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Abstract: (1) Background: In real road scenarios, various complex environmental conditions may
occur, including bright lights, nighttime, rain, and snow. In such a complex environment for detecting
pole-shaped obstacles, it is easy to lose the feature information. A high rate of leakage detection,
false positives, and measurement errors are generated as a result. (2) Methods: The first part of this
paper utilizes the improved YOLOv5 algorithm to detect and classify pole-shaped obstacles. Then,
the identified target frame information is combined with binocular stereo matching to obtain more
accurate distance information. (3) Results: The experimental results demonstrate that this method
achieves a mean average precision (mAP) of 97.4% for detecting pole-shaped obstacles, which is 3.1%
higher than the original model. The image inference time is only 1.6 ms, which is 1.8 ms faster than
the original algorithm. Additionally, the model size is only 19.0 MB. Furthermore, the range error
of this system is less than 7% within the range of 3–15 m. (4) Conclusions: Therefore, the algorithm
not only achieves real-time and accurate identification and classification but also ensures precise
measurement within a specific range. Meanwhile, the model is lightweight and better suited for
deploying sensing systems.

Keywords: complex environment; binocular stereo vision; object detection; YOLOv5; real-time
and accuracy

1. Introduction

Traffic safety [1] has always been the focus of the world’s attention and one of the main
problems solved by each country. In recent years, research institutes, automobile companies,
and other industries have been conducting in-depth research on intelligent driving, which
is typically represented by Advanced Driver Assistance Systems (ADAS) [2,3], which can
monitor the road and traffic environment, as well as the state of the vehicle itself, and then
help drivers prevent accidents and improve driving safety through warnings, interventions,
or autonomy control. The first task for ADAS is obstacle avoidance, but the prerequisite
for obstacle avoidance is the accurate detection of obstacles. At present, although there
are many different methods for target detection, there are various shortcomings, such as:
missed detection, false detection, lack of real time, and so on. According to the research, it is
found that the current environment perception of ADAS systems mainly has the application
based on a radar point cloud [4] and the application based on pure vision [5]. Although
radar technology has a long measuring distance, the difficulties of not being able to obtain
visual information, the high cost, and the difficulty in distinguishing between multiple
targets have been the difficulties of research in various industries. For visual perception,
although limited by the complex environment, a high resolution can provide rich target
information and is favored in the car industry due to its low cost and other advantages.
The typical representative among them is the 2023 Tesla FSD V12, which is an end-to-end

Appl. Sci. 2023, 13, 12617. https://doi.org/10.3390/app132312617 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312617
https://doi.org/10.3390/app132312617
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app132312617
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312617?type=check_update&version=1


Appl. Sci. 2023, 13, 12617 2 of 17

pure visual perception system. The detection of obstacles is one of the key research focuses
of the environment perception system, and the obstacle detection methods are mainly
divided into traditional visual detection and deep learning-based target detection. With the
rapid development of computer vision technology and deep learning algorithms, obstacle
detection has become an important technology in assisted driving systems [6].

Currently, deep learning-based obstacle detection methods have become mainstream,
and the commonly used architectures are R-CNN [7], Fast R-CNN [8], Faster R-CNN [9],
mask R-CNN [10], and YOLO [11]. Among them, the YOLO series of algorithms performs
better in terms of speed and accuracy and is one of the most widely used obstacle detection
algorithms.

However, in practical applications, pole-shaped obstacles are susceptible to environ-
mental factors such as lighting, weather conditions, and occlusion. These factors can
significantly impact the accuracy of detection and the range of pole-shaped obstacles. More-
over, due to the different heights and shapes of pole-shaped obstacles, multi-scale detection
is required to better detect pole-shaped obstacles of different sizes and shapes. Dhall
et al. [12] proposed a method for the rapid detection of traffic cones. First, an improved
detector is used to detect the traffic cones. Then, a regression network is employed to
identify the key features of the traffic cones. Finally, the three-dimensional information of
the traffic cones is obtained using the perspective n-point algorithm. Although this method
can run on low-power hardware, there is still significant room for improvement in terms
of detection speed and accuracy. He et al. [13] propose a feature fusion method aimed
at improving obstacle detection performance under foggy conditions. The main idea is
to identify the differences in image features between sunny and foggy days, construct a
dataset of foggy images, and then utilize the feature fusion method to enhance obstacle
detection performance. Liu et al. [14] proposed a method of fusing convolutional features
and the GCANet network for the problem of the difficult extraction of obstacle feature
information under a foggy sky. After processing the obstacle images of the pair under
foggy weather, the information on the original obstacles is fully retained, thus realizing the
detection of obstacles under the foggy sky. Pan et al. [15] proposed a method for integrating
YOLO and monocular vision techniques for the detection of pedestrian distance in complex
environments. To realize the detection of distance between multiple pedestrians in complex
environments, Luo et al. [16] proposed a stereo vision-based method for roadless spatial
extraction and obstacle detection for the task of obstacle detection in complex transportation
environments. The method was based on a V parallax image and RANSAC algorithm,
which enables obstacle detection by extracting the height and width information of obsta-
cles on the road. Guan et al. [17] proposed a method that fuses YOLOv4 and binocular
stereo vision to reduce the cost of autonomous driving environment perception methods,
among other issues. Although many researchers have devoted themselves to the study
of real-time and accurate target detection, they have not reached a good balance of the
detection accuracy and detection rate.

