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Abstract: We propose CanaryExp, an exploitability evaluation solution for vulnerabilities among
binary programs protected by StackGuard. CanaryExp devises three novel techniques, namely
canary leakage proof of concept generation, canary leaking analysis time exploitation, and dynamic
canary-relocation-based exploitability evaluation. The canary leakage proof of concept input gener-
ation mechanism first traces the target program’s execution, transforming the execution state into
some canary leaking state, from which some canary leaking input is derived. This input can be
deemed as proof that some vulnerability that can lead to canary leakage exists. The canary leaking
analysis time exploit generation then performs incremental analysis based on the canary leaking
input, crafting analysis time exploit that can complete vulnerability exploitation in the analysis time
environment. Based on the analysis time exploit, the dynamic canary-relocation-based exploitability
evaluation component collects the necessary metadata, on which an exploitation session is automati-
cally constructed that can not only leak the runtime canary and relocate it in the input stream but
also evaluate the exploitability of the desired vulnerability. Using a benchmark containing six test
programs, eight challenges from some network challenging events and four real-world applications,
we demonstrate that CanaryExp can generate canary leaking samples more effectively than existing
test case generation methods and automatically evaluate the exploitability for vulnerabilities among
programs where the StackGuard protection mechanism is deployed.

Keywords: vulnerability; canary; information leak; automatic exploit generation

1. Introduction

With lots of vulnerabilities being discovered every day by security analysts all over the
world, how to evaluate the exploitability of vulnerabilities in a more automatic and effective
way is becoming a critical problem for security researchers. In recent years, automatic
exploit generation (abbr. AEG) has become the mainstream topic in this researching
direction. Many solutions including AEG [1], CRAX [2], REX [3], and Mayhem [4] have
been proposed, discovering vulnerabilities and automatically generating exploits when
possible, for source code and binary, respectively. In general, these methods often first
analyze vulnerabilities in detail along the trace of a proof of concept input (abbr. POC).
Note that a proof of concept input is generally an input sample that can exhibit the existence
of some vulnerability. Through the trace analysis, the critical execution state where the
desired vulnerability is triggered is automatically derived. Based on the exact state, further
exploration is performed in order to find a subsequent state that can be judged as some
exploitable state. If some exploitable state is actually discovered, the path reachability
constraint, vulnerability triggering constraint and exploit construction constraint would
separately be collected, with the conjunction of these constraints solved using constraint
solvers following the satisfiability modulo theories (abbr. SMT) [5], through which the
exploit input is finally generated.

Appl. Sci. 2023, 13, 12556. https://doi.org/10.3390/app132312556 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132312556
https://doi.org/10.3390/app132312556
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7615-9585
https://orcid.org/0000-0001-5241-0157
https://doi.org/10.3390/app132312556
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132312556?type=check_update&version=2


Appl. Sci. 2023, 13, 12556 2 of 20

While proven effective in addressing classical vulnerabilities in binary programs,
including stack overflow [6,7], heap overflow [8–11], and use-after-free [12–14], the
method remains adaptable under circumstances where exploitation mitigation options,
including non-executable stack (abbr. NX) [15], address space layout randomization
(abbr. ASLR) [16], and SafeSEH [17], are deployed. However, for vulnerable programs
where the StackGuard [18] exploitation mitigation option is turned on and it is necessary to
actively bypass this mitigation in the exploitability evaluation process, current methods
generally fail in verifying the exploitability of the desired vulnerability.

StackGuard prevents the return address from being changed by overflow vulnerabili-
ties by inserting a ‘canary’ on the way from the local buffer variable to the return address
stored on the stack. When the control returns after a function body’s execution, it checks
whether the canary is not altered by comparing it with its original copy saved somewhere
else, before jumping to the function’s return address. If the canary is determined to be
overwritten, StackGuard terminates the execution immediately, therefore protecting the
program from being attacked through buffer overflow vulnerabilities. Currently, this
mechanism is taken as a default option in modern compilation systems [19,20], and is
widely adopted in real-world applications. To complete vulnerability evaluation under this
condition, human analysts generally have to leak the canary first, then place the leaked
canary at the exact location in the exploitation payload, hijacking the control flow through
stack smashing while bypassing the runtime canary check enforced by StackGuard as if
the desired canary has not been overwritten yet. We find that three key challenges should
be resolved to make current AEG systems adaptable to this issue. These challenges are
listed below.

Challenge 1: canary leakage event forgery. As StackGuard-protected programs would not
explicitly manifest the canary value to the external analyst, POC input generally smashes
the stack structure completely, leading the execution to termination. Therefore, it is the
AEG system’s duty to forge a new canary leaking event from scratch, establishing the first
step towards complete exploitation of StackGuard-protected programs.

Challenge 2: sanity check bypassing input generation. Obtainment of a canary leaking
input is not the termination. AEG system should explore the path space alongside this
input to further discover some exploitable state, only on which can we derive a complete
exploit input. However, as for most current test case generation techniques including
fuzzing [21–23], symbolic execution [24,25], hybrid fuzzing [26,27], etc., the sanity check
performed by StackGuard would definitely block exploitable state from being discovered
as the stack structure is generally smashed. A sanity check bypassing input generation
scheme should be proposed to help the AEG system tackle the issue in an effective way.

Challenge 3: dynamic canary relocation. Current AEG systems often generate exploits
under the assumption that the analysis environment and the runtime environment match
exactly the same. However, this is not the case for StackGuard-protected programs, as the
canary value it adopted differs between each bootstrap of the environment. It is neces-
sary to equip an extra canary relocation device to current AEG systems to fix the critical
environmental gap.

Our Solution. We present CanaryExp, a canary-sensitive automatic vulnerability ex-
ploitability evaluation system to address the above challenges. Given a binary program
with some memory corruption vulnerability and a POC input that can trigger some vulner-
ability but cannot hijack the control flow due to failure on canary checking performed by
StackGuard, CanaryExp firstly monitors the execution of the POC input, generating input
samples that can leak the desired canary at runtime. Based on this canary leaking input, it
then generates input samples that can not only leak the canary, but also trigger some new
vulnerability afterwards. We define these input samples as incremental proof of concept
(abbr. incremental POC) throughout this paper. The incremental POC is then utilized
by an exploitation technique applier generating exploit input that fits the analysis time
environment. An extra canary relocation process is deployed at last, making the analysis
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time exploit adaptable to the runtime environment, providing a completely automatic
exploitability evaluation workflow for security analysts.

