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Abstract: Software-Defined Networking (SDN) enhances network control but faces Distributed Denial
of Service (DDoS) attacks due to centralized control and flow-table constraints in network devices. To
overcome this limitation, we introduce a multi-path routing algorithm for SDN called Trust-Based
Proximal Policy Optimization (TBPPO). TBPPO incorporates a Kullback–Leibler divergence (KL
divergence) trust value and a node diversity mechanism as the security assessment criterion, aiming
to mitigate issues such as network fluctuations, low robustness, and congestion, with a particular
emphasis on countering DDoS attacks. To avoid routing loops, differently from conventional ‘Next
Hop’ routing decision methodology, we implemented an enhanced Depth-First Search (DFS) approach
involving the pre-computation of path sets, from which we select the best path. To optimize the
routing efficiency, we introduced an improved Proximal Policy Optimization (PPO) algorithm based
on deep reinforcement learning. This enhanced PPO algorithm focuses on optimizing multi-path
routing, considering security, network delay, and variations in multi-path delays. The TBPPO
outperforms traditional methods in the Germany-50 evaluation, reducing average delay by 20%,
cutting delay variation by 50%, and leading in trust value by 0.5, improving security and routing
efficiency in SDN. TBPPO provides a practical and effective solution to enhance SDN security and
routing efficiency.

Keywords: software-defined network; deep reinforcement learning; multiple routing algorithm;
network security

1. Introduction

The advancement of communication networks has witnessed swift development in
mobile communication, the Industrial Internet of Things (IIoT), and emerging internet tech-
nologies. The result is the emergence of a varied spectrum of network types molding the
current communication panorama. The interplay and coexistence of these networks have
grown crucial due to their deployment in unattended or hostile settings and their inherent
openness, rendering them vulnerable to potential intrusions by malicious actors. More-
over, the proliferation of mobile devices connecting to networks has challenged traditional
network access methods and policies, necessitating the refinement of routing strategies to
meet dynamic information transmission needs. One promising solution to these evolving
challenges is Software-Defined Networking (SDN). SDN is a flexible and efficient net-
working approach that offers a global view of the network and enables the selection of
optimal paths based on real-time network conditions [1]. Its fundamental characteristic is
the separation of the control plane from the data plane, where a centralized control function
maintains the network’s state and issues instructions to data plane devices [2]. This archi-
tecture provides clear security advantages, allowing for real-time analysis and correlation
of network feedback. Also, due to the special programmability of SDN, programmable
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routing based on SDN has also become quite popular in recent years [3–6]. However, it also
presents concerns related to open programmability and trust between network elements,
particularly when using technologies like OpenFlow. OpenFlow, the most commonly used
SDN technology, is a focal point of security analysis. The STRIDE threat analysis method
applied to OpenFlow reveals vulnerabilities, including susceptibility to Denial of Service
(DoS) attacks [7]. DoS attacks on SDN can exhaust controller resources by flooding it with
fake flow table requests and disrupt communication by targeting the southbound interface
between the controller and network devices. To address these security threats, various
technologies like intrusion detection, authentication, and access control have been used [8].
However, these are typically passive measures against specific vulnerabilities. It is crucial
to include proactive security measures in network system design to enhance immunity
against threats.

Recently, a trust management-based security mechanism has been proposed [9–12].
Trust levels are assigned to network nodes based on direct and prior observations, guiding
decisions in future interactions [13]. This approach enhances network security by avoiding
nodes with security vulnerabilities during route discovery [14–17]. Despite trust-based
methods showing potential, their complexity, when coupled with deep learning, hinders
real-time applications. The traditional Dijkstra shortest path algorithm [17] faces issues like
slow convergence and responsiveness, causing network congestion, especially in dynamic
environments with increasing traffic [18].