In particular, this problem is more prominent in the research on target ranging and
recognition. Therefore, it is of great significance for the development of perception tech-
nology in assisted driving systems to quickly and accurately obtain the key features of
pole-shaped obstacles in complex and changing environments. The contributions of this
study are as follows.

1. The CIoU loss function is replaced by the SIoU loss function, which is improved to
address the issue of overlapping multiple prediction frames and the optimal match-
ing of anchor frames, while also ensuring real-time performance. Meanwhile, the
improved loss function is redefined and named Monge–Kantorovich SIoU (MKS).

2. A multi-scale feature efficient fusion network architecture (MFFNA) is proposed. It
extracts feature information from different scales of the feature space through an
efficient multi-scale feature extraction module.

3. A hybrid attention mechanism is introduced. The feature information is passed to
the hybrid attention mechanism to improve the extraction of multi-scale information
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in the feature space, suppress irrelevant and complex environmental background
information, and focus on the feature information of road obstacles.

4. The detected target frame information is fused with the binocular stereo-matching
algorithm, enabling the accurate recognition, classification, and ranging of pole-
shaped obstacles in complex environments.

The rest of the paper is organized as follows. Section 2 describes the core algorithms,
including the improved target detection algorithm and the target detection algorithm fused
with the binocular ranging algorithm. Section 3 describes the experimental environment,
datasets, and evaluation metrics for the model. Section 4 analyzes the enhanced network
model experimentally. Finally, conclusions are drawn in Section 5.

2. Methods

First, the images acquired by the binocular camera in real time are inputted to the
ranging module with binocular images and to the detection module with left-eye images,
respectively. Then, stereo correction and stereo matching are performed in the ranging
module, respectively. At the same time, the target information is accurately obtained in the
target detection module. Finally, the target information and stereo-matching are correlated,
allowing for more accurate species and distance information to be obtained. The overall
process is shown in Figure 1.

Figure 1. Overall workflow diagram.

2.1. MKS Loss Function

Object detection and recognition classification are key research areas in computer
vision, and the loss function plays an important role in determining detection accuracy.
The loss function is used to evaluate the difference between the model’s prediction result
and the actual target. The smaller the loss function value, the closer the prediction result
is to the actual target. The loss function of YOLOv5 consists of three main components:
rectangular box loss (box loss), confidence loss (obj loss), and classification loss (cls loss).
Therefore, the total loss function of the YOLOv5 algorithm is defined as follows:

Total loss = A × obj loss + B × cls loss + C × box loss (1)

where, A, B, and C are the weight values of the three loss functions and A = 1, B = 0.5, and
C = 0.1.

In the current study, YOLOv5 utilizes the CIoU loss function [18]. However, this loss
function only considers the aggregation of the bounding box regression metrics and does
not account for the mismatch between the required true and predicted frames. As a result,
it leads to slow convergence and low efficiency. Therefore, the SIoU loss function [19] is
used instead of the original loss function. However, there are some problems with the SIoU
loss function, such as category imbalance in rod obstacles, the overlapping of multiple
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prediction frames, and the issue of optimal matching. Therefore, based on the SIoU loss
function, the Monge–Kantorovich (MK) [20] function is introduced to optimize the IoU loss
function. Specifically, the MK algorithm considers two sets of points as input values. In
other words, the predicted bounding box and the true bounding box are treated as sets
of points. Then, the distance matrix between these points is computed, where each entry
in the matrix represents the distance between the predicted bounding box and the true
bounding box. Finally, the Sinkhorn–Knopp algorithm [21] is used to find the best match
between the predicted and real bounding boxes, minimizing the total negative IoU loss.
In addition, the MK function can regularize the model to prevent overfitting. To better
understand the MK function, it is defined as follows. The mathematical definition of the
Monge problem [22] is: Given two metric spaces X and Y and two probability measures
µ ∈ P(X), ν ∈ P(Y), loss function c: X × Y→R ∪ {+∞}:

(MP) := inf
{∫

X
c(x, T(x))dµ(x): T#µ=ν

}
(2)

where c (x, T(x)) denotes the loss of x to T(x), T#µ=ν denotes the mapping between µ and ν,
and T extrapolates the probability measure µ to ν.