We have constructed a prototype system of CanaryExp based on the open source binary
analysis platform angr [28], coverage guided fuzzing engine AFL++ [29] and whole-system
symbolic executor S2E [30], and evaluated it on six test programs, eight CTF challenges
and four real-world applications. The results of experiments show that (1) CanaryExp
can generate canary leaking input and incremental POC able to both leak the canary and
trigger some vulnerability more efficiently than current test case generation systems, and
(2) CanaryExp can automatically and effectively evaluate the exploitability of the desired
vulnerabilities existing in the 18 vulnerable programs that are protected by StackGuard.

The main contributions of this paper are listed below:

• We propose a novel canary leakage forge method. By performing output buffer
analysis and canary recognization through dynamic state monitoring alongside the
execution of a POC input, the overflowed canary in the output buffer is recovered
with a canary leaking execution state derived on which canary leaking input can be
automatically calculated.

• We propose a canary leaking analysis time exploit generation method. By exploring
state space alongside test cases that are able to leak the desired canary and disabling
StackGuard’s sanity check during exploitable state derivation, the analysis time exploit
is generated providing a data template for later automatic construction of exploitability
evaluation scheme.

• We propose a dynamic canary-relocation-based exploitability evaluation mechanism.
By collecting metadata associated with the runtime canary and the IO sequence im-
plied by the analysis time exploit, an exploitation session is dynamically constructed,
during which real-time extraction and relocation of canary value are performed, pro-
viding automatic exploitability evaluation workflow for vulnerabilities in StackGuard-
protected programs.

• We have implemented a prototype system of CanaryExp and proved its effec-
tiveness in automatic exploitability evaluation for vulnerabilities in StackGuard-
protected programs.

2. Motivation Example

In this section, we first introduce the manual exploitation process generally taken
by security analysts for a simple vulnerable StackGuard-protected program, then discuss
the limitations of current AEG systems in automatic exploitability evaluation for this
vulnerability, and finally propose the insights we believe current AEG systems should
follow to tackle this issue.

2.1. The Vulnerability and StackGuard Mechanism

For ease of illustration, we compile the example program shown in Figure 1a by
executing the command ‘gcc demo.c -m32 -static -fstack-protector -o demo’ under Linux.
After compilation, we obtain a 32-bit executable image that is statically linked in ELF
format, with StackGuard option turned on.

As can be seen in the example, the protection mechanism provided by StackGuard
is composed of 2 key components—one for canary storage and the other a sanity check.
The canary storage phase is shown by ¬ in Figure 1b, consisting of two store instructions
copying memory content located by logical address ‘gs:0x14’ (which is the defacto runtime
canary initialized by the glibc runtime environment) to a memory cell in the stack frame.
After the canary storage operation is completed, the layout of function func’s stack frame
becomes the one shown in Figure 1c, from which we can see that the stored runtime canary
resides at an address that is both lower than the memory cells that containing the caller’s
EBP and call site address and higher than the address of the variable ‘buffer’ on the stack.

The sanity check phase is shown by  in Figure 1b. It is located before the return
point of function func. The sanity check firstly fetches the value stored at virtual address
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‘ebp-0xc’, then checks whether it equals the original canary through an exclusive OR
operation. If the two values are the same, the control flow would return normally; otherwise,
function __stack_chk_fail_local would be invoked (shown by ® in Figure 1), immediately
terminating the execution.

Figure 1. An example of exploitation of vulnerability in a StackGuard-protected program. (a) Source
code of the example. (b) Disassembly view of function func in this example. This view is generated
by the well-known interactive disassembler IDA Pro. (c) Stack frame of func. (d) Steps we believe
AEG systems should take to handle this case.

We can see in line 3 in Figure 1a that call on read occurs. Due to this call, a stack over-
flow vulnerability exists as at most 0x100 bytes can be read from the external environment
and filled into a 0x60-sized buffer. For programs not protected by StackGuard, a simple
input containing 0x100 ‘A’ would directly hijack the control flow, facilitating current AEG
systems generating effective exploit. However, it is not the case for this example.

As the canary to be checked lays in the stack region between the input buffer and
saved return address, overwriting the return address through stack overflow on the local
variable buffer would inevitably overwrite the stored canary. Unless the stored canary
is overwritten with the exact value StackGuard adopts at runtime, which is generally
impossible for current test case generation methods, the execution would generally directly
terminate as the sanity check fails in this case.

2.2. Inspirations on AEG

Traditional AEG systems generally follow a one-step strategy. Assuming some ex-
ploitable state can be explicitly derived through trace analysis of the provided POC input,
they try to deduce an exploitable state from the vulnerable state manifested by the POC
input. As stack smashing inputs cannot bypass the sanity check imposed by StackGuard,
this strategy no longer holds under this circumstance.

We believe a multi-step evolutionary policy is needed to handle this issue. There-
fore, we propose the multi-step exploitation procedure shown in Figure 1d, in which
five steps are required to complete the automatic exploitability evaluation process of the
example program.

In the first step, we get a simple stack smashing input through available test case
generation techniques. Though the input manifests already the existence of a stack overflow
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vulnerability, it can not pass the protection imposed by StackGuard. We need to forge some
canary leakage event.

Through analyzing the stack frame layout and the execution trace designated by POC1,
we can transform the original stack smashing event into a canary leaking event, with a new
test case POC2 containing 0x60 ‘A’s generated.

As POC2 only manifests the existence of stack canary leakage, we take step 3 perform-
ing state space exploration alongside the prefixed path designated by POC2. This time,
a new test case POC3 is generated, which can not only leak the desired canary, but also
cause the execution to reach some exploitable state. It is worth noting that as the sanity
check performed by StackGuard may block the control flow hijack state being discovered,
it should be temporarily blocked in this phase.

