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Abstract: Signal detection in massive MIMO systems faces many challenges. The minimum mean
square error (MMSE) approach for massive multiple-input multiple-output (MIMO) communications
offer near to optimal recognition but require inverting the high-dimensional matrix. To tackle this
issue, a Gauss–Seidel (GS) detector based on conjugate gradient and Jacobi iteration (CJ) joint pro-
cessing (CJGS) is presented. In order to accelerate algorithm convergence, the signal is first initialized
using the optimal initialization regime among the three options. Second, the signal is processed
via the CJ Joint Processor. The pre-processed result is then sent to the GS detector. According to
simulation results, in channels with varying correlation values, the suggested iterative scheme’s
BER is less than that of the GS and the improved iterative scheme based on GS. Furthermore, it can
approach the BER performance of the MMSE detection algorithm with fewer iterations. The sug-
gested technique has a computational complexity of O(U2), whereas the MMSE detection algorithm
has a computational complexity of O(U3), where U is the number of users. For the same detection
performance, the computational complexity of the proposed algorithm is an order of magnitude
lower than that of MMSE. With fewer iterations, the proposed algorithm achieves a better balance
between detection performance and computational complexity.

Keywords: massive MIMO; conjugate gradient; Jacobi; Gauss–Seidel; Kronecker channel

1. Introduction

Massive MIMO technology is an extension of conventional MIMO technology that
allows it to service more customers concurrently on the same frequency. This improves data
rate, spectrum efficiency, energy efficiency, channel capacity, and connection stability [1].
Through further evolution, it is more frequently employed in telecommunications and
related industries, such as the 5G new radio system. Massive MIMO is an essential
foundational technology for future wireless systems, and it can be used in concert with other
technologies like intelligent reflecting surfaces, orthogonal frequency division multiplexing,
artificial intelligence, etc. Navigation, transportation, healthcare, and other fields can all
benefit from the integration of communication, positioning, and sensing functions made
possible by massive MIMO enabling intelligent reflecting surfaces. New human–computer
interactions are made possible via the integration of artificial intelligence and MIMO
technology, which will also enable extremely dependable real-time industrial information
transmission [2].

Massive MIMO technology has several advantages, but it also has many drawbacks.
In a massive MIMO communication system, other antennas interfere with the signal during
transmission, making it far more difficult to detect the intended signal [3]. At the receiver
side, a detector appropriate for enormous multiple-input multiple-output must thus be
constructed to strike a compromise between low complexity and excellent performance.

The maximum likelihood [4] detection algorithm finds the signal closest to the trans-
mitted signal by rounding through all the received signals, but the high complexity of the
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traversal signal makes it difficult to apply the algorithm in practice. In order to mitigate the
cost of computing, linear detection schemes are recommended to obtain near-optimal de-
tection performance, commonly known as the zero-forced [5] algorithm and the minimum
mean squared error (MMSE) [6] detection algorithm. A highly complex matrix inversion is
used in the MMSE method, which is difficult to implement in practice.

To avoid inverse operations in high-dimensional matrices, a few iterative algorithms
have emerged based on the MMSE detection algorithm. Depending on the iterative ap-
proach, they can be classified into the following three categories. The first category is
the iterative algorithm based on gradient search. The convergence speed of the steepest
descent [7] iterative algorithm, influenced by the initial point, becomes slower when ap-
proaching the final estimated signal. The conjugate gradient (CG) [8] detection algorithm
is offered to increase the speed of convergence, but a complex pre-processing process is
required. The second category is repetitive methods that rely on series expansion, like the
Neumann series-expansion algorithm [9], where the complexity is acceptable if the quantity
of series-expansion terms is less than three, but high complexity arises if the quantity of
series-expansion levels is larger than or equal to three. The third group is those that rely
on iterative schemes to solve linear equations. The common ones are the Jacobi iterative
method [10], the successive over relaxation (SOR) iterative algorithm [11], the Richardson
iterative algorithm [12], the Gauss–Seidel (GS) [13] iterative algorithm, etc. Such detection
algorithms reverse the matrices into solving a system of linear equations, which have a
strong stepwise nature and high requirements for the filter matrix.

