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Abstract: Replacing traditional manual sweeping with unmanned sweepers in closed parks can not
only greatly reduce labor costs, but also improve sweeping efficiency. Efficient path planning is the
key technology for unmanned sweepers to complete the sweeping task. Existing unmanned sweepers
are often based on fixed path sweeping or completely traversing the sweeping mode, this mode
does not have the environmental adaptability, in the actual sweeping is often high energy cost, and
sweeping is not complete. In this paper, an environment-adaptive sweeping path planning method
is proposed to improve the sweeping intelligence and environmental adaptability of unmanned
sweepers, reduce the energy consumption of sweeping and improve the efficiency of sweeping.
Specifically, in this paper, we first use YOLOv5 to complete the accurate identification of individual
garbage and obstacles in the road, and then work with LIDAR and Gaussian Mixture Model(GMM)
to remove redundant targets. We also propose a Permutation Entropy(PE) value-based discrimination
method to complete the target distribution posture analysis of each complex garbage pile. Finally,
the traditional path planning problem is transformed into a combinatorial optimization problem of
garbage areas, and a sweeping path accurate method based on Simulated Annealing(SA) algorithm
is proposed. Through comprehensive theoretical analysis and simulation study, the optimality
and effectiveness of the proposed method are proved by comparing A star and Coverage Path
Planning(CPP) algorithms in a variety of experimental scenarios.

Keywords: target distribution; situation analysis; TSP-CPP; unmanned sweeper

1. Introduction

With the development of autonomous driving technology and the structural adjust-
ment, transformation and upgrading of the sanitation industry, the market demand for
intelligent equipment is expanding, primarily including the demand for automatic driving
sweeping equipment. The realization of unmanned sweepers’ unique use and driving
characteristics has important practical significance and broad market prospects [1]. The
market volume of unmanned sweepers in China and the U.S. in recent years is shown in
Figure 1, where 2020–2022 is the data from research and 2023–2025 is the forecast data.

As shown in Figure 2, for urban roads, garbage is usually distributed at the edge of
the road, so it is more appropriate to use a fixed path for cleaning strategy, but for closed
parks such as schools, parks, airports, etc., the garbage is more dispersed and the efficiency
of the traditional directional cleaning is difficult to guarantee. The full-coverage path can
be used in parks, but too long a path will consume a lot of energy, and the efficiency is low;
it will also interfere with the normal passage of pedestrians and vehicles in the park.
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Figure 1. The market volume of unmanned sweepers in China and the U.S. in recent years and in the
future (source: Statistical Bulletin on the Development of the Transport Sector).

Figure 2. Different garbage distribution patterns for urban roads and enclosed parks.

Existing robots lack a global view, so sweeping can be blind. An effective approach is
to enhance the target perception within the current visible sweeping, and then design a
corresponding sweeping strategy to improve the environmental adaptability of the sweeper.
However, this process faces two challenges: on the one hand, the existing perception
strategy can hardly meet the demand of forming a qualitative and dense perception of the
road garbage distribution when the sweeper plans its route. The existing machine vision
perception of existing sweepers or sweeping robots is based on target classification, and
although some road targets can be identified through machine vision, and even obstacles
and garbage can be distinguished [2], the spatial continuity of information obtained by
target identification is poor [3], and it is difficult to form accurate continuous perception for
densely distributed garbage. Although semantic segmentation can be enhanced in terms of
spatio-temporal continuity, it can only recognize regions with a single feature and has poor
performance in recognizing regions composed of complex features.

On the other hand, existing intelligent body planning algorithms for self-driving
vehicles and robots use a heuristic search as the computational core. Such methods often
have the shortest path as the optimization goal to form optimal path planning. However,
for unmanned sweepers, their planning core is optimally sweeping-oriented, forming
the shortest path possible under the guarantee of sweeping efficiency. The change in
optimization goals driven by the sweeping task makes the original path planning based on
the heuristic search form an inefficient sweeping route. In addition, the randomness and
dispersion of the garbage distribution in the cleaning make the target in the cleaning path
planning process no longer a collection that can be spatially characterized in traditional
planning methods, but a class of spatially discrete sets of each anisotropy. More complex
planning objectives make the traditional planning algorithm no longer applicable, and
there is an urgent need to study an environment-adaptive dynamic planning algorithm for
unmanned sweepers.
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Therefore, in this paper, we study a novel unmanned sweeper vehicle sweeping
method based on target distribution posture analysis, which firstly uses the inverse per-
spective transformation (IPM) together with You Only Look Once version 5 (YOLOv5) to
identify obstacles and monolithic garbage in the roadway, followed by the use of LIDAR
local elevation and Gaussian mixture model (GMM) to tolerate similar obstacles as well
as garbage targets, and for the complex garbage piles by identifying the PE (permuta-
tion entropy) entropy for their complementary detection. Finally, all the garbage regions
are subjected to convex packet ensemble generation by Graham’s scanning method, and
the optimal sweeping path problem for unmanned sweepers is solved using a simulated
annealing (SA) algorithm.

In summary, our contributions are as follows:

(1) The accurate identification of monolithic trash and obstacles was accomplished using
YOLOv5 and combined with GMM to reduce redundant parts.

(2) For complex garbage piles, a novel roadway garbage area discrimination method
based on PE value analysis is proposed to obtain accurate garbage area information in
the roadway plane.

(3) The traditional unmanned sweeper vehicle sweeping path planning problem is trans-
formed into a Traveling Salesman Problem-Coverage Path Planning(TSP-CPP) prob-
lem based on Contributions 1 and 2, and a simulated-annealing-algorithm-based un-
manned sweeper vehicle path planning method is proposed.

This paper is organized as follows. Section 2 provides a literature review on target
detection, situation analysis, and a literature review on path planning for unmanned sweep-
ers. In Section 3, a detailed framework of a sweeping method based on target distribution
posture analysis is described. Experiments and results are presented in Section 4. Finally,
we conclude the discussion of this study in Section 5.