The fourth step performs exploit generation of the exploitable state implied by POC3,
generating a new input EXP that can be used to evaluate the exploitability of the target
vulnerability in the analysis time environment. The fifth step then performs an extra
relocation process of EXP. By filling CANARY with the leaked canary value in runtime,
a complete automatic exploitation process is finally accomplished.

3. Overview of CanaryExp

We propose CanaryExp, an automatic vulnerability exploitability evaluation solution
for vulnerable binary programs where the StackGuard mechanism is deployed. As shown in
Figure 2, CanaryExp consists of three components: separate canary leakage POC generation,
canary leaking analysis time exploit generation, and dynamic canary-relocation-based
exploitability evaluation.

Figure 2. Overview of CanaryExp.

CanaryExp works in the multi-step automatic exploit generation paradigm discussed
in Section 2.2. Given a binary program and some POC input, CanaryExp first employs the
canary leakage POC generation engine generating input sample that can leak the desired
canary value. This canary leaking input is then fed to the canary leaking analysis time
exploit generation engine, which firstly generates some incremental POC input sample
that can trigger some new vulnerability after leaking the desired canary through canary-
leakage-guided fuzzing, then based on the generated sample, generates analysis time
exploit through enumerating possible exploitation techniques. The analysis time exploit
is then directed to the dynamic canary-relocation-based exploitation evaluation engine,
which generates an exploit script that can perform dynamic relocation of the canary part of
the analysis time exploit.

4. Canary Leakage POC Generation

As depicted in Figure 2, the canary leakage POC generation engine firstly traces along
the execution specified by a vulnerability POC input, then constructs a canary leakage
forger atop it. This section illustrates the details of this component.

4.1. Dynamic Execution Monitor

The dynamic execution monitor engine is built upon a dynamic binary translation-
based software virtual machine [31]. It performs concolic execution [26,27] alongside the
execution trace specified by a POC input. Under this background, the execution state
of the program can be represented by a quintuple state :< Σ, µ, ∆, Π, δ >, among which
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Σ : Z → Instructions represents the mapping between virtual addresses and pro-
gram instructions, µ : Z→ Z

⋃
SYMBOLICS represents the definition state of memory

cells, ∆ : REG_NAMES→ Z
⋃

SYMBOLICS represents the definition state of registers,
Π ∈ SYMBOLICS represents the path constraint, δ : Z → SYMBOLICS records the
symbolic variables introduced on each read offset from the external input.

During the sequential execution of each instruction in the execution trace, the program
state is constantly influenced by the operation semantics implied by the executed instruc-
tions [32]. We define the tuple ioctx :< γ, υ, σ > to record the output context during the
execution, among which γ represents the anticipated information leakage channel (this may
be the standard output, network communication endpoint, etc.), υ represents the length
of data written to γ, and σ ∈ Z holds the canary. We place hooks at output API functions’
returning sites, recording the update of υ.

The dynamic execution monitor engine also exposes program instrumentation inter-
faces during the dynamic binary translation process. These interfaces provide a generic
hooking mechanism of semantics at both the instruction execution level and the guest oper-
ating system level. Hooks at the instruction execution level are implemented by inserting
trampolines in the translation and decode phase of the guest instruction in the dynamic
binary translation process. As for hooks at the guest operating system level, a kernel mode
driver is customized. The driver captures the process-related events in the guest operating
system and makes immediate notification to the execution monitor so as to invoke the
corresponding instrumentation code. These interfaces are listed in Table 1.

Table 1. Instrumentation interfaces.

Name Level Hooking Semantics

onMemRead instruction execution A memory read operation is performed

onMemWrite instruction execution A memory write operation is performed

onRegRead instruction execution A register read operation is performed

onRegWrite instruction execution A register write operation is performed

onInstructionStart instruction execution An instruction begins to execute

onInstructionEnd instruction execution An instruction finishes its execution

onBlockStart instruction execution A basic block begins to execute

onBlockEnd instruction execution A basic block finishes its execution

onFunctionStart instruction execution A function begins to execute

onFunctionRet instruction execution A function finishes its execution

onModuleLoad operating system A module is loaded into the address space of the target process

onModuleUnload operating system A module is unloaded into the address space of the target process

4.2. Canary Leakage Forger

The canary leakage forger aims to construct an execution state that can leak the desired
canary. It consists of two components, namely activation record analysis and output
stream analysis.

Each time a procedure in the target program is invoked, a new activation record is
allocated on the stack region, keeping storage for the local variables, caller’s return address,
caller’s stack base pointer, and the runtime canary imposed by StackGuard. When the
control flow returns to the caller from this function, the activation record is removed.

The activation record analysis component keeps track of the structure information
for all currently alive activation records in θ : {< base, top, canary > |base ∈ Z, top ∈ Z,
canary ∈ Z}, among which a single triple < base, top, canary > represents a single activa-
tion record, with base and top denoting the base address and top address of the activation
record region on the stack, canary denoting the address on the stack frame where the stored
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canary resides in. By installing hooks on instrumentation interfaces listed in Table 1, these
values are calculated dynamically.

The output stream analysis monitors the output events that happened along the
execution trace by arranging hooks at the entry points of output API functions, trying to
derive an execution state that can leak the desired canary. It completes the state derivation
through two methods: one for activation record restoration and the other for symbolic
output buffer manipulation.

Formula (1) demonstrates an example of operation semantics of activation record
restoration at the entry point of the Posix write function. Note that we describe the
operation semantics in the same way as [32].

When the write function is invoked in the form write( f d, bu f , sz), the activation
record restoration method firstly checks if fd points to the desired information leaking
channel. If so, it locates the activation record sf where buf resides in, and ensures that
memory region µ[bu f , s f .canary] is filled with symbolic variables. It then checks the math-
ematical relationship among the symbolic variables in memory region µ[bu f , s f .canary].
If some affine relationship is discovered [33], the activation record restoration method
truncates the original symbolic content sequence δ to δ|{0,...,n}, where n is the maximum
index of symbolic variables in µ[bu f , s f .canary− 1]. In this way, the canary leakage state
< Σ, µ, ∆, Π, δ|{0,...,n} > is immediately derived.