Kantorovich generalizes the transmission mapping to the joint probability distribution,
which has:

∏(µ,ν) =
{
γ ∈ P(X×Y)|πX#γ= µ,πY#γ = ν

}
(3)

The Kantorovich problem [23] is mathematically defined as two probability measures
µ ∈ P(X) and ν ∈ P(Y) and a cost function c:X × Y→R ∪ {+∞} for two metric spaces X, Y:

(KP) := inf
{∫

X×Y
c(x, y)dγ(x, y)|γ ∈∏(µ,ν)

}
(4)

In Monge’s problem, only one type of mapping can be targeted, either one-to-one or
many-to-one. However, the Kantorovich problem can be solved by simplifying the problem
in a one-to-many manner.

The SIoU loss function is introduced to redefine the existing loss functions for the
current problem, which include angle loss, distance loss, shape loss, and IoU loss. The
IoU loss is the most commonly used loss function for target detection. It represents the
intersection over the union ratio of the true and predicted frames. However, while the
IoU metric is used for computation, negative IoU is used for optimization during training.
Negative IoU is defined as follows.

negative IoU =
(MP)inf
(KP)inf

− IoU(P, G) (5)

where P denotes the prediction frame and G denotes the true frame. Thus, the final
expression of the SIoU loss function is as follows.

LossMKS = negative IoU(1− IoU) +
∆ + Ω

2
(6)

where ∆ represents the distance cost, while Ω represents the shape cost. IoU represents the
ratio of the union and intersection between the ground truth box and the predicted box.

2.2. Hybrid Attention Mechanisms

The attention mechanism [24] is a technique used to simulate human attention and
has been widely applied in the field of deep learning. Currently, there are two main types
of attention mechanisms for processing feature maps: channel attention mechanisms and
spatial attention mechanisms [25]. The model in this paper is mainly used in outdoor
complex environments to better obtain accurate detection information. It is very necessary
to suppress the complex background and pay attention to the important feature informa-
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tion. However, the above two attention mechanisms can be used not only to selectively
focus on specific regions or channels in the input data but also to better capture useful
feature information. Consequently, integrating these two mechanisms can not only play
their respective advantages to improve the model’s performance but can also reduce the
computational complexity and enhance the generalization ability.

Currently, there are two main methods for connecting the two attention mechanisms
in deep learning: the cascade and parallel methods. The parallel attention mechanism has
a relatively simple structure and may not fully exploit the correlation between different
feature subspaces, resulting in insufficient feature representation. Therefore, more layers
need to be stacked. The cascade attention mechanism, in contrast, can utilize the outputs
of multiple attention modules in a cascade. This allows for the better capture of spatial
and channel correlations and enhances the feature expression capability. In addition, the
cascade structure can also perform attention fusion for feature maps of different scales to
better adapt to objects of varying sizes. The cascade structure is illustrated in Figure 2.

Figure 2. Cascade Hybrid Attention Mechanism.

2.3. Multi-Scale Feature Pyramid

The main types of objects detected in this paper include electric poles, surveillance
poles, traffic signal poles, traffic cones, road pile poles, street lamp poles, and traffic sign
poles. These pole-shaped obstacles vary in size, ranging from small traffic cones to large
surveillance poles. Due to the significant variation in the scales of their features, this paper
proposes an optimized multi-scale feature fusion network architecture (MFFNA).

The core idea is to introduce a multi-scale feature pyramid. However, traditional
feature pyramid structures, such as FPN and PAN, have issues such as high computational
costs and inadequate information propagation. Therefore, an efficient feature pyramid
called Reap-GFPN [26] was introduced in this paper. Although Rep-GFPN addresses the
issue of multi-scale features, it still has some limitations in terms of performance, including
a high computational cost and large memory consumption.

First, this network model replaces the ConvBNAct and ConvWrapper operators with
convolution (Conv) layers and Cross Stage Partial Network (CSPStage) to simplify the
model structure, improve the training speed, and reduce the model complexity. Further-
more, the complexity of the model is reduced and the training speed is improved by
replacing BepC3 with a lightweight convolution layer called C3. Finally, a hybrid attention
mechanism called the Convolutional Block Attention Module (CBAM) [27] was introduced
into the neck network of the Rep-GFPN to enhance attention towards important features
and suppress the extraction of unimportant features. This improvement not only improves
the accuracy and robustness of the model but also reduces the computational cost and
memory consumption, and its network architecture is shown in Figure 3.
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Figure 3. Multi-scale feature pyramid network structure.