2. Related Works

In this section, we provide a brief overview of the latest research on garbage detection,
classification methods and path planning for unmanned sweepers.

2.1. Research on Garbage Detection and Classification

Accurate garbage identification will greatly improve the automation and intelligence
of cleaning vehicles. Earlier researchers have used RFID readers, load cells, gas sensors,
etc., to implement garbage classification [4]. Ranjana et al. [5] designed a dry and wet
garbage sorting bin based on RFID readers with an Android application, where the public
needs to display RFID tags to throw the garbage into the bin. However, this approach is
not applicable to the sweeper scenario. Nowadays, with the rapid development of deep
learning techniques, increasing amounts of researchers are trying to accomplish image
processing problems using CNN, VGG, ResNet, UNet++, etc. Bansal et al. [6] proposed a
robotic system using CNN for detecting garbage on the ground. After detecting the garbage,
the location of the garbage is calculated and communication sharing is completed with
the microcontroller controlling the robot arm. MA et al. [7] proposed a lightweight feature
fusion single short multi-box detector (L-SSD) algorithm to achieve intelligent garbage
classification and recognition, which solves the problem of the small size of garbage and
low image resolution of garbage in garbage classification. ResNet-101 is used instead of
VGG16 to achieve more accurate detection in the training set. Liao et al. [8] proposed
deep supervision UNet++ to solve the problem of road garbage classification and semantic
segmentation; this method can directly identify the type of garbage and occupied ground
area with an MIoU (mean intersection over union) of 76.73 ± 0.11, which greatly improves
the accuracy of garbage segmentation compared with advanced methods.

In addition, the YOLO family of algorithms is gradually becoming the leading computer-
vision-based target detection and classification method [9]. Deep learning methods such as
R-CNN (region-based CNN) typically use a two-stage target detection model that generates
and selects regions of interest in the first and second stages, sends region suggestions
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down and uses convolutional neural networks for target classification and bounding box
regression. Such models have high accuracy but are less real-time and less efficient [10].
The YOLO family of algorithms treats target recognition as a simple regression problem by
creating a feature map of the input image and learning the category probabilities and the
bounding box coordinates of the entire image, allowing the algorithm to run only once. Such
a model is much faster than a two-stage target detector, although with reduced accuracy,
and is commonly used for real-time target detection tasks [11]. A number of scholars
have applied the improved YOLO algorithm to garbage detection and classification. Kong
et al. [12] trained the YOLOv3 network widely used in the field of high-speed accurate object
detection on a floating garbage dataset to achieve accurate real-time garbage detection. To
improve the anti-interference capability, a visual steering control method based on a sliding
mode controller was proposed. Zhu et al. [13] proposed a YOLOX for detecting seventeen
types of garbage, and after the camera detects the garbage, it automatically identifies and
analyzes the type and specific location of the garbage and is automatically picked up by a
mechanical jaw; the test results show that the mAP0.5:0.95 can exceed 97%.

2.2. Research on Path Planning of Unmanned Sweepers

Path planning technology is one of the core elements of the research on sweeping
robots, and the so-called robot path planning technology works by the robot planning
a safe route by itself based on its own sensors’ perception of the environment, while
efficiently completing the operational tasks [14]. The path planning of mobile robots can
be divided into two types according to their purpose—one is full-coverage path planning
(CPP) and the other is traditional point-to-point path planning. Full-coverage path planning
has been extensively studied by several authors. Galceran et al. [15] considered that full-
coverage path planning is related to the covering salesman problem and studied in detail the
advantages and disadvantages of several CPP algorithms. Tan [16] reviews the principles
of CPP, creatively discusses the use of deep reinforcement learning methods to solve the
CPP problem and discusses its development trends, and the authors argue that coverage
algorithms can be divided into classical and heuristic-based algorithms, depending on the
a priori knowledge of the environment surrounding the on-board sensors. Point-to-point
path planning is more like the well-known traveling salesman problem (TSP), SOUISSI
et al. [17] detailed the state-of-the-art path planning in automation, robotics and video
games, respectively, A star and its variants [18], RRT algorithm [19], artificial potential field
method [20], etc.

The traditional sweeping robot’s operation task is to clean the room, so its path
planning belongs to fully traversing path planning, and it needs to satisfy the traversability
and non-repetitiveness. Zhang et al. [21] designed an inward spiral traversal method and
proposed a shortest path out of a dead zone scheme based on the A star algorithm to avoid
the problem of inward spiral traversal of the sweeping robot into the dead zone. Luo
et al. [22] considered the global planning of cell paths for inter-cell transfer by exhaustive
search and the ant colony algorithm, so that the sweeping robot can work better in complex
environments. As for what needs to be accomplished in this task, the path planning in
which the unmanned sweeper will pass all the garbage from the starting point to the end
point belongs to the traditional point-to-point path planning. Path optimality is related to
the shortest cover path or TSP, which is usually the planning of a path with minimum travel
cost to visit all points that pass through multiple images containing garbage. The new
path planning problem explored here can be called the TSP-CPP problem, considered as an
integration of the TSP and CPP problems [23]. The multiple-TSP problem was explored by
Khamis et al. [24], and Xie et al. [25] provided a mixed-integer planning formulation for
this new problem, and then developed a dynamic-based approach based on a CPP method
covering a single convex polygon region planning exact method that finds the optimal
path, in addition to proposing a heuristic method that can generate high-quality plans very
efficiently.
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3. Proposed Methodology

In this section, we will give the detailed design process of the proposed sweeping
method based on target distribution posture analysis. In the sweeping area, we categorize
the sensed objects into obstacles that affect the passage of the unmanned sweeper and the
targets or areas that the sweeper needs to sweep, and both obstacles and sweeping targets
are mapped to the area distribution on the 2D plane after sensing. For single targets, we
first use IPM to map the initial image to a bird’s-eye view, then use YOLOv5 for target
extraction, together with LIDAR to detect the height in order to remove targets that cannot
be swept, and then use GMM to further reduce redundant targets. For complex garbage
areas, we designed a garbage area discrimination based on PE value analysis. The above
two kinds of garbage targets are integrated to form the region to be swept. Finally, this
paper designs a sweeping path planning method based on BF (back-and-forth)-CPP and
SA. The planning method aims to improve the efficiency of unmanned sweeper vehicles
when they sweep roadway garbage. The mind map of the unmanned sweeper vehicle’s
sweeping method designed in this paper is shown in Figure 3.

