds to the input for the subsequent stage, enriched with ample coarse-grained and
multi-scale spatial information. Notably, M′2 is derived from the matching gate without the
incorporation of dilated convolution.

Generally, our multi-resolution cascaded fusion supplies diverse resolution informa-
tion. The proposed MCF is advantageous for object instances of varying scales. Addition-
ally, we employ a matching gate as a controller to dynamically regulate the interaction
process between multi-resolution images and the multi-stage features of the backbone. This
adaptively controlled process aids in avoiding the inclusion of unnecessary information.
Furthermore, the proposed multi-receptive-field cascaded fusion strategy contributes to the
extraction of ample multi-scale spatial information for the high-level features. The resulting
features consequently achieve a more comprehensive representation of different scales.

3.3. Semantic-Aware Refinement Transformer

Based on earlier investigations [9,55], it is evident that the semantic message contained
in the high-level features significantly contributes to mitigating scale variations. How-
ever, in conventional approaches, there is a lack of distinction between different levels.
Common methods merely employ high-level features to provide semantic information
in their original states. Moreover, the transformer is designed to capture long-range se-
mantic messages due to its self-attention mechanism. Nevertheless, directly applying the
transformer to high-level features may disregard the variations in features across diverse
representation situations. Thus, we propose the SRT transformer encoder to enhance the
comprehensive semantic representation of high-level features across different feature states.
This enhancement facilitates the acquisition of multi-scale semantic global information by
high-level features.

As illustrated in Figure 3, we employ SRT on C′5 to augment the semantic information.
The entire process of SRT can be elucidated as follows:

M̂′5 = LN{AttnSRT(PE(C′5)) + PE(C′5)}, (6)

M′5 = LN{(FFN(M̂′5) + M̂′5)}, (7)

where LN denotes the layer normailzation operation. PE introduces the position embedding
for the feature and the FFN serves to enhance the non-linearity of these features. AttnSRT
signifies the novel SRT attention mechanism, enabling the query of the original feature to
probe long-range semantic relationships across various feature states. Furthermore, the
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sufficient semantic information can be integrated through the SRT attention mechanism
effectively. The process can be delineated as:

AttnSRT = Concat[{Attnn(q1, ki, vi)}h
n=1] i = (1, 2, 3). (8)

The term q1 represents the query extracted from the original feature. The keys, namely
k2, k3, along with the values v2, v3, signify the keys and values obtained through processing
the corresponding features using average and max pooling operations. The processed
features can achieve more expressive with tiny spatial size. The h denotes the number of
attention heads. Following this, q1 engages in interactions with the other keys to amplify
the semantic representation of the high-level feature under various representation states.
The mechanism Attn is employed to calculate token-wise correlations among the features.
Details can be formulated as follows:

Attention(q, k, v) = So f tmax(
qkT
√

dk
)v, (9)

where q, k, and v represent the query, key, and value, separately. dk denotes the feature
channels. Our proposed approach employs the initial query to compute correlations with
other keys sourced from diverse sections of the feature. This process enables the sufficient
extraction of semantic information from the high-level feature.
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Figure 3. Illustration of semantic-aware refinement transformer encoder.

In summary, our proposed SRT comprehensively investigates the semantic informa-
tion across different states of the high-level feature. This facilitates the refinement and
enhancement of multi-scale semantic details through long-range relationship interactions.
Moreover, the computational cost remains minimal due to the small spatial size of the
high-level feature.

3.4. Bidirectional Fine-Grained Interaction

While acquiring the appropriate input for the merging process, a more effective
interaction of features among various levels becomes essential. In a typical feature pyramid,
a top-down pathway connects features from high to low levels in a progressive manner.
Low-level features are enriched with semantic information from higher levels, which proves
advantageous for classification tasks. Nevertheless, detection tasks demand sufficient
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information pertinent to both classification and regression tasks, which poses a challenge
due to the differing information needs of these tasks. The regression task mandates precise
object contours and detailed information from high-resolution levels. Additionally, the
classification task necessitates ample semantic information from low-resolution levels.
However, the FPN scheme is not fully harnessed, resulting in the underutilization of high-
resolution information from lower levels. The integration of numerous object contours
and detailed information does not occur as effectively as anticipated. Furthermore, the
semantic information gradually diminishes along the top-down path.