According to the network architecture diagram, it can be seen that in the feature fusion
module, this paper first utilizes the improved CSPStage [28] for convolutional fusion. Then,
it proceeds with structural reparameterization—specifically, the fusion of Conv2d and BN.
Therefore, the expression of BN in the channel i of the feature map is as follows.

yi =
xi − µi√
σ2

i + ε
γi + βi (7)

where µ denotes the mean, σ2 denotes the variance, γ denotes the weights, β denotes the
bias, and ε is a very small constant used to prevent the denominator in the formula from
being zero.

2.4. Target Detection Network

Since pole-shaped obstacle detection systems for assisted driving require a certain
level of accuracy and real-time performance, therefore, the improved MFMAM-YOLOv5s
algorithm is used to train the model and perform target detection. The network structure
of this algorithm is shown in Figure 4.

Figure 4. MFMAM-YOLOv5s network architecture diagram. (a) represents the main network
diagram, while (b) illustrates the internal structure of CSPStage.
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2.5. Binocular Camera Calibration

In this paper, the Zhang Zheng You calibration method [29] was chosen for binocular
camera calibration. A total of 27 sets of images were collected, and the MATLAB calibration
toolbox was used to extract the internal and external parameters of the camera, as well
as the distortion coefficients. These calibration parameters were then utilized to perform
stereo calibration on the collected left and right images. The results of the binocular camera
calibration are presented in Table 1.

Table 1. Binocular camera calibration of internal and external parameters.

Parameters Left Camera Right Camera

Intrinsic Matrix
2186.8 0 655.5445

0 2188.3 512.99
0 0 1

 2114.0 0 647.918
0 2115.6 528.0488
0 0 1


Distortion

[
−0.3846 0.2401 0 0.003 0

] [
−0.4261 0.1959 0 0.002 0

]
Translation

[
−119.6552 −0.0624 0.6339

]
Rotating

0.9999 −0.012 −0.0116
0.0119 0.9999 −0.0047
0.0117 0.0045 0.9999


2.6. Stereo Correction

Stereo correction [30] utilizes the internal and external parameters of binocular cal-
ibration, as well as the binocular relative position relationship, to eliminate aberrations
and align the lines for the left and right views, respectively. In this paper, the Bouguet
correction method [31] is used to minimize the number of re-projections for each of the left
and right images, and the corrected image is shown in Figure 5.

Figure 5. Stereo calibration chart.

2.7. Stereo Matching

Stereo-matching technology [32] is the most critical research topic in binocular ranging
systems, and the accuracy of image matching directly affects the accuracy of subsequent
binocular ranging. However, the stereo-matching process has some limitations and sources
of error, such as disparity range limitation, illumination variation, and mismatching factors.
These factors can lead to errors or inaccuracies in binocular stereo matching. To reduce these
errors, this study first adopts object detection. Then, it associates the feature information
obtained from object detection with binocular stereo matching, enriching the features and
coordinate information. This enhances the accuracy of binocular ranging and reduces
errors. Nevertheless, there are numerous existing stereo-matching algorithms. To meet the
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requirements of accurate and fast stereo matching in complex scenes, this study selects
the Semi-Global Block Matching algorithm (SGBM) [33] as the matching algorithm for
bar-shaped obstacle features. At the same time, the SGBM stereo matching algorithm not
only has high real-time performance and measurement accuracy but also possesses an
efficient execution capability.

3. Experiments
3.1. Experimental Platform and Environment

To ensure the fairness and reliability of each experiment, all experiments in this chapter
were conducted as shown in Table 2.

Table 2. Experimental environment.

Type Parameter

GPU NVIDIA GeForce RTX 3090 GPU
CPU Xeon(R) Platinum 8255C CPU @ 2.50 GHz

Language version Python 3.8.16
RAM/VRAM 45 GB/24 GB

Framework and gas pedal versions Pytorch1.13.1, CUDA11.6, and cuDNN8.4.0

The hyperparameter settings in the experimental model are shown in Table 3.

Table 3. Hyperparameter settings.

Hyperparameter Value

Epochs 300
Batch size 16
Optimizer SGD
workers 8

Momentum 0.937

The above information pertains to the configuration of experimental hardware pa-
rameters and model hyperparameters. However, when performing target ranging, the
ranging accuracy may vary due to the different specifications of the binocular camera. The
specifications of the binocular camera used in this experiment are shown in Table 4.

Table 4. Parameters of the Binocular Camera.