Figure 3. The mind map of the designed unmanned sweeper vehicle sweeping method in this paper.

3.1. Garbage Distribution Sensing
3.1.1. Discrete Object Recognition

The YOLO family can extract category information. Among them, YOLOv5 has a
good performance in traffic target detection, and the algorithm only needs GPU training to
generate a low-cost, robust, real-time, high-quality, and convincing target detection model.
YOLOv5 consists of 4 parts: input, backbone, neck, and head. In this paper, we use YOLOv5
to recognize the type and exact location of specific obstacles and individual garbage.

Many objects in the roadway, such as leaves or bottles, tend to be distributed within
close proximity, thus forming a group or cluster. Treating them as discrete objects would
only increase the number of nodes to be passed in the TSP, leading to a steep increase in
computation cost. Therefore, as shown in Figure 3, we introduce the group in which neigh-
boring targets of the same type are treated as a cluster so as to lower computational cost.

Further, in practical scenarios, the irregular distribution of complex garbage piles often
causes stacking of garbage, which leads to garbage higher than the brush height of the
sweeper, making it impossible for the sweeper to complete the sweeping work. For this
kind of situation, we will process the LIDAR point cloud information. LIDAR can emit
laser beams to detect the position, velocity and other characteristic quantities of a target.
As shown in Figure 4, which shows the process of converting our radar point cloud into a
local elevation map, the gray rectangle is the vehicle model of this vehicle, and the orange
cube is the recognized elevation terrain. Once the height of the garbage pile is detected to
be higher than the threshold value, this pile of garbage is determined as an obstacle and
the avoidance strategy is executed.



Appl. Sci. 2023, 13, 12544 6 of 22

Figure 4. Mapping local terrain to elevation terrain, where gray rectangle is the vehicle model of this
vehicle, and the orange cube is the recognized elevation terrain.

The inverse perspective transformation is the inverse process of perspective imaging,
which acquires a bird’s eye view of the road plane by back-projecting the image coordinates
to the spatial coordinates. Ref. [26] proposed the inverse perspective transformation based
on the pitch angle and yaw angle of the vanishing point, which finally realizes the solution
of the position of the image plane corresponding to the road plane captured during the
working process of the sweeper.

In this paper, the inverse perspective transformation is used to eliminate the perspec-
tive effect and obtain the top view of the real road surface, and the YOLOv5 algorithm
completes the recognition of single garbage and obstacles. As shown in Figure 5, it is the
result of recognizing obstacles and single items of garbage with the YOLOv5 algorithm
after inverse perspective transformation of multiple initial images.

Figure 5. Detecting results of objects on the road based on (Inverse Perspective Transformation) IPM
and YOLOv5. (The number represents the angle of rotation of the recognized object in the image).

YOLOv5 is used to recognize a single garbage target. In order to make the recognition
information more qualitatively dense and reduce the planning redundant points, we further
fused the feature points for recognition by a GMM-based skeleton feature downscaling
method, which maps the skeleton features of the garbage into a two-dimensional plane and
makes the feature points more characteristic. GMM is a K-means-like model that quantizes
things precisely with Gaussian probability density function [27].

Firstly, we discretize the recognized sweeping targets, i.e., we sparsify the features of
a single target by selecting some random points in the target box. The random points in
the perceptual domain form a set, and the region formed by similar targets can often be
characterized by independent normal distributions, so we adopt the GMM model to char-
acterize each discrete region. As shown in Figure 6, the initial image is a Gaussian mixed
distribution, and the accurate detection and target localization of garbage is accomplished.
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Figure 6. Gaussian Mixture Model (GMM)-based garbage clustering.

3.1.2. Continuous Sensing of Complex Garbage Area Based on PE Analysis

Through the fusion of object detection and GMM, we can obtain the distribution of
discrete targets; however, in real environments, there also exist some garbage regions with
sparser features. As shown in Figure 7a, the road garbage is continuously distributed on the
road and is not composed of significant independent targets, while the pixel characteristic
of the garbage area is not regular. At this point, the methods relying simply on deep
features struggle to accomplish the area judgment task.

In order to form a qualitatively dense identification for road garbage regions, inspired
by [28,29], we design a road image information entropy identification method to predict
the distribution of garbage regions by recognizing the heterogeneity of garbage regions.
As shown in Figure 7b, we first perform gradient histogram detection on the camera front
view image and select the centroid of the anomalous partition, then gradually expand and
calculate the complexity of each partition. We will use the PE-a method of approximating
the entropy by ordinal analysis to evaluate the complexity of the given partition, and
ultimately determine whether it belongs to the complex garbage heap.

Figure 7. The (a) is an image of a road containing a complex garbage pile. (b) is the solution to the
road complex garbage pile. The circle is the process of iterative computation of PE, and the red dot is
the complexity threshold, above which the complexity pavement is indicated.