Machine learning, particularly deep reinforcement learning, has gained prominence
due to its exceptional performance in data processing, classification, and intelligent decision
making. This has led to the development of several popular algorithms, including the
Deep Q Network (DQN) [19], Actor–Critic (AC) [20], Deep Deterministic Policy Gradient
(DDPG) [21], Trust Region Policy Optimization (TRPO) [22], etc. More recently, researchers
have explored integrating deep reinforcement learning into SDN routing specifications
to achieve intelligent routing and fine-grained management [23–26]. In their pioneering
work, Casas et al. [25] proposed a DQN-based deep reinforcement learning (DRL) scheme
to generate dynamic traffic changes for SDN network routing. Likewise, Alkhalaf et al. [26]
introduced a Proximal Policy Optimization (PPO)based deep reinforcement learning tech-
nique to improve SDN network routing, allowing for real-time intelligent control and
administration. However, these efforts often neglect security considerations in real-time
communication. Therefore, there is a pressing need for an efficient deep learning algo-
rithm that offers strong privacy protection, real-time communication capabilities, and
high efficiency.

In this study, a novel multi-path routing approach called Trust-Based Proximal Policy
Optimization (TBPPO) is introduced for SDN. TBPPO leverages a trust value mechanism
based on Kullback–Leibler divergence (KL divergence) [27] and a node diversity assessment
mechanism to enhance SDN robustness, address congestion problems, and notably fortify
defenses against Distributed Denial of Service (DDoS) attacks. Furthermore, an improved
PPO algorithm is tailored for optimizing multi-path routing in SDN, while also considering
security, network delay, and variations in multi-path delays. This advancement is crucial for
improving SDN routing optimization. To enhance computational efficiency, an enhanced
Depth-First Search (DFS) algorithm is incorporated, simplifying the action space. The
experimental results validate TBPPO’s superior performance in terms of convergence and
overall effectiveness when compared to the traditional methods. The contribution of this
work can be summarized as follows:

1. We present TBPPO, a multi-path routing algorithm designed specifically for SDN.
This innovative approach integrates a trust value mechanism based on KL-divergence
and node diversity as a key security assessment criterion. TBPPO addresses network
fluctuations, enhances robustness, and mitigates congestion issues, with a primary
focus on countering DDoS attacks.

2. We present an enhanced PPO algorithm to optimize security and efficiency in SDN
routing. This novel algorithm involves the optimization of multi-path routing, con-
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sidering factors like security, network delay, and variations in multi-path delays. To
address the recurrent gradient explosion issues observed during the experimental
process, we introduced learning rate decay and layer normalization. Furthermore, we
incorporated a trust value-based routing selection approach, resulting in enhanced
security stability and a reduced delay performance.

3. To avoid routing loops, we abandoned the traditional Next Hop routing mechanism
and adopted a path selection approach. The improved DFS uses a path selection
method to choose a set of promising routes, which are called routing groups. Then,
we search for the best multi-path route within these routing groups. This enhancement
significantly reduces packet loss and improves the overall efficiency and practicality
of the algorithm.

4. Finally, we conducted experiments using the NSFNet-14 and Germany-50 network
topologies. The results demonstrate that our TBPPO technique outperforms tradi-
tional approaches in terms of both convergence and overall performance. Additionally,
the obtained findings emphasize TBPPO’s potential as an effective solution for im-
proving SDN security and routing efficiency.

The subsequent sections of this paper will be organized as follows: Section 2 provides
an overview of related works. Section 3 offers a detailed description of the system model,
encompassing crucial elements such as the SDN network environment. Section 4 delves
into the design and specific details of the TBPPO algorithm. This includes its operational
principles and key algorithms. Section 5 presents simulation results and corresponding
analyses to validate and evaluate the performance of the TBPPO algorithm in various
scenarios. Section 6 summarizes the experimental conclusions.