Parameters Value

Image resolution 1280 × 720
Shutter type Global shutter

Size of the target surface 1/3 inch
Maximum frame rate 60 fps

Single pixel size 3.75 µm × 3.75 µm
Baseline 120 mm

3.2. Introduction to the Dataset

Currently, there is a significant lack of datasets for pole-shaped obstacles. Therefore,
this paper created a static dataset called PSO 2023. The dataset collected pole-shaped
obstacles in real scenes during all four seasons: spring, summer, autumn, and winter. The
main idea is to capture images at different times of the day, including morning, noon,
afternoon, and evening. To enhance the generality and robustness of the model, the dataset
also includes 2800 images from complex environments, such as rainy or snowy weather,
strong lighting, and obstructions, totaling 6300 images. These images were then divided
into training, validation, and testing sets in an 8:1:1 ratio. As shown in Figure 6, this paper
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mainly focuses on studying seven major categories, nine minor categories, and a hundred
styles of pole-shaped obstacles in urban roads.

Figure 6. Categorization of detections. (a) Electric pole; (b) Surveillance pole; (c) Fixed traffic signal
pole; (d) Mobile traffic signal pole; (e) Traffic cone; (f) Fixed road pile pole; (g) Mobile road pile pole;
(h) Street lamp pole; (i) Traffic sign pole.

3.3. Data Augmentation

Data augmentation [34–36] is a commonly used technique in deep learning to increase
the diversity of datasets and improve the generalization ability and robustness of models.
In YOLOv5, data augmentation can be broadly classified into color transformations (e.g.,
noise, blur, and contrast) and geometric transformations (e.g., rotation, translation, and
scaling). In this paper, the dataset was rotated and darkened, and Gaussian noise was
added, respectively, as shown in Figure 7.

Figure 7. Data augmentation technology. (a) Original image; (b) Flip horizontal; (c) Random rotation;
(d) Fuzzy processing; (e) Random brightness; (f) Gaussian noise.

3.4. Evaluation Metrics

The article mainly uses four evaluation indexes—precision, recall, mAP_0.5, and
mAP_0.5:0.95—to judge the effectiveness of the model detection performance, and the
formulas for each type of index are as follows.

Pprecision =
TP

TP + FP
(8)
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Rrecall =
TP

TP + FN
(9)

AP =
∫ 1

0
P(R)dR (10)

mAP =
1
N ∑

n∈N
AP(n) (11)

where TP denotes the number of correctly detected targets, FP denotes the number of
incorrectly detected targets, FN denotes the number of undetected targets, and N denotes
the number of classes that need to be classified in total. Recall indicates the number of
correctly predicted samples as a percentage of all samples that are positive cases. mAP can
be used as a comprehensive evaluation metric for individual category detection. Higher
AP values indicate better detection of a category, and mAP is a comprehensive evaluation
of the entire network.

4. Analysis of Results
4.1. Model Training

In this paper, the original YOLOv5s algorithm and the MFMAM-YOLOv5s algorithm
proposed in this paper are trained on the home-made PSO 2023 dataset, respectively, and
the loss convergence curves and mAP curves during the training period are shown in
Figure 8. The loss convergence curves of the two algorithms are compared in Figure 8a, and
the loss convergence curves of the two algorithms are compared at mAP_0.5 in Figure 8b.

Figure 8. Comparative analysis of model evaluation indicators. (a) Overall loss convergence curves;
(b) mAP@0.5 Convergence curves.

From Figure 8a, it can be observed that both YOLOv5s and MFMAM-YOLOv5s have
the highest convergence rate within 25 epochs. However, the algorithm model proposed
in this paper demonstrates a faster rate of descent and convergence of the loss curve
compared to the original YOLOv5s network model. Additionally, as shown in Figure 8b,
both algorithm models demonstrate a similar upward trend in the first 20 epochs and
stabilize around 290 epochs without any further increase. However, after 20 epochs,
the mean average precision curve of the MFMAM-YOLOv5s algorithm model shows a
significantly faster increase compared to the YOLOv5s algorithm model. In other words,
the MFMAM-YOLOv5s algorithm model has a higher overall mAP value compared to the
YOLOv5s algorithm model.
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4.2. Comparison of Different Attention Mechanisms

To mitigate the interference caused by complex backgrounds and enhance the ability
to focus on important features, this paper presents a hybrid attention mechanism that inte-
grates channel attention and spatial attention. The spatial attention mechanism primarily
focuses on the spatial dimension in the input data. It suppresses complex background
features and enhances important features by assigning different weights. The channel
attention mechanism primarily focuses on the channel dimension in the data. It learns
which channels are more important for the task, emphasizes important feature information,
and reduces the impact of background noise and redundant features.