The specific calculation steps are as follows: We first perform gradient histogram
detection on the camera’s front view image to extract possible garbage distribution areas
and select the center of the garbage area. The lower half part of the front view image
with a size of 256 × 128 is transformed into a BEV image and then the whole image is
divided into 32 regions with a size of 32 × 32. The histogram information is extracted from
each region, and the potential garbage distribution is obtained based on the feature of the
histogram information. The histogram of each 32 × 32 image block is calculated to predict
the potential garbage distribution region. As shown in Figure 8, the road area tends to
have a very narrow histogram for the pixel feature, which is relatively pure. In contrast,
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the histogram of the potential garbage area tends to have a very wide distribution. Based
on this histogram, the potential garbage area could be selected preliminarily.

Figure 8. Selection process for a 4 × 4 circle (12 pixels).

Since each image block is not necessarily fully covered by garbage, we need to further
determine the specific intra-block garbage regions by fine scanning. Thus, we proposed
an inference method based on the region PE evaluation [28]. For each potential garbage
distribution region, as shown in Figure 7b, we encode the area image into sequence xi
by outwardly expanded encoding from the center of the garbage area. Then, encoding
process scans the area from the inside out in an expanding search, and the image features
are encoded as a sequence set xi. Each scanned sequence is stacked to calculate the PE
value, which could describe the changing of the image feature [29].

The original sequence xi is a set of RGB points, and RGB only represents the details
of the color composition with very weak order features. Therefore, before we input to the
PE calculation, we convert the pixel features of the image to HSV format and retain only
the H that characterizes the color interval, while S and V characterize the saturation and
luminance of the color, for which the two values are homogenized as the average of all
pixel points within the color block. By converting the image feature format, we preserve the
image features and give them sequential attributes with H values as the ordering criterion.

By converting the image feature format, we preserve the image features and assign
them sequence properties using the H-value as the sorting criterion. For each 32 × 32 × 1
pixel block, the PE calculation process starts from the internal 4 × 4 circle (12 pixels) and
ends with the external 32 × 32 circle (124 pixels). The specific calculation method is shown
in Figure 8. The HSV-based sequence is considered as a time series with a time delay of 1.
Assuming that a one-dimensional time sequence xi = x1, x2, x3, . . . , xN represents the HSV
features of a circle of images, the elements within it are sorted in ascending order according
to the reconstructed sequence xi, and the computational steps are shown in Algorithm 1.

It is worth noting that after calculating one region of 32 × 32 according to the steps
of the algorithm, we still further decompose the potential region into four regions of the
same size, i.e., 8 × 8 regions, for which further PE entropy calculations are carried out to
determine a more detailed region of garbage distribution.
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Algorithm 1: PE (xi, m, T).
Input: One-dimensional time sequence xi = (x1, x2, . . . , xn);
Dimension m, Time-delay T.
Output: H(m, T).

1 m← 3, T ← 1, the elements in xi are reconstructed:
xt+(j1−1)T ≤ xt+(j2−1)T ≤ . . . ≤ xt+(jm−1)T ;

2 The probability of each symbol appearing is P1, P2, . . . , Pk;
3 H(m, T) = −∑k

j=1 PjlnPj;
4 for Minimum pixel block not reached do
5 if H(m, T) < PE threshold then
6 The area is clear;
7 else
8 further decompose the potential regions into 4 regions of 8 × 8;
9 recalculate H(m, T) = −∑k

j=1 PjlnPj;
10 end
11 if H(m, T) > PE threshold then
12 The area is a complex garbage pile;
13 Origin image← PE;
14 else
15 The area is clear;
16 end
17 end
18 Return H(m, T).

As shown in Figure 7b, the substitution entropy detection box on the right does not
detect pixel anomalies, so it will not continue to expand the detection outward. After the
detection box on the left detects the pixel abnormality, it will continue to select the center
point in the direction of the maximum replacement entropy and continue to expand the
detection in all directions until there is no pixel abnormality. Further, this method can
also be used to circumvent anomalous regions caused by continuous waterlogging and
road reflections.

As shown in Figure 9, taking three 32 × 32 pixel regions as an example, Figure 9a is
the junction of garbage and road, Figure 9b is the part of the clean road, and Figure 9c is the
complex garbage pile. Then, for each region, the histogram information is extracted based
on the histogram information to obtain the potential garbage distribution region. Then, PE
entropy calculation is performed for the collection of sequences to obtain the complexity
of the sequences. As shown in the line graph of Figure 9, the PE value of the sequence of
Figure 9c is growing, which indicates that the pixels of the current loop are more complex
and have not been iterated to the background region with a more uniform color. The
PE value of the sequence of Figure 9a decreases to a certain extent, which indicates that
the current expansion circle has been located in the solid color background region on the
periphery of the garbage region.
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Figure 9. Calculated process of road image complexity. Where (a) is the junction of garbage and road,
(b) is the part of the clean road, (c) is the complex garbage pile.

3.2. Optimal Sweeping Path Planning Based on Simulated Annealing Algorithm

Different from the traditional robot path planning algorithm to obtain the shortest
obstacle avoidance path as the optimization goal, the unmanned sweeper not only needs to
avoid obstacles but also needs to obtain the optimal sweeping path. In order to obtain the
optimal sweeping path, inspired by [25], in this paper, we propose a fusion path planning
algorithm based on BF-CPP + SA, which firstly takes the discrete garbage distribution
region as the traversal target, considers the global scavenging path planning as TSP-CPP
(traveling salesman problem–coverage path planning), and solves the optimal traversal
strategy by simulated annealing algorithm. On the basis of global planning, we cover the
independent discrete regions for traversal by BF-CPP method.

3.2.1. Generation of Convex Hull in the Region to Be Cleaned

Convex Hull refers to the convex polygonal region where all the garbage exists in the
two-dimensional plane space, forming the Convex Hull set for the garbage region. In this
paper, we will use the Graham scanning method; the idea is to find a point on the Convex
Hull first, and then start from that point to look for the points on the Convex Hull one by
one in a counter-clockwise direction. The main steps are as follows:

(1) Put all the points in a two-dimensional coordinate system as shown in Figure 10; then,
the point with the smallest vertical coordinate must be the point on the Convex Hull
with S0 as the starting point.