Building upon the aforementioned knowledge, we introduce bidirectional fine-grained
interaction to address the challenge of underutilizing multi-scale features and to foster
interplay across distinct levels. Initially, we recognize that a straightforward bottom-up
path could potentially introduce additional noise in lower levels. Therefore, we devise
a pixel-level filter (PLF), depicted in Figure 2b, which centers on salient locations and
dynamically sieves out extraneous pixel-level information based on the current feature’s
characteristics. Moreover, high-level features often lack location-specific information. As a
solution, we introduce a bottom-up scheme where low-level features employ the pixel-level
filter to guide high-level features towards object-specific locations.

The pixel-level filter comprises two primary components: the identification of salient
locations and the removal of superfluous pixel-level information, as well as the provision
of fine-grained location guidance. The initial component, referred to as the pixel-level filter,
can be outlined as follows:

Wi = Max[Tanh(Φ(Mi) + Tanh(Φ(Mi))×Mi), 0], (10)

where Tanh(·) is tanh activation that transforms the operation into an encoded feature
vector, ranging from (−1, 1); Φ(·) refers to a 1 × 1 conv operation; and Max ensures
non-negativity. Wi is the output of PLF that denotes the filter result of Mi. The pixel-level
filter effectively removes superfluous information by suppressing values below 0 and
dynamically emphasizes the salient region. In the subsequent part, the adjacent layer
M′i+1 is guided by the filter results Wi from preceding layers, facilitating focus on the
desired region:

Mi+1 = G (Φ(M′i+1), Fmul(M′i+1, Wi)) (11)

Φ(·) is a convolution operator applied to Mi with the intention of obtaining a focused
region through a learning strategy. Mi+1 signifies the output of interaction. It is obtained
by matching the M′i+1 with the prominent information derived from preceding layers. M2
remains unchanged, equivalent to M′2.

Upon acquiring features enriched with accurate object contour and detailed informa-
tion, we incorporate the concept of channel-wise prompt to facilitate the propagation of
semantic information. As shown in Figure 2c, channel-wise prompt is devoted to extracting
the semantic prompt map of the feature at the channel level, adaptively. Then, we utilize
the semantic prompt map of higher levels to instruct the adjacent layer, which can heighten
the semantic perception ability of objects. The detailed process can be articulated as:

Ri = Tanh{Tanh[Φ(avg(Pi))] + Tanh[Φ(max(Pi))]}, (12)

where Ri denotes the semantic prompt map of high-level features, and avg and max
represent the average pooling and max pooling operation block. Then, P′i−1 learns the
semantic knowledge according to the prompt map. The process can be written as:

Pi−1 = G (Φ(P′i−1), Fmul(P′i−1, Ri)). (13)

The proposed bidirectional fine-grained interaction takes full advantage of multi-scale
features. During the bidirectional interaction process, both semantic and spatial information
can be effectively completed among different levels. The low-level layers, which possess
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high-resolution information, effectively capture salient location information via pixel-level
filtering at the pixel level. This information is then utilized to establish a bottom-up
information flow. This aids in enhancing the essential location information of objects within
high-level layers. Conversely, the high-level layers, abundant in semantic information,
contribute significant semantic prompts when subjected to channel-wise prompting at
the channel level. The prominent semantic prompt can be effectively transmitted to the
low-level layers with minimal loss. BGI promotes adequate interaction among different
levels with abundant multi-scale information.

4. Experiments
4.1. Settings

Dataset and Evaluation Metrics. Our experiments utilize the MS COCO dataset,
a publicly available and reputable dataset comprising 80 distinct object categories. It
consists of 115 k images for training (train2017) and 5k images for validation (val2017).
Training is conducted on the train2017, while ablation experiments and comparable results
are generated using the val2017. The performance assessment utilizes standard COCO-
style average precision (AP) metrics, incorporating varying intersection over union (IoU)
thresholds ranging from 0.5 to 0.95. APs, APm, and APl represent the AP of small, medium,
and large objects. Moreover, APb and APm denote the AP of the bounding box and mask in
the instance segmentation task.