Σ[∆[”pc”]] = write( f d, bu f , sz) ∧ source( f d) ∈ γ ∧ bu f ∈ Z∧ sz ∈ Z
∧∃s f∈θ(s f .base ≤ bu f ∧ bu f ≤ s f .top ∧ bu f + sz > s f .canary∧

µ[s f .canary] ∈ SYMBOLICS ∧ is_a f f ine(µ[bu f , s f .canary], δ)∧
max_var_index(µ[bu f , s f .canary− 1]) = n)

< Σ, µ, ∆, Π, δ >,< γ, υ, σ >, θ  < Σ, µ, ∆, Π, δ|{0,...,n} >,< γ, υ, σ >, θ
(1)

Symbolic output buffer manipulation is applied when the output buffer can be influ-
enced by some external input. Formula (2) demonstrates the operation semantics of it at the
entry of write. If bu f or sz is detected to being a symbolic value that can be influenced by
external input, symbolic output buffer manipulation tries to bind these parameters to the
memory area on some activation record on which the saved canary has not been overflowed
yet through constraint solving. If the forged constraint bu f + sz > canary

′ ∧ bu f ≤ canary
′

is proved satisfiable, by updating the original path constraint Π, a new execution state that
can lead to canary leakage is automatically generated.

Σ[∆[”pc”]] = write( f d, bu f , sz) ∧ source( f d) ∈ γ ∧ bu f ∈ SYMBOLICS

∨sz ∈ SYMBOLICS ∧ ∃s f∈θ(is_satis f iable(bu f + sz > canary
′∧

bu f ≤ canary
′ ∧ canary

′
= s f .canary) ∧ µ[s f .canary] ∈ Z)

< Σ, µ, ∆, Π, δ >,< γ, υ, σ >, θ  

< Σ, µ, ∆, Π ∧ bu f + sz > canary
′ ∧ bu f ≤ canary

′
, δ >,< γ, υ

′
, σ >, θ

(2)

Once a canary leaking state is derived, the canary leakage forger performs constraint
solving on it to generate a test case that can trigger the desired canary leakage at runtime
as shown in Algorithm 1, accomplishing the first step towards complete exploitability
evaluation shown in Section 2.1.
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Algorithm 1 Canary leaking input generation

Input:
The canary leaking state, state :< Σ, µ, ∆, Π, δ >.

Output:
The content of canary leaking input.

1: solver = SMTSolver()
2: content = solver.solve(state.Π)
3: out_content = newbytes[state.δ.count()]
4: for i = 1 to state.δ.count() do
5: out_content[i] = content[i]
6: end for
7: return out_content

5. Canary Leaking Analysis Time Exploit Generation

The canary leaking analysis time exploit generation engine consists of three com-
ponents, namely canary check patcher, canary-leakage-guided fuzzing and exploitation
technique scheduler. The canary check patcher first generates a patched program that
is friendly to vulnerability discovery. Then, based on this patched program, the canary-
leakage-guided fuzzing technique is applied generating incremental POC input that can
not only leak the desired canary, but also manifest some new vulnerability afterwards.
The exploitation technique scheduler then constructs an analysis time exploit based on this
incremental POC input, providing a data template to complete exploitability analysis on
runtime environment.

5.1. Canary Check Patcher

The sanity check imposed by StackGuard would generally block control-flow hijacking-
related vulnerabilities including stack overflow, format string vulnerability, etc., from being
discovered by current test case generation engines. The canary check patcher aims to pro-
vide a patched program that functions the same as the original binary program, except that
the sanity checks would all be stripped.

The canary check patcher is implemented as a function-level analysis pass. It
firstly recognizes the canary storage on the stack through the unique canary obtainment
disassembly pattern shown in Figure 1. It then performs an intra-procedural analysis
calculating the reaching definitions at each program point. When the reaching def-
inition analysis is done, the canary check patcher then recognizes conditional jump
instructions whose branching condition is dependent upon the stored canary. It also
identifies the call instruction whose target is __stack_chk_fail_local. It then patches these
instructions with 0x90, which is the NOP instruction under x86 platforms. Figure 3
demonstrates the patched version of function func in the example program shown in
Figure 1a. As the sanity check no longer exists, a single stack smashing input can easily
lead to the execution reaching some exploitable state. Upon the exploitable state, known
exploitation techniques would be enumerated to complete the analysis time exploit
generation process.
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Figure 3. Patched function snippet. The red frame demonstrates the patched part.

5.2. Canary Leakage Guided Fuzzing

Canary-leakage-guided fuzzing attempts to construct some incremental POCs that
can not only leak the desired canary, but also trigger some new vulnerabilities after-
wards. Figure 4 demonstrates the overview of this component. Similar to coverage-guided
fuzzing [22,34,35], our canary-leakage-guided fuzzing maintains a global seed queue. It
keeps fetching some seed from the queue and then performing mutation on the seed, with
some test cases generated. The input sources of the global seed queue include the canary
leaking inputs generated in Section 4 and the test cases generated during each fuzzing
iteration. Only if some seed from these sources is evaluated as promising can it be put into
the global seed queue.

Figure 4. Canary-leakage-sensitive fuzzing.

Traditional coverage-guided fuzzing techniques evaluate a seed as promising only if
its execution trace could hit some new control flow edge. As for canary-leakage-guided
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fuzzing, we build a canary detection scheme scanning for canary value in the output
streams during the dynamic execution monitor process, then integrate this scheme into the
seed evaluation step, with the notion of promising seed defined as follows. If some test
case can not only hit some new edge, but also dynamically leak the desired canary, this
test case would then be pushed to the global seed queue. It would later be deemed as a
promising seed and participate in the next test case generation iteration. In this way, we
make assurance that seed inputs participating in the mutation process can effectively leak
the desired canary, promoting the possibility of generating test cases implying canary leak-
age. We also enforce an extra execution monitor on the vulnerability-triggering test cases
generated during fuzzing. Only if the vulnerability triggering test cases can exhibit canary
leakage during execution can they be judged as incremental POCs. Therefore, the state
space exploration is always driven towards the direction that can leak the desired canary
and trigger some vulnerability afterwards, generating incremental POCs in a persistently
evolutionary way.