(2) Calculate the magnitude angle α of each point with respect to S0 and sort each point
in order from smallest to largest. When α is the same, the point closer to S0 is ranked
first. For example, the following figure shows that the results are S1, S2, S3, S4, S5,
and S6.

(3) Put S0, and S1 into the stack, and then repeat step 2 above with S1 as the current point
to obtain the stack that characterizes the vertex of the convex packet.

(4) Sequentially connect the neighboring points in the stack, and finally connect S0 and the
point S6 at the top of the stack, as in Figure 10, to map the final convex envelope region.



Appl. Sci. 2023, 13, 12544 11 of 22

Figure 10. Transformation of garbage regions into Convex Hull sets. Where (a) represents the set of
points to be included. (b) represents the Convex Hull by using the Graham scanning method.

Specifically, first, we randomly take some farther points inside the GMM distribution
and then form a Convex Hull set, as shown in Figure 9 for the set of Convex Hulls formed
using the above Graham scanning method.

3.2.2. Path Planning for a Single Convex Hull Set

Then, full-coverage path planning for a single Convex Hull set of garbage regions is
performed. Depending on the size of the convex Hull, there will be different sweeping
strategies as shown in Figure 11. For long striped areas, the paths are straight lines. For
oval areas, the paths are zigzags, and for large polygonal areas, the paths are bow ties.

The sweeping task can be described in two dimensions, and the size of the camera
footprint, i.e., the area of the ground captured in one frame, is L×W, as shown in Figure 11,
where l and w are the length and width of the sweeper. Assuming that there is no forbidden
area to visit in the target area, we assume that the unmanned sweeper will travel to the
location p0 or p1 after completing the sweeping work in this camera frame. Therefore, the
goal of the TSP-CPP problem considered here is to find the best path that traverses all
garbage points so that the unmanned sweeper will sweep the garbage along the path and
minimize the total travel cost.

The back-and-forth pattern can generate a back-and-forth pattern path (BFPs) for
covering a single convex polygon region. Back-and-forth-CPP (BF-CPP) greatly simplifies
path design and is easy to implement, so it is adopted by many CPP methods. As shown
in Figure 11a, the BFP of a convex polygonal region can be found by a set of parallel lines
of support (LOS). The distance between the two lines of support becomes the span of the
convex polygon region. The direction of path generation, i.e., the direction of the sweep
line, is the forward direction of the sweeper.

As shown in Figure 11d, a rectangular area to be swept has been identified according
to the previous steps, and given the direction of sweeping, where W is the width of the
area to be swept and w is the width of the sweeper, the minimum number of flight lines
to completely cover the area is W

w . Then, cell decomposition is executed to decompose the
region into a set of sub-regions along the flight line. Then, rectangular cells that only cover
the sub-regions are constructed. To ensure full coverage, we set the width of the first and
last cell to w and the width of the middle cell to (w+d)

2 , with d being the distance between
the two flight lines, where

d =
W − w
[ W

w−1 ]
(1)

Since the frequent acceleration and deceleration of the sweeper tend to increase the
travel time and travel cost, the algorithm of this module needs to reduce the number of
turns of the BFPs as much as possible. As shown in Figure 11a, the width of the convex
polygon is smaller than the width w of the sweeper when the minimum number of turns is
1. As shown in Figure 11b–d, the number of turns of the BFP is 2(W

w − 1) when the width
of the garbage area W > w. The exact computation progress is described in Algorithm 2.
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Figure 11. Left: Two-dimensional spatial description of the cleaning task. Right: Coverage path
planning schematic for a single garbage area. Where (a) is straight lines. (b) is zigzag, (c,d) are bow
ties. And the arrows show the direction of the sweeper’s progress, the dots show the start and end
points.

Algorithm 2: BF-CPP (V, l, w).
Input: Vertices of a region V = (v1, v2, . . . , vm),
Size of unmanned sweeper (l × w).
Output: BFPs B.

1 for i← 1 to m− 1 do
2 if there exists an edge vjvj+1, j ∈ [i− 2], parallel to edge vjvj+1 then
3 Continue;
4 else
5 Find the span of edge vjvj+1, by W = max

j∈[m]
uj;

6 where uj is the distance between edge vjvj+1;
7 and vertex vj;
8 end
9 if [W

w − 1] then
10 d← 0;
11 else
12 d← W−w

[W
w −1]

;

13 S← Findwaypoints(W, d, vjvj+1, w);
14 Link points in S to generate all possible BFPs;
15 end
16 end
17 Return B← {B, BFPs}.

The optimal travel path is constrained by the order of visiting individual garbage
areas as well as the entry and exit locations, and although a BFP can be found within a
single area with a minimum number of turns, its combination with other areas may not
lead to the optimal travel path. Therefore, we tend to pre-select 2–4 feasible BFPs with
lower travel costs when CPP is performed for a single area. q0, q1, q2, q3 are all possible
starting points for travel paths as shown in Figure 11d, and the exact choice of which one
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to use as the starting point is derived by the exact method of the TSP-CPP clearance paths
based on simulated annealing in the next section.

3.2.3. Solutions for Multiple Convex Hull Set

Finally, a simulated annealing-based TSP-CPP scavenging path accuracy method
is executed.

The TSP problem is an NP-hard problem in combinatorial optimization, where the
difficulty lies in the fact that as the number of objectives increases, so does the amount of
data to be processed. For this task, the problem consists of solving the shortest path to visit
each area to be cleaned once, given a series of areas to be cleaned and the distance between
the areas. Specifically, this problem is a symmetric TSP problem, i.e., the distances between
two regions to be cleaned are equal. We propose to use the simulated annealing algorithm
to solve the TSP-CPP problem.