Implementaion Details. To maintain experimental comparison fairness, all experiments
are conducted utilizing PyTorch [56] and mmdetection [57]. In our configuration, input
images are resized to ensure their shorter side measures 800 pixels. We train detectors
with 8 Nvidia V100 GPUs (2 images per GPU) for 12 epochs. The initial learning rate is
0.02. And it is reduced by a factor of 0.1 after the 8th and 11th epochs, respectively. The
backbones utilized in our experiments are publicly available and have been pretrained
on ImageNet [58]. The training process incorporates linear warming up during the initial
stage. All remaining hyperparameters remain consistent with the configurations outlined
by mmdetection. Unless stated otherwise, all baseline methods incorporate FPN, and the
ablation studies utilize Faster R-CNN based on ResNet50.

4.2. Ablation Studies
4.2.1. Ablation Studies on Three Components

To assess the significance of the components within MSBA, we progressively integrate
three modules into the model. For all our ablation studies, the baseline method employed
is Faster R-CNN with FPN, based on ResNet-50. As indicated in Table 1, MCF enhances
the baseline method by 1.2 AP, owing to the utilization of diverse-resolution images and a
cascaded dilated convolution fusion strategy. Multi-resolution images encompass ample
spatial object information, while the cascaded method provides diverse receptive field mes-
sages. MCF effectively furnishes adequate information for objects of varying scales—small,
medium, and large. SRT contributes a 1.3 AP enhancement to the baseline method by refin-
ing long-range relationships within high-level features. The most substantial contribution
to the superior performance stems from the enhancements in APL (+2.9 AP), facilitated by
ample semantic information. The findings suggest a deficiency in semantic information
within the high-level features of the baseline method. SRT rectifies this shortfall by refining
semantic information and enhancing feature representation in the high-level layer. BFI
boosts detection performance by 1.4 AP, with a noteworthy improvement in APS. Evidently,
robust interaction across various levels is conducive to mitigating scale variations. Fur-
thermore, the fine-grained messages proficiently enhance detail and contour information
across multi-scale features.

Combining any two of these components results in significantly improved perfor-
mance compared to the baseline method, underscoring the efficacy of their synergistic
interaction. For instance, the simultaneous integration of MCF and SRT yields an AP
improvement of 39.0, surpassing the enhancement achieved by either module individually.
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Furthermore, the incorporation of all three components with the baseline method results
in an AP of 39.5. These ablation results substantiate the efficacy of the three individual
components and their combined configurations, affirming their mutual complementarity.

Table 1. Effect of each component. Results are evaluated on COCO val2017. MCF: multi-
resolution cascaded fusion, SRT: semantic-aware refinement transformer, BFI: bidirectional
fine-grained interaction.

MCF SRT BFI AP AP50 AP75 APS APM APL

37.4 58.1 40.4 21.2 41.0 48.1
√

38.6 59.4 41.9 22.2 42.1 49.9√
38.7 59.3 42.1 21.7 41.9 51.0√
38.8 59.7 42.4 22.6 42.4 50.7

√ √
39.0 59.9 42.4 22.0 42.4 50.7√ √
39.1 60.4 42.6 22.4 42.9 50.6√ √
39.2 60.7 42.5 23.2 42.9 50.2

√ √ √
39.5 60.4 42.8 22.1 42.9 52.3

4.2.2. Ablation Studies of Various Dilation Rates

Table 2 presents the experimental results from various implementations of MCF. To
validate the efficacy of MCF, we employed distinct dilation rates. Employing narrower
dilation rates such as 1, 2, 3 and 2, 3, 4 yields constrained enhancements owing to the
insufficiency of spatial information. Conversely, when employing dilation rates of 3, 6, 12,
the performance fails to improve as anticipated. This suggests that the substantial disparity
among the three dilation rates might result in incongruous receptive information. The more
favorable outcome underscores the dominance of the appropriate configuration 1, 3, 6,
which effectively provides ample pragmatic information for multi-level features.

Table 2. Comparsion of different dilation rates in MCF on COCO val2017.