5.3. Exploitation Technique Scheduler

The exploitation technique scheduler cares about five types of exploitable states, namely
onStackEipOverwrite, onFuncPtrOverwrite, onFuncContentOverwrite, onStackEBPHijack
and onFmtstrVul. onStackEipOverwrite denotes an execution state where the saved EIP on
the stack can be controlled. onFuncPtrOverwrite denotes an execution state where some
function pointer can be controlled. onFuncContentOverwrite denotes an execution state
where the content some function pointer points to can be controlled. onStackEBPHijack
denotes an execution state where the EBP register can be controlled. onFmtstrVul denotes
an execution state where the format string parameter at some format string function call
site can be controlled.

Table 2 demonstrates the relevant context that would be maintained on these states.
When some exploitable state is discovered, the corresponding context information would
be recorded. The exploitation technique scheduler then schedules the related techniques,
generating analysis time exploit input that can exercise all the desired exploitation steps
over the target vulnerability in the analysis time environment.

Table 2. Bound between exploitable state and exploitation techniques.

Exploitable State Context Exploit Techniques

onStackEipOverwrite
the overwritten return pointer on stack, ESP,

and sequence of symbolic bytes from ESP

direct ROP
pivot to ROP on stack

pivot to fake stack

onFuncPtrOverwrite the content of the overwritten function pointer point to shellcode
pivot to fake stack

onFuncContentOverwrite
the function pointer pointing to the overwritten content

and the size of the overwritten content direct shellcode

onStackEBPHijack the overwritten EBP on stack fake EBP

onFmtstrVul the format string, ESP at collage format string control flow hijack

6. Dynamic Canary-Relocation-Based Exploitability Evaluation

When an analysis time exploit input is generated, a dynamic canary-relocation-based
exploitability evaluation process is adopted by CanaryExp to make the analysis time exploit
fit on the targeted runtime environment. As can be seen in Figure 2, the dynamic canary-
relocation-based exploitability evaluation process consists of three components, namely
IO sequence analysis, canary metadata collection and dynamic canary-relocation-based
exploitability session construction. This section discusses the internal working details.
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6.1. IO Sequence Analysis

Provided with the vulnerable program P and some analysis time exploit input s0
generated in the previous section, the IO sequence defines the order of the input and output
events along the execution trace of P on s0. As for the example program shown in Figure 1a,
supposing we have some analysis time exploit Expanalysis containing two parts, separately
one with 0x60 ‘A’s and another with 0x60 ‘B’s suffixed by three parts, separately a 4 byte
long canary placeholder, 0xc ‘B’s and 0x08569181, which is the virtual address of function
backdoor shown in Figure 1a, the IO sequence ioSeq for Expanalysis is shown below:

ioSeq = { IOEntry1 = {type = READ, len = 0x60},
IOEntry2 = {type = WRITE, len = 0x6c},
IOEntry3 = {type = READ, len = 0x74},
IOEntry4 = {type = WRITE, len = 0x74}

}

Resorting to the function level instrumentation utilities shown in Table 1, we hook
all the input and output relevant API functions, making a just-in-time record for each
input/output event. When the execution terminates, the complete IO sequence is derived.

6.2. Canary Leakage Meta Data Collection

The canary metadata collection component aims to record information on the de-
sired canary that is necessary to extract the canary from the output stream and locate
the canary-related field in the input stream. More specifically, three types of information
would be gathered: separate canary leaking offset, canary leaking format and canary
relocation offsets.

The canary leaking offset and canary leaking format provide the information necessary
to extract canary content from a given output stream. These two types of information are
collected during the output analysis of the execution trace. As to canary relocation offsets,
we perform concolic execution along the execution trace of the analysis time exploit on
the target program, recording the stack locations holding the runtime canary. When the
execution finishes, the memory content held on the bookmarked locations is checked.
If some of the content remains symbolic, the specific input offsets would be extracted from
the corresponding symbolic value, providing support for canary runtime relocation that
would be discussed in discussed in Section 6.3.

6.3. Canary-Relocation-Based Exploitation Session Construction

With the IO sequence and canary leakage metadata in mind, the canary-relocation-
based exploitation session construction component makes just-in-time transformation
on the analysis time exploit during the dynamic exploitation process, evaluating the
exploitability of the target vulnerability in a completely automatic way.

Algorithm 2 presents the inner working details. Provided with the communication
channel proc on the vulnerable program, the analysis time exploit Expanalysis, the word
size ptrSz of the target processor, the IO sequence ioSeq and the canary metadata canaryMd,
the algorithm simulates input and output events sequentially in the order specified
by IOSeq.

When some READ event should be simulated, the relevant part in content is de-
termined and then sent to the vulnerable program via proc.send (line 6–9). When some
WRITE event should be simulated, we fetch the output data of the vulnerable program via
proc.receive, and then check if the desired canary exists in the output stream (lines 11–12).
If it is confirmed existing, the actually leaked canary is calculated at line 13. This leaked ca-
nary is then utilized to relocate the input segment at the offset specified by canaryMd.o f f s
at lines 14–16. The updated exploit would then be sent to the target in the following READ
session, completing the vulnerability exploitability evaluation process in a canary sanity
check bypassing way.
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Algorithm 2 Runtime exploitation session with dynamic canary relocation

Input:
The full duplex channel to connect to the target process, proc.
The analysis time exploit input, Expanalysis.
The word size of the architecture of the target program, ptrSz. 4 for 32bit executables,
8 for 64 bit executables.
The IO sequence, ioSeq = {IOEntry1, IOEntry2, . . . , IOEntryn}, where IOEntryi
(1 ≤ i ≤ n) is the record describing the ith IO action.
The canary metadata, canaryMd =< lo f f , l f mt, o f f s >, where lo f f and
l f mt denotes the offset and format of the leaked canary in the output stream,
o f f s = {o f f1, o f f2, . . . , o f fn} denotes the fields in the input stream that should be
fixed with the leaked canary.