SA is a stochastic optimization algorithm based on the Monte-Carlo iterative solution
strategy. The algorithmic optimization is carried out by continuously rearranging the
current solution internally and gradually arranging it into the solution that achieves the
minimum value of the objective function. The process of continuously optimizing the
solution needs to remove the limitations of the greedy algorithm and can have a certain
probability of jumping out of the local optimum to reach the global optimum. The exact
computation progress is described in Algorithm 3.

Algorithm 3: SA (Y, i, q, c, T0, Tmin).

Input: City location Y = (y1, y2, . . . , ym);
Current path i;
Next path i + 1;
Cooling rate q;
iteration c;
Initial temperature of the system T0;
Lower limit of temperature Tmin;
Output: output P, L

1 P(i) = randperm(m);
2 L(p(i)) = pathlength(P(i));
3 while (T0 > Tmind)
4 Generate a new path i = i + 1 do
5 if L(p(i + 1)) < L(p(i + 1)) then
6 Accept P(i + 1) as optimal route;
7 Accept L(p(i + 1)) as minimum distance;
8 else
9 T0 = q× T0

10 end
11 end
12 Return P, L

Therefore, attention should be paid to the connection of local and global coverage paths
to address the integrated TSP-CPP, including the full coverage paths in each ROI (region of
interest), the access order within the area to be cleaned, and the entrance/exit locations.

The city location data are the entrance and exit locations in the area to be cleaned, and
for the large area to be cleaned as described in the previous section, the entrance and exit
locations are at most 4 groups. The algorithm will calculate the travel cost for each of these
4 city distributions.

Set the initial temperature T0 and randomly select a traversal path P(i) as the initial
path and calculate its length L(P(i)); then, randomly generate a new traversal path P(i + 1)
and calculate its length L(P(i + 1)). If L(P(i + 1)) < L(P(i)), then receive P(i + 1) as the
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new path; otherwise, receive P(i) with the probability of simulated annealing, and then
cool down the temperature. The above steps are repeated until the temperature reaches the
minimum value Tmin.

There are 3 main methods for generating new traversal paths:

(1) Randomly select 2 nodes and swap the order of these 2 nodes in the path.
(2) Randomly select 2 nodes and reverse the order of the nodes between these 2 nodes in

the path.
(3) Randomly select 3 nodes m, n, k, and then shift the nodes between nodes m and n to

behind node k.

The higher the number of iterations, the more accurate the result will be; however, too
many iterations will require too long a calculation time, so the number of iterations needs
to be chosen appropriately.

In path planning, the algorithm will compute the coverage of the Convex Hull set in
real time and enter the next region when the target sweep is detected without turning back,
avoiding the problem of the SA having to go back to the starting point.

3.2.4. Static and Dynamic Obstacle Avoidance Strategies

Static and dynamic obstacles will affect the unmanned sweeper to perform the task,
the function of detecting obstacles and predicting their future trends through sensors, and
performing path planning according to certain algorithms so as to avoid obstacles is essen-
tial. The unmanned sweeper can obtain the point cloud information in the environment
by LiDAR and match and analyze the obstacles in the environment in real time, and the
objects that do not exist in the high-precision map will be judged as obstacles. Obstacles
without positional changes are static obstacles, while the positional changes in obstacles in
different frames of data characterize the historical motion trajectories of dynamic obstacles.
In order to make the robot safer during obstacle avoidance, we will make a reasonable
expansion of obstacles.

For static obstacles, if the expanded static obstacles appear on the paths of the two
cities planned by SA, we will replan the paths of this section of the road based on the A
star algorithm [18].

For dynamic obstacles, we use particle filters to make trajectory predictions for them.
The historical trajectories of dynamic obstacles are pre-stored into a passive mode be-
havioral planner, then all feasible trajectories are extracted from the map based on the
embedded traffic rules, then the particles are sampled from the behavioral model, the
weights are computed for each sampled particle, and finally the weights are normalized
and the likelihood of each predicted trajectory is computed. The trajectory with the highest
likelihood is passed into the local planning and used for path replanning.

4. Experimental Results
4.1. Experiment Platform

In this section, we perform a simulation study to evaluate the performance of the
proposed methods, including YOLOv5, IPM, GMM, BF-CPP and SA-based cleared path
accurate methods. Among them, YOLOv5 is carried out on Pytorch (version: 1.7) and the
rest of the methods are implemented using MATLAB (version: 2021b). The experiments
are performed on a PC with Intel Core i5, RTX 3060ti, 16 GB RAM and 1 TB storage.

Among the garbage detection part, we use the actual scene to complete, as shown
in Figure 12, where the left is the unmanned sweeper used for this experiment, the car is
1.2 m long, 0.8 m wide and 1.4 m high, and the camera is installed at 1 m from the ground.
We think the car can be swept clean after being on the road. Figure 12 (right) is the scene
oriented for this experiment, which is a 50 m long and 4.5 m wide sidewalk in the park.
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Figure 12. Experimental sweeping vehicle platform and actual scene.

4.2. Garbage Detection Experiments Based on YOLOv5 and PE

This experiment uses the common garbage detection and obstacle dataset on the
roadway. This dataset contains 14,964 pictures, of which there are 20 categories of GT frame
labels, which are as follows: bag, book paper, can, paper box, traffic sign, roadblock, stone
pier, etc. Since the experiment mainly detects the common garbage targets on the sidewalks
of enclosed parks, only six of these categories are detected for garbage: leaf, tissue, paper,
can, carton, and bottle. Only three of these categories are detected for obstacles: roadblocks,
stone piers, and bicycles. Some of the images in the dataset are shown in Figure 13. After
filtering the dataset and removing the images that do not contain the above objectives,
10,000 images are retained, of which 9000 and 1000 are in the training and validation
sets, respectively.