Rates AP AP50 AP75 APS APM APL

(1, 2, 3) 38.0 58.7 41.4 21.8 41.6 48.8
(2, 3, 4) 37.9 58.6 41.1 21.6 41.3 48.8

(3, 6, 12) 38.2 59.1 41.5 22.0 41.5 49.6
(1, 3, 6) 38.6 59.4 41.9 22.2 42.1 49.9

4.2.3. Ablation Studies of Different Fusion Styles

Subsequently, we delve into the fusion techniques employed for combining two fea-
tures within the MCF. The experiments are performed using distinct fusion styles within the
matching gate. Initially, we employ the product operation on the two features to derive the
fused feature. Subsequently, we sum the two features in another experiment for comparison
purposes. As shown in Table 3, the summation operation applied to feature fusion yields
superior performance, effectively preserving ample spatial and semantic information from
both features.

Table 3. Comparsion of fusion style in the matching gate in MCF on COCO val2017.

Methods AP AP50 AP75 APS APM APL

baseline 37.4 58.1 40.4 21.2 41.0 48.1

product 38.3 58.9 41.8 21.6 41.9 50.0
sum 38.6 59.4 41.9 22.2 42.1 49.9
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4.2.4. Ablation Studies of the Effect of Individual Component in BFI

In this section, we undertake comparative experiments to ascertain the efficacy of indi-
vidual components within BFI. We employ two distinct directional structures to facilitate
interaction independently. As shown in Table 4, both components enhance the performance
of the baseline method. Furthermore, the outcomes reveal the superiority of combining
both methods. The PLF and CWP are complementary and partially overlapping, leading to
enhanced performance when combined.

Table 4. Comparsion of the effect of each component in BFI on COCO val2017. PLF: pixel-level filter,
CWP: channel-wise prompt.

Methods AP AP50 AP75 APS APM APL

baseline 37.4 58.1 40.4 21.2 41.0 48.1

PLF 38.3 59.4 41.4 21.8 41.5 48.6
CWP 38.4 59.0 41.4 22.0 41.9 48.4

PLF with CWP 38.8 59.7 42.4 22.6 42.4 50.7

4.2.5. Ablation Studies of the Interaction Order

We subsequently undertake relevant experiments to validate the significance of in-
teraction order between the two structures within BFI. The experiment is conducted by
interchanging the positions of CWP and PLF. As shown in Table 5, the sequence of CWP
followed by PLF surpasses other alternatives. However, following CWF, the PLF may
introduce more noise and background information to high-level features. In contrast, when
PLF precedes CWP, it effectively mitigates the aforementioned issues owing to the influence
of semantic guidance.

Table 5. Comparsion of interaction orders in BFI on COCO val2017.

Methods AP AP50 AP75 APS APM APL

baseline 37.4 58.1 40.4 21.2 41.0 48.1

CWP
⊕

PLF 38.6 59.1 42.0 21.5 42.1 50.2
PLF

⊕
CWP 38.8 59.7 42.4 22.6 42.4 50.7

4.3. Performance Comparison

To ascertain the efficacy and superiority, we perform comprehensive experiments
encompassing both object detection and instance segmentation tasks. Furthermore, we
re-implement the baseline methods using mmdetection to ensure equitable comparisons.
Generally, the resulting performances surpass those reported in public articles. Additionally,
we apply our proposed approach across multiple backbones and detectors, employing
extended training schedules and techniques to demonstrate its generalizability.

4.3.1. Object Detection

As shown in Table 6, detectors incorporating MSBA consistently achieve substantial
enhancements in comparison to conventional methods, encompassing both single-stage and
multi-stage detectors. Our proposed MSBA demonstrates improvements of 1.5 and 2.1 points
when integrated with RetinaNet and Faster R-CNN utilizing ResNet 50, respectively. Lever-
aging the ample coarse-grained information at lower levels, multi-stage detectors exhibit a
more pronounced accuracy enhancement. Moreover, when combined with diverse backbones
in conjunction with more sophisticated detectors, our approach attains superior outcomes,
attributable to the reinforced multi-scale representation. Additionally, as depicted in Figure 4,
MSBA effectively captures substantial spatial information through ample interaction, while
mitigating the impact of erroneous and overlooked detections.