To further validate the effect of the channel attention mechanism and spatial attention
mechanism on the model, in this paper, experiments are conducted on the self-made PSO
2023 dataset to test the current mainstream Global Attention Module (GAM), Efficient
Channel Attention (ECA), Multidimensional Collaborative Attention (MCA), and CBAM
attention mechanisms. The experimental results are shown in Table 5.

Table 5. Comparison of the experimental results of different attention mechanisms.

Method Volume/MB Parameters/M FLOPs/G FPS/f·s−1 mAP_0.5/%

YOLOv5s 14.4 7.04 16.0 303.0 94.3
GAM 17.1 8.77 17.2 416.7 95.1
ECA 13.9 7.08 16.2 434.8 95.0
MCA 16.7 7.82 16.8 439.4 95.6

CBAM 14.8 7.55 16.6 454.5 96.2

From the experimental results in Table 5, it can be observed that, compared to
YOLOv5s without any attention mechanisms, the use of the GAM attention mechanism
increased the mAP value by 0.8%. The model parameters and floating-point operations
increased by 1.73 M and 1.2 G, respectively, while the model detection rate increased by
113.7 f·s−1. Similarly, with the introduction of the ECA and MCA mechanisms, the mAP
values increased by 0.7% and 1.3%, respectively. The model parameters and floating-point
operations also increased, and the model detection rates were improved by 131.8 f·s−1 and
136.4 f·s−1, respectively. However, upon introducing the CBAM attention mechanism, the
model parameters and floating-point operations only increased by 0.51 M and 0.6 G, while
the model detection rate improved to 454.5 f·s−1, and the mAP value also increased by
1.9%. Hence, the CBAM hybrid attention mechanism demonstrates better performance in
detecting pole-shaped obstacles in complex environments.

4.3. Ablation Experiment

To verify the effectiveness of the proposed multiscale feature hybrid attention algo-
rithm, this experiment was conducted on the homemade PSO 2023 dataset for ablation
experiments of the MFMAM-YOLOv5s algorithm. The experimental results are shown in
Table 6.

Table 6. Results of ablation experiments.

MKS CBAM GFPN Rep-
GFPN mAP_0.5/% Volume/MB FPS/f·s−1

× × × × 94.3 14.4 303.0√
× × × 95.6 13.7 454.5√ √

× × 96.2 14.7 454.5√
×

√
× 95.8 14.8 416.7√

× ×
√

96.1 15.0 434.8√ √ √
× 96.9 18.6 384.6√ √

×
√

97.4 19.0 400.0
GFPN: original feature pyramid; Rep-GFPN: improved feature pyramid. ×: the module was not introduced;√

: introduction of the module.
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From the above experimental results, it is evident that utilizing the enhanced loss
function results in enhancements in both the mAP value and the image detection rate when
compared to the original model. Meanwhile, the size of the model has also been reduced.
The main reason for this is that the improved loss function incorporates an optimal matching
method. This method addresses the issue of the overlapping and mismatching of multiple
bounding boxes in the original model. As a result, it significantly accelerates the matching
process of predicted boxes and reduces the model size, making it more lightweight.

However, after solving the problem of optimal matching boxes, this paper introduces
a hybrid attention mechanism to further improve the detection accuracy. This attention
mechanism not only suppresses interference caused by complex environments and en-
hances the extraction of important features by allocating different weights spatially but
also learns which channels are more important for the task. It focuses on important feature
information, reduces background noise, and eliminates redundant features in the channel
dimension. Through ablation experiments, it has further been proven that the incorporation
of a hybrid attention mechanism allows the model to concentrate on significant features in
both channels and mitigate the interference from intricate backgrounds in both channels.

To address the issue of multi-scale features, this paper introduces a multi-scale fea-
ture pyramid module. However, the original feature pyramid GFPN, due to its complex
convolutions, increases the computational complexity and slows down the training and
inference speed. Therefore, this paper utilizes an enhanced multi-scale feature pyramid
known as Rep-GFPN. To evaluate the performance of the original GFPN and the enhanced
Rep-GFPN, we conducted ablation experiments. From Table 6, it can be observed that the
improved feature pyramid outperforms the original GFPN in terms of detection accuracy
and speed. In summary, when compared to the YOLOv5s model, the enhanced model
demonstrates a 3.1% increase in the mAP value and a 97 f·s−1 improvement in the detection
speed. Although the model size has increased, the algorithm’s overall performance is the
best, fully meeting the detection requirements of ADAS systems.