2. Related Works
2.1. Trust-Based Security Mechanisms

Trust-based security mechanisms have gained popularity in Wireless Sensor Net-
works (WSN) and the Internet of Things (IoT) [28–33]. These mechanisms focus on ensur-
ing the privacy and security of network nodes. Several trust-based algorithms have been
introduced in recent studies. Ashwin et al. [34] introduced a weighted clustering trust
model algorithm that demonstrated significant improvements in identifying malicious
nodes. Rajeswari et al. [35] proposed a trust-based next-hop node selection algorithm,
which improved the network performance in terms of the data packet transmission, de-
lay, and error rates. Zhang et al. [36] presented a cloud-based trust evaluation approach
that is sensitive to various attacks and capable of improving malicious node detection
accuracy. Mingwu et al. [37] introduced trust entropy and a standard structural en-
tropy mechanism for detecting malicious behavior in sensor systems. Subhash et al. [38]
utilized machine learning to include parameters such as friendship and community
interest, shedding light on the evolution of trust in an entity over time. In another
study, Subhash et al. [39] employed a heuristic approach based on machine learning to
amalgamate trust-related attributes, successfully distinguishing between trustworthy
and untrustworthy nodes within the network. Claudio et al. [40] introduced an incre-
mental Support Vector Machine (iSVM) method for simulating various attack patterns,
outperforming other methods. Besat et al. [41] used the K-Nearest Neighbors (KNN)
algorithm to detect selfish behavior in entities effectively. Wafa et al. [42] employed
machine learning methods for trust parameter aggregation and a mixed propagation
approach to classify users and detect attack types. However, many of these methods
have high computational complexity and are unsuitable for real-time communication
scenarios when combined with deep learning. They did not further investigate the
application of security mechanisms in route planning. Currently, there is not a market
solution that simultaneously considers low delay, high security, and computational
efficiency for multi-route planning. Therefore, our work intends to fill this blank.
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2.2. Reinforcement Learning in SDN

SDN has shifted traditional network operations from hardware to software, both
simplifying and integrating the functionality of the network control plane while also
enhancing the reliability of network hardware devices. With the continuous growth in
network complexity and traffic demands, traditional shortest path algorithms suffer from
drawbacks such as slow convergence and network congestion. Researchers have turned to
machine learning, specifically deep reinforcement learning, to optimize SDN route selection.
Compared to traditional methods, DRL may introduce some additional overhead. Deep
learning models have a large number of parameters, requiring more storage space to save
and load the model. DRL models need to be trained, which might require a significant
amount of time and data. Traditional methods are usually based on fixed algorithms and
do not require a training process. DRL might experience unstable phases when learning
and adapting to new environments, which could lead to short-term instability in routing
policies. Some DRL approaches use an experience replay mechanism, necessitating the
storage and processing of vast amounts of historical data. Despite these overheads, DRL
remains attractive for SDN routing decisions because it can learn and adapt to complex
network environments and often outperforms traditional methods in many scenarios.
Various studies have explored the application of deep reinforcement learning in SDN route
optimization, focusing on intelligent routing, customization, and fine-grained management.
Table 1 presents a succinct overview of recent research employing DRL in SDN.

The above table summary elucidates the learning techniques applied, the formulation
of actions, and the criteria used for assessment. In the studies [43,44], the authors employed
the RL method Q-Learning, which relies on Q-tables and demands significant memory,
data, and time resources. Conversely, refs. [25,45,49] used the DRL method DQN, and [46]
employed the Dueling Double DQN method, which optimizes DQN. These methods
utilize deep learning networks to approximate values instead of Q-tables, making them
more practical and scalable than Q-Learning. Additionally, refs. [26,47] respectively used
the Advanced AC (A2C) and PPO methods, which employ policy gradients instead of
value approximation. These methods can enhance convergence compared to DQN. In
studies [26,43–46,48], the choice of the next hop is used as the action. These studies reveal
that this approach fulfills end-to-end performance requirements only when the appropriate
next hop is selected. An incorrect choice can lead to significant performance degradation
and even routing loops. In contrast, ref. [47] employs the adjustment of graph neural
network parameters as the action, which requires reinforcement learning assisted by a
specific graph neural network, making it less generalizable. Furthermore, the concept of
the takeover decision of the switches was employed as the action in [48] to adaptively
mitigate the propagation of attacks, thereby enhancing the resilience of Software Defined
Industrial Networks (SDIN). The authors in [25] select routes from a preselected route
group, which eliminates the possibility of routing loops and provides stable connections.
However, as the number of nodes increases, the count of preselected paths may grow
rapidly, introducing security vulnerabilities. Therefore, there is a compelling need to devise
high-efficiency DRL algorithms capable of addressing these concerns. Contrary to what is
described in Section 2.1, these studies only considered single-route optimization for the
entire route without taking into account multi-route performance. More critically, they
did not consider the security performance under a DDoS attack environment, thereby
overlooking the potential adverse impacts, such as network congestion, that the crucial
factor of security might bring to the network. In contrast to prior research, our emphasis is
on redressing the imbalance in recent studies, which prioritized network performance but
overlooked vital aspects such as privacy, security, and real-time communication delay. We
introduce an enhanced PPO algorithm tailored for optimizing multi-path routing in SDN,
with a significant focus on security, network delay, and variations in multi-path delays.
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Table 1. Reinforcement Learning in SDN related research.