Figure 13. Selected images from the Obstacles and Spam dataset.

For comparison, we choose Faster RCNN [30], YOLOv3 [31], YOLOv4 [32] and our
algorithm. We use time, precision, recall, and mAP (mean average precision) as the
evaluation metrics of the model to measure the performance of the model. Time represents
the time spent for testing 100 validation sets. Precision is the rate of correct predictions
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among all results where the prediction is a positive sample, and here we focus on checking
the accuracy of the most common garbage on the road, i.e., bottles. Recall is the rate of
correct predictions among all positive samples. mAP is the mean pixel accuracy of the total
category N, which measures how good the model is over all the categories. The comparison
results of different network models are shown in Table 1.

Table 1. Performance comparison of YOLOv5 with different network models.

Algorithm Time/s Precision/% Recall/% Coverage/%

Faster RCNN 5.1 65.8 47.7 49.2
YOLOv3 6.7 69.4 46.4 53.2
YOLOv4 7.2 72.7 50.8 55.9
YOLOv5 6.5 80.8 57 64.7

For the complex garbage pile, this experiment additionally uses a dataset open-sourced
by G Mittal [33], which contains 2561 images and 956 images containing garbage; the rest
are non-trash images that are very similar to the trash in terms of various visual attributes.
Therefore, this dataset cannot fully meet the needs of the road garbage scenario and needs
to be collected by ourselves. As shown in Figure 13, for the various types of garbage images
used in this experiment, the first row is the image of a single garbage, the second row is
part of the images in the SpotGarbage dataset, and the third row is the self-acquired images
of road garbage.

For comparison, we choose UNet++ [34], DUNet++ [8], YOLOv3+Self-Cluster and
our algorithm YOLOv5+PE. We still use time, AP (average precision), and MIoU (mean
intersection over union) as model evaluation metrics to measure the performance of the
model. Time represents the time spent for testing 100 validation sets. AP is the pixel accu-
racy, where the ratio of correct pixels is calculated on a per-category basis. MIoU is the ratio
between the intersection and the union of the ground truth and algorithm-predicted seg-
mentation of the garbage region. Performance comparisons of the YOLOv5+PE algorithm
with different network models are shown in Table 2. It can be seen that the YOLOv5+PE
algorithm has a significant increase in detection accuracy, although the detection time
is longer.

Table 2. Performance comparison of YOLOv5+PE algorithm with different network models.

Algorithm Time/s AP/% mAP/% MIoU/%

UNet++ 7.4 87.5 47.6 39.5
DUNet++ 6.8 92.1 69.3 51.8

YOLOv5+self-cluster 8.1 90.3 74.1 55.2
YOLOv5+PE 15.3 98.6 80.1 75.7

4.3. A Sweeping Path Accuracy Method Based on Situation Analysis and BF-CPP + SA
4.3.1. Multi-Region Situational Analysis and Route Planning

We set up three sets of experimental scenes. For Scene 1, we designed multiple small
garbage to verify the effectiveness of the SA algorithm. For Scene 2, we set up a non-
rectangular unit to verify the effectiveness of the BF-CPP algorithm. For Scene 3, we set up
small garbage with multiple non-rectangular units to verify the synergistic effect of BF-CPP
and SA. Finally, we combine the three experimental scenarios together to test the coherence
and smoothness of the algorithm between different camera frames.

As shown in Figure 14, the first line is the initial camera image, the second line is the
effect image after IPM, the third line is the effect image after YOLOv5+GMM, the fourth
line is the path calculated under the three scenarios, respectively, and the last one is the
resulting image after the three experimental scenarios are combined. From the figure, it can
be seen that both IPM and GMM can complete the analysis of the distribution situation
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of the garbage target better, and the final planned path can also complete the cleaning
task better.

Figure 14. Accurate method of sweeping path based on BF-CPP + SA. Where the red line is the
planned path and the arrow is the direction of travel.

4.3.2. Path Planning in Static and Dynamic Obstacle Scenarios

Considering the presence of complex garbage piles and static and dynamic obstacles
in real scenarios, we set up a set of experiments to verify the performance of the BF-CPP
and SA algorithms. Among them:

(1) Discrete waste and complex waste piles with lower heights.
(2) Discrete waste and complex piles with higher heights.
(3) Discrete waste and complex piles with static obstacles.
(4) Discrete waste and complex piles with dynamic obstacles.
(5) Discrete garbage, complex piles of garbage with low height and static obstacles.
(6) Discrete garbage, complex piles of garbage with low height and dynamic obstacles.

The experimental results are shown in Figure 15, where the white irregular box
indicates the area to be cleared, the yellow irregular box indicates the complex garbage
pile conforming to the clearing rules, the blue irregular box indicates the complex garbage
pile whose height exceeds the threshold, the black rectangular box indicates the static
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obstacles, and the gray rectangular box indicates the prediction of the motion trend of the
dynamic obstacles.

Figure 15. Performance of BF-CPP and SA algorithms combined with obstacle avoidance algorithms.
where the white irregular box indicates the area to be cleared, the yellow irregular box indicates
the complex garbage pile conforming to the clearing rules, the blue irregular box indicates the
complex garbage pile whose height exceeds the threshold, the black rectangular box indicates the
static obstacles, and the gray rectangular box indicates the prediction of the motion trend of the
dynamic obstacles.

As can be seen from Scenes 1 and 2, according to the local elevation map, complex
dumps below the height threshold will be considered areas to be cleared, while complex
dumps above the threshold will be considered obstacles. As can be seen from Scene 3, for
the case of obstacles between two sites (areas to be cleared), this algorithm will replan this
journey with the A star algorithm and then replace the original path. As can be seen from
Scene 4, the particle filter can reasonably predict the motion trend of dynamic obstacles,
making the path planned by the A star algorithm more robust. Scenes 5 and 6 are a
collection of the above scenarios, and it can be seen that the BF-CPP and SA algorithms can
also accomplish the task of path planning very efficiently in relatively complex situations.