Output:
contents = Expanalysis
si = 0
ri = 0
canary = 0
for each IOEntry ∈ ioSeq do

if IOEntry.type == READ then
si_end = si + IOEntry.len
proc.send(contents[si : si_end])
si = si_end

else if IOEntry.type == WRITE then
recvContent = proc.receive(IOEntry.len)
if ri <= canaryMd.lo f f AND canaryMd.lo f f <= ri + IOEntry.len then

canary = extractCanary(recvContent, canaryMd.lo f f − ri,
canaryMd.l f mt)

for each o f f in canaryMd.o f f s do
contents[o f f , o f f + ptrSz] = canary

end for
end if
ri = ri + IOEntry.len

end if
end for

7. Evaluation

We implemented a prototype of CanaryExp based on the binary analysis platform
angr [28], well-known fuzzer AFL++ [29], whole-system symbolic executor S2E [30], and the
exploit development library pwntools [36].

The canary leakage POC generation is implemented on S2E with 2342 lines of C++
code. As for canary leaking analysis time exploit generation, there are 154 lines of Python
code on the angr side implementing the canary check patcher, 4814 lines of C code on AFL++
implementing canary-leakage-guided fuzzing, 3445 lines of C++ code implementing the ex-
ploitation technique scheduler on S2E. For dynamic canary-relocation-based exploitability
evaluation, the IO sequence analysis and canary metadata collection are implemented on
S2E, consisting of 1546 lines of C++ code. The exploitability session construction process is
implemented on pwntools, consisting of 564 lines of Python code.

In this section, we present the evaluation results of this system. These experiments are
all carried out in a 64-bit Ubuntu 22.04.3 LTS system on a workstation with 128 G RAM
and Intel(R) Core(TM) i9-12950HX CPU @ 2.5 GHz. These experiments are conducted to
answer the following questions:

• RQ1: Can CanaryExp generate canary leaking input and incremental POC input
samples more efficiently than current test case generation techniques?
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• RQ2: Can CanaryExp generate an exploitation session that can automatically eval-
uate the exploitability of the vulnerable programs with the StackGuard protection
mechanism effectively bypassed?

7.1. Benchmarks

The benchmarks we constructed to evaluate our system are shown in Table 3. These
benchmarks are composed of six test programs, eight challenges from CTF events and four
real-world applications with exposed vulnerabilities. These benchmarks are all user-mode
applications running on the Linux platform in the ELF format. These programs are collected
based on the following criteria.

• Vulnerabilities commonly existing in binary programs should be covered by the
benchmarks. As shown in Table 3, vulnerabilities including stack overflow, integer
overflow, format string, use after free, and heap overflow are all covered in this
collection. These are all common vulnerabilities exhibited in binary programs.

• The benchmark programs should be protected by StackGuard, and forging a canary
leakage event is a must in exploitability evaluation. As shown in Table 3, the ‘Leak
Type’ column lists the method that should be taken to forge the desired canary leakage
event. Note that ‘ARR’ and ‘SBM’ separately stand for activation record restoration
and symbolic output buffer manipulation discussed in Section 4.2.

• The benchmarks should also cover as much as possible the exploitation mitigation
techniques. As we can see, in the ‘protection’ column in Table 3, except for Stack-
Guard, mainstream protection mechanisms including NX and ASLR are all covered
in this collection. It is worth noting that for benchmark programs that run under an
ASLR environment, we complete the exploitability evaluation process by merging
CanaryExp with our previous work [37].

Table 3. Evaluation benchmark.

Dataset Program Vulnerability Type Protections Leak Type

test programs

stack1 stack overflow Canary, NX, ASLR ARR

intovf stack overflow, integer overflow Canary, NX ARR

fmtstr1 format string Canary SBM

fmtstr2 format string Canary SBM

heap-vul1 use after free Canary SBM

heap-vul2 heap overflow Canary, NX ARR

bjdctf 2020 babyrop2 stack overflow, format string Canary, NX SBM

moectf 2020 baby_canary stack overflow, format string Canary, NX, ASLR SBM

BugkuCTF canary stack overflow Canary, NX ARR

insomnihack CTF 2016 microwave stack overflow, format string Canary, NX, ASLR SBM

2018 anheng cup CTF babypie stack overflow Canary, NX, ASLR ARR

CSAW Quals CTF 2017 scv stack overflow Canary, NX SBM

xctf
Mary_Morton stack overflow, format string Canary, NX SBM

babystack stack over flow Canary, NX ARR

real applications

proftpd 1.3.1 (CVE-2006-6563) stack overflow Canary, ASLR ARR

iwconfig v26 (BID-8901) stack overflow Canary, NX ARR

dnsmasq 2.77 (CVE-2017-14493) stack overflow Canary, NX, ASLR ARR

rsync 2.5.7 (CVE-2004-2093) stack overflow Canary, NX ARR
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7.2. Effectiveness in Canary Leaking Input and Incremental POC Input Generation

To answer RQ1, we compare CanaryExp against well-known engines including AFL,
AFL++, S2E and QSYM. To guarantee computation fairness, We allocate the same quota on
resources for computation, which is composed of two logical processors, 64 GB physical
memory and a 2 h time quota. Note that we set the logical processor count to 2 because
CanaryExp takes exactly two logical processors during calculation–one for canary leaking
input generation and the other canary leakage persistent POC input generation. We list the
specific configurations for each engine in Table 4.

Table 4. Engine configuration.

Engine Configuration Setup

CanaryExp 1 instance of AFL++ slave mode, 1 instance of S2E

AFL 1 instance for AFL master mode, 1 instance for AFL slave mode

AFL++ 1 instance for AFL++ master mode, 1 instance for AFL++ slave mode

S2E 2 instances of S2E, working in parallel

QSYM 1 instance of a PIN-based concolic executor, 1 instance for AFL slave mode

We conduct two experiments as follows. To compare CanaryExp with other test
case generation engines on canary leaking input generation, we launch them on the same
initial input corpus containing POC samples that can lead the execution trigger some
vulnerability, with an introspection process launched at the same time checking whether
the generated test cases can leak the desired canary, with the time cost recorded at the
same time. To compare CanaryExp with other test case generation engines on incremental
POC input generation, we launch them on the same initial input corpus containing canary
leakage samples, and provide the sanity check stripped programs instead of the original
StackGuard-protected versions. We also calculate the time cost in generation through
dynamic monitoring of the engines’ output at the same time.