Paper Description Learning
Approach Action Performance Metrics

[25] DRSIR: A DQN-based solution for intelligent routing
in SDN based on path-state metrics. DQN Path Selection Delay, Loss and Throughput

[26]
A DRL-based method, which can maximize

numerous objectives to dynamically update the
routing strategy.

PPO Next Hop Average Delay,
Maximum Delay

[43] RLBeep: A RL-based method to increase the lifetime
in wireless sensor networks. Q-Learning Next Hop First node death time

[44]
RLMR: A Q-Learning based method performs routing
for different flows, based on the real-time information

of network state and flow characteristics.
Q-Learning Next Hop Forwarding Efficiency,

Loss rate

[45]
NetworkAI: A network architecture using network

monitoring technologies and artificial intelligence for
generating control policies.

DQN Next Hop Delay

[46]
RLRouting: a reinforcement learning routing

algorithm solving traffic engineering (TE) problem of
SDN in terms of throughput and delay.

Dueling DDQN Next Hop Utilization rate, Delay and
CPU Usage

[47] DRL-GS: A DRL-based solution to optimize topology
in SDN A2C,PPO,GNN Parameter of GNN

Entropy Loss, Training
Accuracy and

Testing Accuracy

[48] DQSP: A DRL-based solution concerning QoS in
SDN-IoT DDPG Next Hop

Packet Delivery Ratio, Delay,
Probablity of passing

attacked nodes

[49] An attack mitigation scheme based on DRL to
adaptively prevent the spread of attacks. DQN Takeover Decision of

the Switches Request Arrival Rate

3. System Model
3.1. Network Module

The overall objective of the system is to find a given number of paths within a given
network topology while also achieving optimal performance in terms of delay, delay
variation, security, and other comprehensive factors. Specifically, for a given network,
its topology is represented as G =< V, E >, where V = {v1, v2, . . . . . . , vN , } represents
the set of all vertices, and E = {e1, e2, . . . . . . , eM} represents the set of all edges. The
network topology G is represented using two adjacency matrices, Mtopo and M(τ). Mtopo
is the initial adjacency matrix that includes delay information and is used for preliminary
exploration in the depth-first algorithm. M(τ) is an adjacency matrix that represents the
connectivity of links and their corresponding delay. It serves as the input state for the deep
reinforcement learning component. For nodes vi and vj, if there is a connected edge ex with
a current delay of d, then ex = ei,j = d. Conversely, if there is no connected edge or i = j,
then ei,j = −1. In this paper, the policy-based network topology optimization problem is
transformed into a maximization problem of the objective function:

maxθ J(θ) = Eτ∼πθ
[R(τ)] (1)

where θ represents the parameters of the deep reinforcement neural network, J(θ) repre-
sents the objective function of the neural network, and Eτ∼πθ

[R(τ)] is the expected reward
R at time τ, following the distribution of the neural network policy πθ .

3.2. Attack Module

The system aims to assess the vulnerability of a network over a series of time windows
T in the presence of external attacks characterized by the strategy πatt. Each node in
the network, denoted as vi, is assigned a probability of being attacked, represented as
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p(vi) = πatt(vi). Within each time window τ, node vi generates a set of send–receive
records that, to some extent, indicate the node’s susceptibility to attacks:

Generatorπatt(τ, vi) = Group(τ, vi) (2)

where Generatorπatt represents the mapping of the external environment generating attack
records using the strategy πatt. Group(τ, vi) represents the records of node vi at time τ,
and Group(τ) represents the record group of all nodes at time τ. When defining the time
window τ and using M(τ) to represent the delay matrix, the changes in the delay matrix
caused by Group(τ, vi) are described by the mapping relationship Trans as follows:

TransGroup(τ)(M(τ − 1), τ)→ M(τ) (3)