Appl. Sci. 2023, 13, 12639 13 of 19

Figure 4. Example pairs of object detection results. (Top row) The outcomes are obtained using
Faster R-CNN with FPN. (Bottom row) In contrast to Faster R-CNN with FPN, our MSBA method
markedly enhances the localization capability of multi-scale objects through substantial interaction
across diverse levels, as illustrated qualitatively.

Table 6. Object Detection: Performance comparisons with typical detectors based on FPN. “MSBA”
represents our proposed adapter. “

√
” denotes the methods equipped with MSBA.

Method Backbone MSBA APb APb
S APb

M APb
L

RetinaNet

R50
36.5 20.4 40.3 48.1√
38.0 22.3 41.6 48.8

(+1.5) (+1.9) (+1.3) (+0.7)

R101
38.5 21.7 42.8 50.4√
39.7 22.9 43.5 51.2

(+1.2) (+1.2) (+0.7) (+0.8)

Faster R-CNN

R50
37.4 21.2 41.0 48.1√
39.5 22.6 42.9 52.3

(+2.1) (+1.4) (+1.9) (+4.2)

R101
39.4 22.4 43.7 51.1√
40.7 23.4 45.0 53.4

(+1.3) (+1.0) (+1.3) (+2.3)

Cascade R-CNN

R50
40.3 22.5 43.8 52.9√
41.9 23.9 45.5 55.4

(+1.6) (+1.4) (+1.7) (+2.5)

R101
42.0 23.4 45.8 55.7√
42.6 23.8 46.8 57.0

(+0.6) (+0.4) (+1.0) (+1.3)

4.3.2. Instance Segmentation

We also conduct comprehensive experiments to confirm the superiority and generaliz-
ability of MSBA in the context of instance segmentation tasks. As shown in Table 7, our
approach significantly enhances performance in both detection and instance segmentation
tasks, exhibiting substantial advancements when contrasted with various robust models.
Mask R-CNN achieves 41.7 AP on detection and 37.3 AP when equipped with MSBA based
on ResNet-101. Despite the complexity of potent methods like HTC, MSBA exhibits a no-
table enhancement of 1.6 points in detection AP and 1.4 points in instance segmentation AP,
both based on ResNet-50. Furthermore, MSBA achieves superior performance on large ob-
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jects in both tasks, owing to substantial interaction and rich semantic information at higher
levels. In addition, as shown in Figure 5, MSBA captures global semantic information,
enabling accurate classification predictions and maintaining segmentation completeness.

Table 7. Instance Segmentation: Performance comparisons with powerful instance segmentation
methodologies. All baseline approaches incorporate FPN. The † denotes the models trained with
longer training schedules.

Method Backbone MSBA APb APb
S APm APm

L

Mask R-CNN

R50
38.2 21.9 34.7 47.2√
39.6 22.9 35.8 52.5

(+1.4) (+1.0) (+1.1) (+5.3)

R101
40.0 22.6 36.1 49.5√
41.7 24.2 37.3 54.5

(+1.7) (+1.6) (+1.2) (+5.0)

Cascade Mask R-CNN

R50
41.2 23.9 35.9 49.3√
43.0 25.1 37.3 54.5

(+1.8) (+1.2) (+1.4) (+5.2)

R101
42.9 24.4 37.3 51.5√
44.0 25.2 38.3 56.0

(+1.1) (+0.8) (+1.0) (+4.5)

HTC

R50
42.3 23.7 37.4 51.7√
43.9 25.6 38.8 56.7

(+1.6) (+1.9) (+1.4) (+5.0)

R101 †
44.8 25.7 39.6 55.0√
45.7 27.0 40.2 59.2

(+0.9) (+1.3) (+0.6) (+4.2)

Figure 5. Example pairs of instance segmentation results. (Top row) The results are from Mask
R-CNN with FPN. (Bottom row) our MSBA method significantly enhances the instance classification
performance and effectively mitigates duplicate bounding boxes within densely populated regions,
as demonstrated qualitatively.