There is a limit to what can be achieved using a single algorithm for detection [14].
Therefore, the combination of different detection algorithms in a complementary manner
can further improve the detection capability. A hybrid iterative algorithm combining
adaptive damped Jacobi and conjugate gradient was proposed in the literature [15], which
requires several iterations to achieve near-optimal performance. The literature [16] indicates
that combining QR with traditional techniques for detection provides excellent manifesta-
tions and effectively improves the plant throughput. In the literature [17], a hybrid iterative
algorithm such as QR-MLD, has been suggested that further reduces the complexity of the
ML detection algorithm by using a sphere decoding algorithm suitable for high signal-to-
noise ratio and an easy-to-use DM algorithm. The literature [18] proposes JAGS detection
methods, which is initialized via the Jacobi method and then estimated via GS, but the
convergence speed is slow. The preprocessing Gauss–Seidel iterative algorithms [19,20] use
the preprocessing matrix to transform the original linear equation into a completely new
linear equation, which results in a faster convergence rate in the new framework. However,
complex preprocessing processes create additional computational difficulties.

1.1. Contributions

To mitigate the high cost of the inverse operation of MMSE detection, this work
employs a low-complexity iterative approach for signal identification based on solving
linear equations. The following is a summary of this work’s main contributions:

1. An improved Gauss–Seidel iterative algorithm based on conjugate gradient and Jacobi
(CJ) joint preprocessing is proposed, which can be described as the CJGS iterative
method. The proposed algorithm attempts to combine CG and Jacobi iteration to
accelerate the convergence of GS. Then the GS detector is employed to converge faster
and iterate less.

2. A well-chosen initialization technique can lower computing cost and increase algorith-
mic accuracy. The best appropriate initialization technique for the advised approach
is chosen by contrasting the three initialization strategies.

3. Software simulation and data analysis are utilized to provide more detailed examples
of the suggested algorithm’s advantages in terms of complexity and performance.
Simulation representations demonstrate that, independent of channel correlation, the
CJGS iterative scheme surpasses both the enhanced GS-based iterative program and
the conventional Gauss–Seidel repeated approach in terms of BER ability. Because of
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its reduced complexity, the MMSE detection ability may be attained with fewer itera-
tions. As a result, the recommended strategy performs better in terms of complexity
and detection effectiveness.

1.2. Paper Outline

The remaining parts of the paper are structured as follows: The large-scale MIMO
system model, the channel model, and the principles of the MMSE detection algorithm are
all covered in Section 2. The suggested detection methodology is explained in the third
part. In the fourth part, the BER performance of the proposed method will be evaluated
in light of previous study findings. Next, we determine how difficult the recommended
approach is. The final portion contains the conclusions.

1.3. Notation

Vectors and matrices are displayed in bold lowercase and bold uppercase letters,
respectively. Scalars are represented in lowercase letters. The operators (.)−1 and (.)H

indicate matrix inverse and Hermitian transpose. The identity matrix U ×U is represented
by IU , which denotes the element in row i, column j of the matrix A. The result after the
i-th iteration is the vector s(i).

2. Massive MIMO System Model

The uplink of an uncoded massive MIMO system is studied, and consists of B antennas
configured at the received side serving U single-antenna users within the same time-
frequency resource [21]. Figure 1 illustrates a schematic diagram. And B is much greater
than U.
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Figure 1. Signal-detection framework for massive MIMO communications.

The U × 1 dimensional symbol vector transmitted by total users in the meantime is
sc = [s1, s2, · · · , sU ], where sU ∈ Ω is the symbol vector sent by the Uth user and Ω is the
set of modulated symbols for Quadrature Amplitude Modulation (QAM). The channel
gain between the antennas at the receiving and transmitting apparatuses form the channel

matrix
∼
Hc ∈ CB×U , where

∼
hcB.U is the channel coefficient between the Uth transmit and the

Bth receive antenna. Then, the reception signal vector has the form [21]

yc =
∼
Hcsc + nc (1)

where nc denotes a B× 1 dimensional complex Additive White Gaussian Noise (AWGN)
vector with zero mean, and the covariance matrix is σ2 I. To simplify the operation,
Equation (1) is transformed into an analogue real-valued model as [21]

y = Hs + n (2)

The assumption is that there is perfect channel state information available at the
receiving end.
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2.1. Channel Model

In practical large-scale MIMO communications, channels are generally correlated. The
detection becomes complicated when channels are correlated. Considering the correla-
tion between the transceiver and receiver antennas in massive MIMO communications,
Kronecker’s channel model [22] is described by

H = R
1
2
r HR

1
2
t (3)

where H denotes the independent identically distributed complex channel fading ma-
trix, and Rr and Rt denote the degree of channel correlation between the receiving and
transmitting antennas, respectively.