3.3. Deep Reinforcement Learning Module

Deep reinforcement learning is a deep learning algorithm that involves two main
components, including the environment and the agent. The agent selects an action ac-
cording to the environment state and receives the reward and the next state from the
environment. The main goal of the DRL algorithm is to train the agent to select the actions
in the environment that maximize its rewards. The environment for DRL is designed
as a Markov decision process, so it can only solve Markov decision process problems.
DRL is divided into off-policy methods and on-policy methods. Off-policy methods use
different strategies to collect experiences and use these experiences to improve other target
strategies. On-policy methods directly collect experiences based on the current policy and
use these experiences to improve the policy. Compared to off-policy methods, on-policy
methods, because they cannot use the experiences of old policies, need to interact with
the environment more frequently to collect experiences, which leads to a decrease in learn-
ing efficiency. However, because they are updated according to a consistent policy, the
updates obtained are more effective and the decision-making performance stability of
the new policy is higher. Typical off-policy methods for SDN include DQN [19]. Typical
on-policy methods for SDN are, for example, the AC [20], DDPG [21], and PPO [26], which
are called policy gradient algorithms (PG). Compared to DQN, PPO has greater stability,
which makes PPO perform better on complex problems than DQN. Transitioning from
traditional policy gradient algorithms like DDPG and AC to PPO is driven by the quest for
stability and efficiency. While DDPG excels in continuous action spaces, it is sensitive to
hyperparameters; AC leverages asynchronous updates for diverse data but faces challenges
in distributed training. PPO, on the other hand, employs a clipping mechanism to prevent
large policy updates, offering a more stable and consistent learning experience. This makes
PPO often outperform DDPG and AC without intricate tuning or handling asynchronous
complexities (response to Reviewer 4, comment 10). Additionally, PPO usually requires
less hyperparameter tuning, making it more convenient than DQN. In this work, we chose
the on-policy PPO algorithm as our decision-making module and propose a TBPPO. We
will provide specific descriptions of the algorithm in Section 4.5.

4. Trust-Based Proximal Policy Optimization (TBPPO)

This section introduces the TBPPO algorithm, which is a multi-objective, multi-path
routing planning algorithm providing a secure multi-route scheme designed to provide
low delay for real-time communication. The algorithm includes a preprocessing module
based on DFS, a trust value calculation module using KL divergence, a Markov process
transition mechanism, and a deep reinforcement learning decision module based on PPO.
Figure 1 illustrates the overall workflow of the algorithm.
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In this algorithm, the data is divided and transmitted over multiple routes, thereby
dispersing traffic across several paths to increase the effective bandwidth of the network,
allowing multiple connections to work in parallel. If one path fails, the traffic can
automatically switch to another, thereby enhancing network reliability. This method also
takes into account security considerations. By dispersing traffic across multiple routes,
it enhances network security, as it requires an attacker to compromise several paths at
once, thereby raising the complexity and difficulty of network attacks. Our strategy
accounts for real-time communication and security along each route, crafting a balanced
approach that weighs various metrics including average delay, delay variations, KL trust
value, and node diversity.

Figure 1 depicts the structure of our algorithm. For each time interval, the control
panel gathers the current network topology, DDoS attack logs, and node types from the
data panel. After processing via the trust value module and the DFS module, these features
are concatenated to form a state that enters the DRL module. Within this module, the
critic network calculates Q-values while the actor network determines the action. This
action is then executed on the data panel and the experience is stored in the replay buffer.
Upon completion of an episode, experiences are extracted from the replay buffer in sample
batches to update the critic network before proceeding to the next episode.