4.3.3. Comparison on Transformer-Based Method

We further substantiate the generalizability of MSBA across transformer-based meth-
ods. As indicated in Table 8, we undertake relevant experiments encompassing both
single-stage and two-stage detectors for both tasks. Our MSBA approach yields improve-
ments of 1.2 and 0.9 points in the detection task when applied to pvt-tiny and swin-tiny
methods, respectively. Moreover, even employing the same techniques, such as extended
training schedules and multi-scale training, MSBA continues to demonstrate effectiveness
and superiority when utilized with the more potent Swin-Small backbone, resulting in a
0.5-point enhancement over the baseline method. Due to the extensive multi-scale represen-
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tation facilitated by MSBA, the performance improvement for small objects in the detection
task is particularly notable.

Table 8. Comparison with transformer-based backbone on object detection: Performance comparisons
paired with Mask R-CNN. The baseline methods are integrated with FPN. † represents the models
trained with extra tricks such as multi-scale crop and longer training schedule.

Method Backbone MSBA APb APb
S APm APm

L

RetinaNet

PVT-Tiny
36.6 21.9 - -√
37.8 23.0 - -

(+1.2) (+1.1) - -

PVT-Small
40.4 24.8 - -√
40.9 25.3 - -

(+0.5) (+0.5) - -

Mask R-CNN

Swin-Tiny
42.7 26.5 39.3 57.8√
43.6 27.8 39.9 58.4

(+0.9) (+1.3) (+0.6) (+0.6)

Swin-Tiny †
46.0 31.3 41.7 59.7√
47.1 31.9 42.4 60.5

(+1.1) (+0.6) (+0.7) (+0.8)

Swin-Small †
48.2 32.1 43.2 62.1√
48.7 32.8 43.4 62.8

(+0.5) (+0.7) (+0.2) (+0.7)

4.3.4. Comparison with State-of-the-Art Methods

We evaluate MSBA based on more expressive methods with the longer training sched-
ule and various tricks, compared with other state-of-the-art object detection approaches.
To ensure equitable comparisons, we re-implement the corresponding baseline models,
incorporating FPN within mmdetection. As shown in Table 9, MSBA consistently attains
notable improvements, even when employed with more potent backbones, encompassing
both CNN-based and Transformer-based configurations. MSBA achieves 42.1 AP and
43.0 AP when employing ResNeXt101-32×4d and ResNeXt101-64×4d as the feature extrac-
tors of Faster R-CNN, respectively. This marks an enhancement of 0.9 points compared to
the FPN counterparts. When applied to transformer-based detectors employing identical
training schedules and strategies, the consistently superior performance underscores the
applicability of MSBA across various detector architectures. Additionally, we assess our
approach on more potent models like HTC with a 20-epoch training schedule and Mask
R-CNN with a 36-epoch training schedule. This leads to enhancements of 0.8 and 0.5 points
in detection AP for ResNeXt101-32×4d and Swin-Small, respectively. Consequently, our
approach yields substantial enhancements across diverse public backbones and distinct
tasks. The enhanced performance serves as evidence of MSBA’s capacity for generalization
and robustness.

4.4. Error Analyses

Subsequently, we conduct error analyses to further substantiate the effectiveness of
our approach. As illustrated in Figure 6, we randomly select four categories for error
analysis, encompassing objects of diverse scales. Our approach outperforms the baseline
method across various thresholds. When disregarding localization errors, MSBA surpasses
the baseline, attributed to our approach’s ability to offer more accurate classification
information. Furthermore, when excluding errors associated with similar classes from the
same supercategory and different classes, our method exhibits noteworthy enhancements
compared to the baseline. This underscores MSBA’s superior location accuracy.
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Table 9. Comparisons with the states of the art: The symbol “*” signifies our re-implemented results
on mmdetection. “Schedule” refers to the learning schedules of the respective methods. The † symbol
indicates models trained with additional tricks, such as multi-scale training.