4.3.3. A Comparative Study of Scenarios with Different Sparsities

Considering the existence of real scenarios with different garbage heap sparsity, we
set up a set of experiments to verify the performance of the BF-CPP and SA algorithms.
Among them:

(1) Ten situations where pavement garbage is clustered but overall sparse.
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(2) Ten scenarios with a balanced distribution of pavement garbage.

The scene schematic is shown in Figure 16, where the mean s and variance σ of the
distance between obstacles are used to denote the scene sparsity. We set up simulation
experiments to verify the performance of the A star algorithm, CPP algorithm and BF-
CPP + SA algorithm under two scenarios, respectively. The experimental results are shown
in Tables 3 and 4. According to the experimental results, we found that the A star algorithm
can also work well in the case of roadway trash aggregation but overall sparseness, but it is
not satisfactory in the case of balanced distribution of roadway trash. The CPP algorithm
has better coverage, but the energy loss is serious. After a comprehensive analysis, BF-
CPP + SA is found to be more suitable for all kinds of complex situations.

Figure 16. Scenarios with varying sparsity. Where blue triangles are obstacles.

Table 3. Comparison of algorithms’ performance in scenarios with aggregated but overall sparse
road debris.

Algorithm Time/s Length/m Coverage/%

A star 6.4 15.4 70.9
CPP 10.3 30.3 97.3

BF-CPP + SA 16.7 20.4 95.4

Table 4. Comparison of the performance of algorithms under the scenario of equalization of road
garbage distribution.

Algorithm Time/s Length/m Coverage/%

A star 6.1 16.9 50.8
CPP 10.8 31.1 97.0

BF-CPP + SA 20.5 22.7 96.3

4.4. Discussion

We also use the simulation environment to implement three path-planning algorithms
to compare with the algorithms proposed in this paper:

(1) A star: Using the intelligent backtracking mechanism of greedy A star (GA) search to
pass through a given garbage area.

(2) CPP: Use precise cell decomposition methods to decompose free space into simple, non-
overlapping regions. Enable robots to easily sweep through these unobstructed areas.

(3) KNN: Path planning is accomplished using the locally optimal KNN algorithm.

As shown in Table 5, the A star algorithm does not have the ability to recognize
the target region; we turn the garbage region into the corresponding path point, and the
result is that the performance of the A star algorithm is still unsatisfactory. In the CPP
algorithm, due to its mechanical nature and blind obedience rows, the planning path is too
long although the planning time and coverage are very excellent. In contrast to the KNN
algorithm, the BF-CPP + SA-based sweeping path accuracy method performs well in terms
of path length and garbage area coverage, although the planning time is slightly inferior.
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The specific performance of each algorithm is shown in Figure 17. The line graph
reflects the cleaning efficiency of each algorithm, and the two subplots are the planning
time and the path length obtained from the planning, respectively. The floating points on
the subplots indicate the average value taken after multiple experiments.

In summary, the exact cleaning path method based on BF-CPP + SA proposed in this
article can comprehensively solve the mechanical and aimless nature of CPP while main-
taining the completion of cleaning. Compared with traditional path planning algorithms, it
can also better solve the problem of traditional algorithms being unable to correctly identify
garbage and obstacles. Compared to the A star algorithm and the CPP algorithm, there is
also a significant performance improvement.

Table 5. Performance of BF-CPP + SA algorithm compared with traditional path planning.

Algorithm Time/s Length/m Coverage/%

A star 4.9 51.1 48.3
CPP 4.7 92.4 98.1
KNN 5.1 62.6 65.6

BF-CPP + SA 7.6 60.5 96.6

Figure 17. Performance of BF-CPP + SA algorithm compared with traditional path planning.

Through theoretical analysis and experimental study, we demonstrate the perfor-
mance and capability of the proposed BF-CPP + SA method from various aspects. In the
experiments, traditional algorithms such as the A star algorithm and KNN algorithm have
less than optimal sweeping efficiency because they do not have the ability to identify the
target area. The CPP algorithm is able to traverse the garbage area, but its path length
and inefficiency are discouraging. In particular, the exact method based on BF-CPP + SA
can guarantee an optimal solution for TSP-CPP, but due to the more complex processing
flow, it is able to produce high-quality tours but still needs to be optimized in terms of
planning speed.
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5. Conclusions

In this paper, we introduce a novel unmanned sweeper vehicle sweeping method
based on target distribution posture analysis. Firstly, we use IPM and YOLOv5 to identify
the classes of obstacles and garbage present on the road surface, and then we tolerate
similar obstacles as well as garbage targets by GMM, and for complex garbage piles, we use
PE to differentiate the regional complexity. The target-based distribution posture analysis
is completed by combining the single target with the complex garbage pile. After the above
operations, we convert the trash sweeping task into a TSP-CPP problem, and finally, we
use the exact method of BF-CPP + SA for trash sweeping to find an efficient and robust
sweeping path with the lowest travel cost. This method enhances the target perception
ability within the currently visible sweeping, eliminates blindness, and improves the en-
vironmental adaptability of the unmanned sweepers. In order to ensure the efficiency of
sweeping, the shortest path is formed as far as possible so that the original path planning
based on heuristic search forms an efficient sweeping path. It improves the cleaning effi-
ciency and reduces energy consumption. After experimental validation, the path planning
method based on target distribution posture analysis performs beneficially in both planning
path length and coverage, but the planning time is unsatisfactory due to the complicated
computational process of identifying the area to be swept. In the future, we will simplify
the computational model of the area to be swept to reduce the planning time and try to
extend the proposed method to cope with various traffic situations.
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