Table 5 shows the results. We can see that CanaryExp is able to generate canary
leaking input at low time cost while other engines generally fail in the given time
quota. The root cause of this, we believe, lies in the uniquely proposed canary leakage
forger CanaryExp. Through introspecting upon the output stream, this component
dynamically transforms some execution state into a canary leaking state when identi-
fying the output context satisfying the necessary transformation condition, therefore
establishing the advantage for CanaryExp in this facet over other known test case
generation engines.

We can also conclude that CanaryExp is able to generate incremental POC samples
for the benchmark programs more effectively than other engines. We believe this is due
to CanaryExp’s unique canary sensitivity. As for coverage-guided fuzzing engines like
AFL and AFL++, they generally distinguish test cases by their branch coverage feedbacks.
Under this paradigm, a specific branch coverage map generally groups an equivalent
set of test cases, with the first test case exhibiting this branch coverage selected as the
representative; other test cases subsequently generated following the same branch coverage
would simply discarded in future test case generation processes. However, this is not the
case for canary leaking input generation. As we can see from Figure 1, the path taken
by the canary leakage sample can be easily reached through simple fuzzing. Therefore,
though carrying evident canary leakage feature, the canary leaking input would simply
not be deemed as interesting and discarded immediately as some cheap representative
already exists.

For S2E and QSym, the symbolic executor part would also ignore the canary leaking
context information during path space exploration. Even though the input corpus provided
to S2E and QSym already implies some canary leakage event, they only enforce blind
path exploration obtaining poor efficiency in incremental POC generation. CanaryExp,
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however, because of its unique sensitivity on canary leakage events, can definitely forge
the necessary canary leakage event in canary leaking input generation and identify the
interesting and critical step carried out by the canary leakage sample in incremental POC
generation, therefore obtaining better results in this criterion.

Table 5. Time cost of canary leaking input generation and incremental POC generation.

Program
Canary Leaking Input Generation Time (s) Incremental POC Generation Time (s)

CanaryExp AFL AFL++ S2E QSYM CanaryExp AFL AFL++ S2E QSYM

stack1 141 - - - - 414 906 1034 2135 923

intovf 158 - - - - 453 843 936 1785 793

fmtstr1 276 - - - - 436 903 857 1890 917

fmtstr2 303 - - - - 321 878 745 1905 671

heap-vul1 341 - - - - 509 862 913 2413 874

heap-vul2 323 - - - - 537 1047 1132 2321 908

babyrop2 415 - - - - 424 764 613 1621 598

baby_canary 421 - - - - 383 601 596 1422 523

canary 517 - - - - 395 503 497 874 488

microwave 523 - - - - 374 465 544 916 421

babypie 325 - - - - 344 541 566 1212 497

scv 443 - - - - 284 412 445 842 372

Mary_Morton 513 - - - - 245 378 332 674 405

babystack 414 - - - - 304 417 456 786 433

proftpd 1.3.1 516 - - - - 483 561 577 1231 584

iwconfig v26 464 - - - - 421 514 498 1314 501

dnsmasq 2.77 515 - - - - 547 786 775 1874 694

rsync 2.5.7 432 - - - - 442 678 661 1143 578

7.3. Effectiveness in Exploit Generation

To answer RQ2, we compare CanaryExp with REX [3], a well-known AEG system
developed by the Shellphish team. We provide the same initial seed corpus that contains
input samples that can leak the canary at runtime to the two engines, test if they can
generate analysis time exploit and complete the exploitation on the vulnerable programs.
Note that we use the canary check stripped version of the benchmark programs as a test
suite in experiments on analysis time exploit generation and the original version of the
benchmark programs as a test suite in runtime exploitation session.

Table 6 shows the results. We can see that although REX can generate analysis time
exploit successfully, as CanaryExp proved with the patched programs. As shown in the
column ‘Exploit Generation’ depicted in Table 6, it generally fails in exploitability evaluation
on the original versions of the benchmarks, while CanaryExp, on the other hand, can finish
the tasks, as depicted in column ‘PWN ability’ in Table 6. We believe the novel runtime
canary relocation technique we bring out in this paper should account for this difference.
As the runtime canary relocation technique can effectively bridge the difference between the
analysis time canary and runtime canary, CanaryExp can bypass the sanity check imposed
by StackGuard in a completely automatic way, gaining superiority on this issue over REX.
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Table 6. Experimental results of exploit generation.

Program Engine Exploit Generation PWN Ability

stack1
CanaryExp ok success

REX ok fail

intovf
CanaryExp ok success

REX ok fail

fmt1
CanaryExp ok success

REX ok fail

fmt2
CanaryExp ok success

REX ok fail

heap1
CanaryExp ok success

REX ok fail

heap2
CanaryExp ok success

REX ok fail

babyrop2
CanaryExp ok success

REX ok fail

baby_canary
CanaryExp ok success

REX ok fail

canary
CanaryExp ok success

REX ok fail

microwave
CanaryExp ok success

REX ok fail

babypie
CanaryExp ok success

REX ok fail

scv
CanaryExp ok success

REX ok fail

Mary_Morton
babyrop2 ok success

REX ok fail

babystack
CanaryExp ok success

REX ok fail

proftpd 1.3.1
CanaryExp ok success

REX ok fail

iwconfig v26
CanaryExp ok success

REX ok fail

dnsmasq 2.77
CanaryExp ok success

REX ok fail

rsync 2.5.7
CanaryExp ok success

REX ok fail

8. Discussion

This paper presents CanaryExp, an automatic exploitability evaluation scheme for
vulnerable binary programs that are protected by StackGuard. To solve the canary by-
passing issue generally ignored by current AEG systems, CanaryExp employs three novel
techniques: separate canary leakage POC generation, canary leakage sensitive fuzzing and
dynamic canary relocation.

The canary leakage POC generation mechanism monitors the execution trace along a
vulnerability triggering input, with some canary leaking state intentionally forged through
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output analysis. Upon the constructed canary leaking state, some canary leaking samples
are derived.