Method Backbone Schedule AP AP50 AP75 APS APM APL

Faster R-CNN * ResNet50-DCN 12 41.3 62.4 45.0 24.6 44.9 54.4
Faster R-CNN * ResNet101-DCN 12 42.7 63.8 46.4 24.9 46.7 56.8
Faster R-CNN * ResNeXt101-32×4d 12 41.2 62.1 45.1 24.0 45.5 53.5
Faster R-CNN * ResNeXt101-64×4d 12 42.1 63.0 46.3 24.8 46.2 55.3
Mask R-CNN * ResNet50-DCN 12 41.8 62.7 46.2 24.5 45.3 55.4
Mask R-CNN * ResNet101-DCN 12 43.5 64.3 47.9 25.7 47.7 57.5
Mask R-CNN * ResNeXt101-32×4d 12 41.9 62.5 45.9 24.4 46.3 54.0

Cascade R-CNN * ResNet50-DCN 12 43.8 62.6 47.9 26.3 47.2 58.5
Cascade R-CNN * ResNeXt101-32×4d 12 43.7 62.3 47.7 25.1 47.6 57.3

DETR[4] ResNet50 500 42.0 62.4 44.2 20.5 45.8 61.1
DETR[4] ResNet101 500 43.5 63.8 46.4 21.9 48.0 61.8

Deformable DETR[26] ResNet50 50 43.8 62.6 47.7 26.4 47.1 58.0
Sparse R-CNN[27] ResNet101 36 44.1 62.1 47.2 26.1 46.3 59.7

HTC * ResNet101 20 44.8 63.3 48.8 25.7 48.5 60.2
Mask R-CNN *† Swin-Tiny 36 46.0 68.2 50.3 30.5 49.2 59.5

HTC * ResNeXt101-32×4d 20 46.1 65.3 50.1 27.1 49.6 60.9
Mask R-CNN *† Swin-Small 36 48.2 69.8 52.8 32.1 51.8 62.7

MSBA Faster R-CNN ResNet50-DCN 12 42.2 63.3 46.2 25.3 46.0 55.7
MSBA Faster R-CNN ResNet101-DCN 12 43.4 64.4 47.5 25.7 47.4 57.8
MSBA Faster R-CNN ResNeXt101-32×4d 12 42.1 63.3 45.7 24.7 46.6 54.8
MSBA Faster R-CNN ResNeXt101-64×4d 12 43.0 64.3 47.1 25.3 46.9 56.9
MSBA Mask R-CNN ResNet50-DCN 12 43.1 63.9 47.4 25.8 47.1 57.0
MSBA Mask R-CNN ResNet101-DCN 12 44.2 64.9 48.4 25.9 48.3 58.5
MSBA Mask R-CNN ResNeXt101-32×4d 12 43.1 64.0 46.9 26.2 47.1 56.2

MSBA Cascade R-CNN ResNet50-DCN 12 44.6 63.6 48.8 27.0 48.2 59.3
MSBA Cascade R-CNN ResNeXt101-32×4d 12 44.2 63.0 47.8 25.4 48.4 58.3

MSBA HTC ResNet101 20 45.7 64.7 49.6 27.0 49.5 60.6
MSBA Mask R-CNN † Swin-Tiny 36 47.1 68.8 51.5 31.9 50.2 60.6

MSBA HTC ResNeXt101-32×4d 20 46.9 66.4 51.2 28.6 50.6 61.7
MSBA Mask R-CNN † Swin-Small 36 48.7 70.6 53.5 32.8 52.5 63.1

Figure 6. The error analyses of four categories: The results in the first row correspond to the baseline,
while those in the second row correspond to MSBA.
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5. Conclusions

In this paper, we introduce a novel and efficacious multi-resolution and semantic-
aware bidirectional adapter, denoted as MSBA, for enhancing multi-scale object detection
through adaptive feature integration. MSBA dissects the complete integration process
into three segments, each dedicated to managing appropriate input, refined enhancement,
and comprehensive interaction. The three corresponding constituents of MSBA, namely
multi-resolution cascaded fusion (MCF), the semantic-aware refinement transformer (SRT),
and bidirectional fine-grained interaction (BFI), are devised to address these three segments.
Facilitated by these three simple yet potent components, MSBA demonstrates its adaptabil-
ity across both two-stage and single-stage detectors, yielding substantial enhancements
when contrasted with the baseline approach across the demanding MS COCO dataset.
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