Rr(n, m) =
{(ζrejφn,m)

m−n, n ≤ m
R∗r (m, n), n > m

(4)

Rt(n, m) =
{(ζrejθn,m)

m−n, n ≤ m
R∗t (m, n), n > m

(5)

where θ and φ represent the random phases of the transmit and receive antennas that
are uniformly distributed, respectively. Assuming that ζr and ζt are known at the base
station side, the channel correlation scenarios are classified into four types according to the
different values, which are as follows [23].

(1) ζr = 0 and ζt = 0, the channel is independent and identically distributed.
(2) ζr = 0 and ζt 6= 0, the channel is user-side relevant.
(3) ζr 6= 0 and ζt = 0, the channel is base-station-side related.
(4) ζr 6= 0 and ζt 6= 0, the channel is fully correlated.

2.2. MMSE Detection

Applied at the recipient side of a massive MIMO communication, the MMSE itera-
tive scheme offers near-optimal detection performance by degrading inaccuracies of the
transmitted and received signals [24]. Estimation of the transmitted signal using the MMSE
detection method is expressed in terms of [25]

ŝ = (HH H + σ2 IU)HHy = (G + σ2 IU)HHy = A−1yMF (6)

where G = HH H denotes the Gram matrix, and yMF = HHy represents the matched filter.
The MMSE detection method has O(U3) computational complexity, so it is difficult to apply
in practice.

3. Proposed Algorithm

The MMSE detection algorithm has near sub-optimal detection performance when
applied to large-scale MIMO systems, which generates a high exponential level of com-
plexity. The algorithm is difficult to re-engineer in hardware devices. This paper applies
the CJGS iterative algorithm to signal detection in massive MIMO communication. The
scheme can be broken down into three parts, initialization, CJ joint processing, and GS
iterative estimation, and the block method of CJGS detection is shown in Figure 2. During
the initial stage, the optimal initial value is selected to speed up convergence. In the CJ
joint processing phase, the CG iteration is used to select the optimal search direction and
is combined with Jacobi iteration to reduce the number of subsequent iteration cycles. In
the GS iteration estimation phase, Gauss–Seidel iteration is used to converge quickly, thus
improving the overall detection performance of the massive MIMO system.
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3.1. GS Iterative Estimation

When GS is used for signal detection at the receiving end of a massive MIMO commu-
nication, the GS scheme can be executed according to the following steps.

1. Matrix decomposition. If there are fewer antennas at the user site than at the base
station site for massive MIMO communication, the channels tend to be orthogonal
to each other. The MMSE filter matrix is a positive definite matrix with diagonal
dominance [26]. Matrix A can be divided into [26]

A = E + F + D (7)

where D, E, and F denote the diagonal matrix, the strict upper triangular matrix, and the
strict lower triangular matrix of matrix A, respectively.

2. Calculate the initial value s(0).

3. GS iterative estimation. The signal-estimation formula of the GS iterative algorithm
is [26]

s(i) = (D− F)−1(Es(i−1) + yMF) (8)

3.2. Initialization

The initial estimate has an impact on the computational complexity, the convergence
speed, and the number of subsequent iterations required in massive MIMO signal detection.
Traditional detection algorithms generally have zero vectors as initial values, which are far
away from the final estimate, so convergence is slower. When the matrix A is a Hermitian
positive definite matrix, the GS repetitive scheme converges for any initial solution [27].
For this reason, two initialization schemes are proposed below. Using the initial estimate of
the zero vector as the reference object, we simulate the performance of the two initialization
strategies discussed in Section 4.1. Scheme 3 refers to repetitive computation where the
beginning value is zero.