4.4. Comparative Experiments of Different Algorithms

In order to assess the impact of algorithm enhancements, this paper conducted experi-
mental verification on the self-made dataset PSO 2023 using the object detection algorithms
YOLOv4, YOLOv4-tiny, Faster-RCNN, YOLOv5, YOLOv7, and YOLOv8. The experimental
results are shown in Table 7.

Table 7. Comparative Results of Experiments with Different Models.

Model Backbone mAP_0.5/% FPS/f·s−1 Volume/MB

YOLOv4 CSPDarknet53 91.6 36.9 244.5
YOLOv4-tiny CSPDarknet53-Tiny 83.9 153.9 22.5

Faster-RCNN Resnet50 82.3 23.0 108.0
Faster-RCNN VGG16 88.5 17.6 521.0

YOLOv5s CSPDarknet53 94.3 303.0 14.4
YOLOv5m CSPDarknet53 94.6 263.2 40.3
YOLOv5l CSPDarknet53 95.3 156.3 88.6
YOLOv5x CSPDarknet53 95.7 94.3 165.2

YOLOv7 CSPDarknet53 95.0 104.2 71.5

YOLOv8s Darknet53 97.5 109.9 22.5

MFMAM-YOLOv5s
(our) CSPDarknet53 97.4 400.0 19.0

MFMAM-YOLOv5m
(our) CSPDarknet53 97.8 277.8 61.3

MFMAM-YOLOv5l
(our) CSPDarknet53 98.2 147.1 97.1

MFMAM-YOLOv5x
(our) CSPDarknet53 98.8 88.5 179.7
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It is evident from the table that the two-stage object detection algorithm, Faster-RCNN,
did not achieve higher accuracy despite using the Resnet50 backbone network. Instead,
it resulted in a slower detection frame rate. YOLOv4-tiny and YOLOv5, commonly used
lightweight algorithms, may have certain advantages in model deployment. However, they
are not sufficiently outstanding in terms of detection accuracy and real-time performance
for pole-shaped obstacles in complex environments. As a result, they struggle to meet
the requirements of assisted driving perception technology. Although the YOLOv7 and
YOLOv8 algorithms have a relatively good detection accuracy, the YOLOv7 model is
larger and is not the optimal choice for deploying a perception system. Although the
YOLOv8s model has a high detection accuracy, the image detection rate is not high. For
an object detection system, it is necessary to ensure both accurate and speedy detection.
Therefore, the method proposed in this article improves the mean Average Precision (mAP)
to varying degrees in MFMAM-YOLOv5s, MFMAM-YOLOv5m, MFMAM-YOLOv5l, and
MFMAM-YOLOv5x. In particular, MFMAM-YOLOv5s has significantly improved frames
per second (FPS) and mean average precision (mAP) values compared to YOLOv5s and
YOLOv7. Compared to the aforementioned models, the MFMAM-YOLOv5s model has
a better balance between speed and accuracy, making it more suitable for deployment in
assisted driving systems.

To visually evaluate the performance of the improved algorithm in terms of detec-
tion accuracy and robustness, this article selected the test result images of the YOLOv5s,
YOLOv7, YOLOv8s, and MFMAM-YOLOv5s algorithms on the test dataset. These images
are shown in Figure 9.

Figure 9. Comparison Results Between Different Algorithms. (a) YOLOv5s; (b) YOLOv7; (c) YOLOv8s;
(d) MFMAM-YOLOv5s.

From the comparative effect chart shown in Figure 9, it can be observed that the
YOLOv5s network model exhibits a relatively high false detection rate and missed detec-
tion rate in environments with obstructions, rainy and snowy weather, and low visibility,
although it is capable of detecting pole-like obstacles. The YOLOv7 and YOLOv8s net-
work models also experience higher false detection and missed detection rates in complex
environments with partial feature obstructions, as well as in rainy and snowy weather.
However, compared to the aforementioned object detection algorithms, the improved
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MFMAM-YOLOv5s network model is still capable of accurately detecting pole-like obsta-
cles in complex environments.

4.5. Binocular Camera Target Ranging

The detection of pole-shaped obstacles not only requires more accurate identification
and classification but also requires a sufficient ranging accuracy within a certain range.
Therefore, this paper first uses the improved network model to obtain the coordinate
information of the target; then, the coordinate information of the target and the stereo
matching in the binocular ranging algorithm are correlated to obtain a more accurate
measurement distance through the calculation of multiple information.