The canary leaking analysis time exploit generation takes the canary leaking sam-
ples generated above as input, progressively pushing forward the multi-step exploitation
automaton by firstly generating some incremental POC that can trigger some new vulnera-
bility after leaking the runtime canary, then constructing an analysis time exploit that can
not only leak the canary but also complete the exploitation in analysis time environment.

The dynamic canary-relocation-based exploitability evaluation firstly collects metadata
related to the desired canary, then with this information and the analysis time exploit
in mind, constructs the exploitation session that can adapt to the runtime environment
by intelligently leaking the canary and performing automatic relocation on the input
exploit stream.

As shown in Section 7, CanaryExp performs better in canary leakage test case gener-
ation, proven an effective solution in the automatic exploitation of vulnerable programs
protected by StackGuard. However, there is still some room for improvement for Canary-
Exp, as discussed below.

• Automatic Exploitable Heap Layout Generation. Automatic generating exploitable
heap layout is the most critical issue when evaluating the exploitability of heap-related
vulnerabilities. Though some pattern-based solutions including [11,13] have been
proposed working as a per-state evaluation method in the blind exploration process on
the path space of the target program, it is necessary to devise some directed analysis
to improve the efficiency in exploit generation for heap vulnerabilities.

• Support on Multi-Threading Vulnerabilities. Current AEG systems generally calcu-
late the semantics of program instructions in sequential execution order. However,
this does not fit for case when the vulnerability arises only in multi-threading environ-
ments, e.g., concurrency vulnerabilities. As CanaryExp currently also adopts the same
sequential calculation model, a multi-threading-environment-oriented calculation
model is desired to make it applicable in exploitability evaluation of vulnerabilities in
multi-threading environment.

• AEG on interpreters. Current AEG systems generally depend heavily on symbolic
execution to reason about the internal relationship between program variables and ex-
ternal input. CanaryExp also fails in this case. However, for interpreter like programs,
as they often translate the input program into some abstract syntax tree structure
and then generate just-in-time code on it, the symbolic variables introduced by the
original input program may get lost due to this intermediate translation, directly
leading current AEG methods fail in this case. Some intermediate layer should also be
introduced to make AEG adaptable regarding this issue.

9. Related Work
9.1. Feedback Guided Fuzzing

Feedback-guided fuzzing is currently the most prevalent test case generation technique.
By instrumenting the target programs through techniques including compilation [22,35], dy-
namic binary translation [29,31], dynamic binary instrumentation [38], binary rewriting [39]
or collecting the execution statistics through advanced processor provided features [40],
many fuzzers collect different kinds of feedback information during the execution phase of
the generated test cases. If some new feedback is exhibited, the corresponding test case can
then be deemed as interesting and then participate in the next test case generation iteration.
In this way, the feedback-guided fuzzing process is also known as evolutionary fuzzing.

Branch coverage is the classic feedback originally defined by fuzzers including AFL [22],
honggfuzz [35] and AFL++ [29]. By collecting the hit count of each branch instruction of
the target program, these fuzzers keep discovering new test cases in which to can exercise
some new branch instructions. LOLLY [41] defines state sequence as feedback in which a
novel sequence guided directed fuzzing technique is proposed keeping state exploration
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towards user-specified program statements. aflfast [42] and GREYONE [43] define taint of
variables as feedback so as to perform data flow sensitive fuzzing.

9.2. Automatic Exploit Generation

Brumley et al. [44] proposed a patch-based solution for programs generating exploit
input with the aid of vulnerability patches. Thanassis Avgerinos et al. proposed AEG [1],
generating exploit inputs through the synthesis of different symbolic execution techniques.
As the subsequent production over AEG, MAYHEM [4] was proposed in 2012, generating
exploit inputs through interleaving symbolic execution and concolic execution. Based
on S2E [30], a whole-system symbolic executor for binary programs, Huang et al. pro-
posed CRAX [2] that generates exploits for stack overflow vulnerability through automatic
derivation of exploitable state through concolic execution and utilizing constraint solv-
ing upon the crafted state. Revery [45] was proposed in 2018, generating exploits in a
state-stitching way.

As for heap-related vulnerabilities, many solutions have also been proposed nowa-
days. RELAY [11] was proposed in 2020, capable of evaluating exploitability on metadata
corruption vulnerabilities. HAEPG [13] was also proposed in 2020, simulating known
exploitation techniques to facilitate automatic exploitation for heap vulnerabilities under
glibc platforms. Maze [8] was proposed in 2021, which implements automated heap layout
manipulation through modeling heap feng shui techniques.

However, currently, few solutions discuss automatic exploitation under StackGuard
conditions. LAEG [46], to our knowledge, proposed the first solution on AEG for StackGuard-
protected programs. However, this method works under a strict assumption that the initial
POC input provided to the system implies some uninitialized data vulnerability that can
directly leak the critical information. In other words, it focuses only on the back end of
this problem, without any canary leakage primitive construction attempts, imposing strict
requirements on the initial POC input. Our method, however, because of the active canary
leakage forge and dynamic canary relocation mechanisms it adopts, can leak and fix the
desired canary all by itself, providing automatic AEG workflow much more complete
than LAEG.

10. Conclusions

We present CanaryExp, a novel vulnerability exploitability evaluation solution for
programs that are protected by StackGuard. CanaryExp works in a multi-step exploitation
paradigm. It first generates test cases that can exhibit the desired canary leakage event
through a canary leakage POC generation process. Then, based on the generated address
leakage input, a canary leaking analysis time exploit generation method is proposed,
generating an exploit input that can fit the exploitation process in the analysis time execution
environment. Based on the analysis time exploit input, a dynamic canary-relocation-
based exploitability evaluation scheme is devised, providing a completely automated
exploitability evaluation pipeline in a canary-sensitive way. The results of our experiments
show that CanaryExp can perform better than current AEG solutions in both canary leakage
sample generation and runtime canary adaption.

However, CanaryExp still has some limitations. It cannot derive an exploitable heap
layout automatically from scratch. It also fails to analyze vulnerabilities existing in multi-
threading environments and interpreter-like programs. These supports are planned to
be added in the future to further enhance CanaryExp’s scalability and capability in real-
world applications.
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