1. In a given massive MIMO, the quantity of transmitting and receiving antennas is
set. Thus, the initial solution is estimated by means of a linear transformation of the
number estimating the initial solution, which can avoid matrix inversion operations
and further limit computing power.

s(0) =
yMF

B + U
(9)
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2. The diagonal elements of the matrix A are dominant in massive MIMO communi-
cation. Therefore, the elements of matrix A can be grouped into diagonal elements
that are not negligible and non-diagonal elements that are negligible, i.e., A ≈ D. The
computational complexity of inverting the matrix could be decreased by replacing A
with D.

s(0) = D−1yMF (10)

3.3. CJ Joint Processing

CJ joint processing combines CG and Jacobi to pre-iterate the initialized signal, taking
advantage of the good convergence of the CG initial iteration. It is CJ joint processing that
reduces the number of cycles required for subsequent iterative estimation.

The CG [8] detection algorithm searches in the direction conjugate to the gradient
until the search causes the residuals to converge to zero. The CG iteration algorithm gives
a good initial detection direction, but the pre-processing step generates high complexity
over many iterations of the loop. Therefore, we choose one conjugate gradient iteration to
avoid the increase in complexity.

In the CG iterative algorithm, it is known that the initial residuals and the starting con-
jugate search direction are assumed to be r(0) = yMF − As(0) and r(0) = p(0), respectively.
Then, the result for the CG iterative algorithm after one iteration is [28]

s(1)CG = s(0) + u(0)p(0) (11)

where u(0) = (r(0),r(0))
(r(0),Ap(0))

is the search step.

The expression for the signal estimate of the Jacobi iterative algorithm [10] applied to
massive MIMO communication is [28]

s(i+1) = D−1(yMF + (E + F)s(i)) (12)

Using the CG iterative algorithm as the starting value of the Jacobi iterative scheme,
the result after one repetition of Jacobi can be given,

s(1) = D−1(yMF + (E + F)s(1)CG) (13)

Combined with the description of the above, the CJGS iterative algorithm is shown in
Algorithm 1.

Algorithm 1 CJGS iterative algorithm

Input: y Hσ2B U
Initialization:
1. A = HHH+σ2I
2. yMF = HHy
3. D = diag(diag(A))
4. E = −triu(A, 1)
5. F = −tril(A,−1)
CJ joint processing:
6. r(0) = yMF − As(0)

7. r(0) = p(0)

8. u(0) = (r(0) ,r(0))
(r(0) ,Ap(0))

9. s(1) = D−1(yMF + (E + F)(s(0) + u(0)p(0)))
GS iterative estimation:
For i = 2 do
10. s(i) = (D− F)−1(Es(i−1) + yMF)
End
Output: si

end
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4. Simulation Results and Analysis

As a benchmark, MMSE detection algorithms are used to approximate optimal detec-
tion [29]. First, five iterative algorithms, GS, CPGS, PGS, and JAGS, have their bit error
ratios (BERs) assessed in correlated and uncorrelated channels, respectively. The reference
object used is the MMSE scheme. It functions very much the same as the greatest detecting
system. Next, the CJGS iterative algorithm’s starting parameters are simulated and investi-
gated. In conclusion, an analysis was conducted to compare the computational complexity
of the aforementioned techniques, where i denotes the number of iterations in the scheme.

4.1. BER Performance

A comparison and analysis of the BER performance of different iterative algorithms
with different antenna configurations is shown in Figure 3. The channel matrix is indepen-
dent and identically distributed, that is ζr = 0, ζt = 0. Signal modulation is 16–QAM.
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In Figure 3a, it is clear that all schemes have excellent BER performance after a modest
quantity of rounds, and that the CJGS scheme has improved BER performance over the
other repetition methods for the identical number of rounds. The BER of the CJGS and
JAGS iterative algorithms is 2.604× 10−6 after two iterations, but the gap between them is
8 dB. Therefore, the CJGS iterative method is better. From Figure 3b, it can be noticed that
the CJGS iterative scheme requires three iterations, while the other four iterative schemes
require more than seven iteration cycles to achieve the ability of the MMSE scheme when
the MIMO antenna configuration is 128× 32. If the signal-to-noise ratio (S/N) is 20 dB, the
BER achievable via the CJGS iterative method is 1.302× 10−5 after three iterations, and
the BERs achievable via GS, CPGS, JAGS, and PGS after seven iterations are 3.906× 10−5,
8.073× 10−5, 0.0001172, and 7.031× 10−5, respectively. In Figure 3c, it can be seen that
with the MIMO antenna configuration of 128× 32, CJGS, GS, and JAGS can achieve better
BER performance after two iterations, but the BER performance of CPGS and PGS is not
very good.