To further validate the accuracy and robustness of this method, real road test exper-
iments were conducted. First, a section of an urban road is arbitrarily selected to detect
road cones using the method in a complex environment; then, the center of light of the
vehicle-mounted camera is taken as the origin, and a laser rangefinder is used to verify
and read the real distance. At the same time, the error of the laser rangefinder is ±1.5 mm,
which is in line with the measurement accuracy. Finally, the above experiments were
repeated and recorded by constantly changing the distance. At the same time, to better
demonstrate the error between the actual distance and the test distance, this paper com-
pares and analyzes the actual distance, the test distance, the absolute error, and the relative
error of the 80 groups of experimental results and draws a comparative statistical graph, as
shown in Figure 10.

Figure 10. Statistical Comparison Chart of Ranging Experiment Results. (a) Comparison of actual
distance and test distance; (b) Absolute error statistics chart; (c) Relative error statistics.

From Figure 10a, it can be observed that the output distance of the pole-shaped
obstacle detection system fluctuates above and below the true distance. Meanwhile, as the
distance increases, the fluctuation also increases. As for Figure 10b, it shows the absolute
error, which clearly increases with distance. In other words, the absolute error value is
proportional to the distance. From Figure 10c, it can be visually seen that the relative error
within a range of 6 m is less than 5%. The relative error within a range of 3–15 m is less
than 7%, which meets the accuracy requirements for distance measurement. In conclusion,
as the distance increases, the measurement accuracy of the pole-shaped obstacles gradually
decreases, but the overall detection accuracy fully meets the requirements.

The above experiments were all conducted on static straight roads. However, if the
vehicle is traveling in a dynamic scene, it will have a certain impact on the de-detection
accuracy and real-time performance. As the vehicle is moving rapidly, the feature in-
formation of the pole obstacle is also changing, such as the length, size, angle, etc. The
limitation of binocular camera hardware and the vibration of the vehicle body will cause
some difficulties in the feature extraction of rod-shaped obstacles. Therefore, to further
validate the accuracy and robustness of the improved algorithm in dynamic situations, a
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section of the curve was directly selected for testing in this experiment. If the algorithm can
accurately detect pole-shaped obstacles while the vehicle is making a turn, it would serve
as a good validation for road detection in dynamic scenarios. According to the regulations
of the Road Traffic Safety Law [37], the maximum speed for vehicles to make a turn is
30 km/h. Therefore, this study conducted experiments using the maximum turning speed.
In this paper, 10 turning tests were conducted with the maximum turning speed of 30 km/h
throughout the experiment, and 20 sets of experimental data were obtained, as shown in
Table 8.

Table 8. Results of the turn test experiment.

S/N Speed/km·h−1 Value/m Output/m Relative Error/% FPS/f·s−1

01 30 3.125 2.998 4.064 31.1
02 30 3.421 3.267 4.502 32.3
03 30 3.028 3.146 3.897 26.8
04 30 4.127 4.320 4.677 28.0
05 30 4.335 4.545 4.844 31.3
06 30 4.870 4.612 5.298 27.4
07 30 5.465 5.785 5.855 26.5
08 30 5.233 5.530 5.676 29.6
09 30 5.674 5.316 6.309 30.8
10 30 6.130 6.517 6.313 27.7
11 30 6.422 6.005 6.493 31.5
12 30 6.700 7.160 6.866 26.8
13 30 7.152 7.645 6.893 27.6
14 30 8.400 8.986 6.976 26.1
15 30 9.710 10.390 7.003 28.3
16 30 10.270 9.540 7.108 31.6
17 30 11.295 12.121 7.313 26.4
18 30 12.430 13.395 7.763 28.3
19 30 13.500 14.564 7.881 28.1
20 30 14.664 13.501 7.931 26.7

From the test experimental results in Table 8, it can be observed that the detection accu-
racy of the objects is somewhat affected due to the rapid changes in target features during
the turning process. However, as seen from the above test results, although the detection
accuracy of pole-shaped obstacles is slightly reduced during turns, the overall detection
performance still meets the requirements of object detection. Therefore, the fast-turning
experiment further validates the effectiveness of detection on dynamic straight roads.

5. Conclusions

In this paper, the binocular camera is first stereo-calibrated, and the obtained internal
and external parameters are stereo-corrected for the real-time acquired images, respectively.
Subsequently, the targets in the acquired images are recognized and classified using the
improved network model. Then, the coordinate information of the target frame was
correlated with the stereo matching to obtain more accurate information about the kind
and distance between the camera and the target. Finally, the accuracy and robustness
of the target detection algorithm were verified through experiments, respectively. The
experimental results show that the mAP_0.5 value of the proposed method is 97.4%, which
is 3.1% higher than that of the original algorithm YOLOv5s, the detection rate is 97 f·s−1

higher than that of the original algorithm, and the ranging error of the pole obstacle in
a complex environment is also less than 7%. The method not only recognizes the target
quickly for classification but also accurately measures the distance between the camera and
the target.
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