Furthermore, by keeping U at a fixed value and increasing B, all algorithms can gain
an identical BER in a fraction of the repetitions from Figure 3a,b. Conversely, if B remains
fixed and U increases, all algorithms need a higher signal-to-noise ratio to obtain identical
results, and the quantity of receptions required increases from Figure 3b,c.

Figure 4 is a comparison and analysis of the BER behavior of different iterative algo-
rithms. The antenna configurations are different. The channel matrix satisfies ζr = 0.3,
ζt = 0. Signal modulation is 16–QAM.

In Figure 4a, with the MIMO antenna configuration of 256× 64, the performance of
the other four iterative algorithms after running five iterations is still worse than that of the
CJGS iterative algorithm in one iteration. The minimum BER achieved via MMSE detection
is 7.813× 10−6, while the BER of the CJGS iteration is 5.208× 10−6 after one iteration. From
Figure 4b, the CJGS iterative scheme provides a much more superior performance when
the MIMO antenna configuration is 128× 64, which converges faster than the remaining
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iterative methods. In Figure 4c, it can be seen that the CJGS iterative algorithm after three
iterations can achieve effects identical to those of the MMSE detection scheme if the S/N is
16 dB.
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A comparison and analysis of BER performance for different algorithms with different
antenna configurations is shown in Figure 5. The channel matrix satisfies ζr = 0, ζt = 0.3.
Signal modulation is 16–QAM.
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Figure 5. BER performance for related channels on the user side.

The detection performance of the GS, CPGS, JAGS, and PGS iterative algorithms is
less satisfactory for an iteration number of one in Figure 5, while the CJGS iterative algo-
rithm achieves a desirable performance close to MMSE detection. All iterative algorithms
become better in detection performance as the number of iterations increases. As shown
in Figures 3 and 5, all algorithms require more iterations to achieve optimal performance
when the transmit-side antenna is correlated. If the MIMO antenna configured is set to
128× 64 and the BER reaches 5.208× 10−6, the required S/N ratio for CJGS is 20 dB, while
the S/N ratio requirement for PGS and JAGS iterations is 24 dB. Therefore, the proposed
algorithms are more suitable for channel scenarios where correlation exists on the transmit
side of large-scale MIMO systems.

Figure 6 concerns the fully correlated channel, i.e., ζr = 0.3, ζt = 0.3. The BER
performances of the GS iterative algorithm, CPGS iterative method, JA-GS detection algo-
rithm, PGS detection method, and CJGS iterative algorithm are compared and analyzed for
different antenna configurations with 16−QAM modulation.

As shown in Figure 6, the detection capability of all the algorithms becomes better with
more repetitions. From Figure 6a, the designed algorithm is shown to perform as well as the
performance of MMSE detection at one iteration when the MIMO antenna configuration is
256× 64, while all other iterations require more than five iterations to achieve the same
results. If the S/N ratio is 16 dB, the BER achievable via the MMSE detection algorithm
is 7.813× 10−6, while the BER of the CJGS iterative algorithm is 5.208× 10−6 after five
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iterations. Thus, the CJGS iterative method can achieve a lower BER. From Figure 6b, it can
be observed that to achieve the performance of MMSE detection when the MIMO antenna
configuration is 128× 64, the CJGS iterative algorithm needs to perform three iterations,
while the other four iterative algorithms need more than seven iteration cycles. Figure 6c
shows evidence that all algorithms achieve lower BER after five iterations when the MIMO
antenna configuration is 128× 32, but the suggested method has superior performance for
equal iterations.
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Figure 6. BER performance for fully correlated channel.

According to the previous description, near MMSE detection performance is achieved
with the proposed method with only a few iterations. The novel scheme outperforms the
other four iterative algorithms. With a reduction in the quantity of the received side and an
increase in the sending side, the ratio between them decreases. The proposed algorithm
still shows a reliable performance, which can be well adapted to both channel-uncorrelated
and channel-correlated scenarios.

As shown in Figure 7, baseline1, baseline2, and baseline3 are the initial values of
schemes 1 and 2 and the zero vector mentioned in Section 3.2, part B, respectively. When
the Massive MIMO antenna configuration is 128× 32, the number of iterations is two, and
the baseband modulation method is 16–QAM, the CJGS iterative method has superior BER
performance and faster convergence when the initial values proposed in scheme 1 are used.
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4.2. Complexity Analysis

In massive MIMO communications, computational cost is a critical metric for signal-
detection algorithms [30]. The sophistication of the CJGS iterative scheme consists of three
parts, initialization, conjugate gradient and Jacobi co-processing, and GS iteration estima-
tion, and only the number of true multiplicative operations of the method is considered in
the analysis. The computation of A and yMF is only once required, which is the same as the
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MMSE detection algorithm [31]. Therefore, this part of the calculation is ignored and only
the complexity of the subsequent steps is analyzed. One real multiplication is noted as one
real multiplication time, the multiplication of a complex number with a constant is noted
as two real multiplication times, and the multiplication of two complex numbers is noted
as four real multiplication times.

The complexity of s(0): this involves multiplying a constant 1
B+U and a vector yMF of

B× 1 with a complexity of 2U.
The complexity of conjugate gradient and Jacobi co-processing:
The complexity of r(0): this involves multiplying a matrix A of U ×U and a vector

yMF of U × 1, with a complexity of 4U2.

The complexity of u(0): this concerns multiplying a vector (r(0))
H

of 1× U and a
vector r(0) of U × 1, with a complexity of 2U. And it involves multiplying a matrix A of
U ×U and a vector p(0) of U × 1, with a complexity of 4U2. It concerns multiplying a

vector (r(0))
H

of 1×U and a vector p(0) of U × 1, with a complexity of 2U.
The complexity of s(1): this involves multiplying a constant u(0) and a vector p(0) of

U × 1, with a complexity of 2U. The complexity of D−1(yMF + (E + F)(s(0) + u(0)p(0)))
is 8U2.

The complexity of the GS iteration: the calculation of s(i+1) involves multiplying twice
a matrix of U×U and a vector of U × 1 with a complexity of 8U2.

Hence, the total complexity of the CJGS algorithm is 16U2 + 8U + 8iU2. Taken together,
the computational complexity of the various algorithms is shown in Table 1.

Table 1. Complex comparison of different algorithms.

Algorithm Complexity

MMSE [6] 8U3 + 8BU2 + 8BU + 2U

GS [13] 4U2 + 8iU2

CPGS [19] 20U2 + 2U + 8iU2

JAGS [18] 12U2 + 8iU2

PGS [20] 20U2 + 2U + 8iU2

CJGS 16U2 + 8U + 8iU2

In Figure 8, the complexity of the different algorithms for MIMO systems are compared.
The base station antenna count is 128 and the user-side antenna count ranges from 0 to
30 with three iterations. The suggested algorithm is much less complex than the MMSE
scheme, whose complexity is O(U2).
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5. Conclusions

Massive MIMO systems may be able to achieve better spectral and energy efficiency,
but signal detection is still an issue that needs to be investigated. This paper introduced the
Gauss–Seidel iterative technique for large MIMO communication, which is based on Jacobi
iteration and shared processing conjugate gradient. To increase convergence and boost
BER performance, CG and Jacobi iterations are used with GS iterations. Theoretical and
simulation studies show that the CJGS algorithm performs substantially better than existing
detection systems for various antenna designs, requiring only a finite number of cycles
to obtain the desired results. The proposed algorithm requires one iteration to achieve
the desired BER performance when the receiving and transmitting ends have 256 and 64
antennas, respectively, if the correlation coefficient at the transceiver end of the channel
is 0, and the other iterative algorithms require two iterations. Similarly, if the correlation
coefficient at the transceiver end of the channel is 0.3, the proposed algorithm requires
one iteration to achieve the desired BER performance, while the other iterative algorithms
require more than five iterations. For this reason, the suggested algorithm in this study is
not considerably impacted by the channel correlation. The CJGS iterative method achieves
a reduction in computational complexity by maintaining its computational complexity at
O(U2). Even if the research in this study unfortunately only takes into account the influence
of channel correlation and antenna setup, precoding and soft decision techniques can be
introduced in later studies to further increase the reliability of detection.
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