4.1. The Improved DFS Module

Most deep reinforcement learning algorithms are designed based on Next Hop routing
policies, as indicated in [44–47]. However, it has been shown that such policies are prone to
leading to routing loops, causing longer delays and some degree of packet loss [50]. These
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issues have not been adequately addressed in the aforementioned studies. To tackle these
challenges, we introduce a path selection approach. The number of available paths in the
network increases exponentially with the network’s scale, which can be computationally
prohibitive. Therefore, we introduce the concept of limiting the number of paths. We use
the path selection approach in conjunction with the DFS algorithm to pre-select the K best
paths, effectively sorting and selecting the optimal K paths from the available options.
The initial topology structure, Mtopo, containing delay information, is used as the input
to the network. K best paths are computed to form the preselected routing group. The
delay values associated with these preselected routes effectively replace the delay matrix
M(τ) as part of the state representation. This preprocessing step results in a considerable
reduction in the computational complexity of our algorithm. This preprocessing step can
be expressed as:

L = DFSK
(

Mtopo
)

(4)

where, Mtopo is the matrix topological structure, L represents the set of all possible paths
generated after the application of the DFS algorithm, and its cardinality is denoted as L0.
DFSK signifies the utilization of an enhanced DFS algorithm to select the shortest K routes.

4.2. Security Module

DDoS attacks represent a prevalent and disruptive network threat. These attacks
involve malicious nodes intentionally discarding messages from legitimate nodes, causing
severe disruptions to the data transmission. What makes these attacks particularly insidious
is that these malicious nodes can mimic legitimate behavior when not receiving data packets,
making them hard to detect and highly destructive [51–53]. To address the challenge of
DDoS attacks and establish trust levels for network nodes, we introduce a KL divergence
as a trust mechanism to counter network attacks. Initially, specific features are carefully
selected as the KL benchmark, drawing from the normal network operation records. The
choice of these features can be tailored to suit specific circumstances. The records are
configured to combat DDoS attacks and take the following form:

Group(0, vi) = (SIP, DIP, SYN, DP) (5)

where SIP, DIP, SYN, and DP represent the frequency of the source IP, the destination IP, the
SYN packets, and the different destination ports in the records of node v. At the end of each
predefined time interval denoted as τ, we compute the KL divergence between the records
of the node within that time frame and the baseline. A higher KL divergence value serves
as an indicator of a higher probability that the node is currently under attack, consequently
leading to a reduced security level. The formula for computing this divergence is given
as follows:

trust(τ, vi) = KL(Group(0, vi), Group(τ, vi)) (6)

where Group(0, vi) represents the KL baseline, Group(τ, vi) corresponds to the records
of node vi within the time window τ, Trust(τ, vi) signifies the trust value of node vi at
time τ, and Trust(τ) denotes the trust values of all nodes at time τ. The term KL refers
to the enhanced iterative KL divergence calculation formula, which is enhanced from the
equation in [23] and defined as follows:

KL
(

p‖q
)
=

I

∑
i=1

βi p(xi)

(
log

p(xi)

q(xi)

)
(7)

where I represents the total data volume in the records. It is worth noting that the size
of I may differ among nodes due to the varying number of destination ports. Moreover,
βi signifies the weights assigned to different parameters, and these weights are allocated
based on specific mechanisms tailored to different attack models. Next, we introduce
a novel node-type mechanism to enhance the management of various nodes within the
system. Currently, different Internet ISP (ISP) are responsible for handling distinct nodes.
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However, depending heavily on a single ISP can lead to critical security issues, including
server outages, attacks on ISPs, and potential data breaches by ISPs [54]. In response to
these challenges, we present a solution that focuses on diversifying the selection of multiple
paths to reduce dependence on a single ISP. This approach aims to minimize security
vulnerabilities associated with ISP-related issues. We design a metric Node Diversity
presented as the ISP variance of an individual route to describe the node diversity of this
route. In this context, the variable t is used to represent different ISP, and the Node Diversity
in a single path is formulated as:

var(al) = ∑
t∈T

(
Countal (t)− Countal

)2 (8)

where t represents the node type currently under consideration. For all t belonging to the
set T, Countal (t) is used to signify the number of nodes of this ISP along route al . Here, al
represents the l-th route within the currently selected route group A(τ). T denotes the set
encompassing all node types, expressed as follows:

T = [ISP 1, ISP 2, ISP 3] (9)

In the following, we use the notation δvi to represent the node type of any given
node vi, and it is expressed as δvi = t. Collectively, we refer to the overall node-type
configurations for all nodes as δ.

4.3. Markov Process Transition Module

After employing the trust value mechanism relying on the KL divergence for trans-
formation, the SDN control plane becomes capable of presenting the network’s real-time
status, which encompasses information like the delay matrix, node categories, and node
trust values. This issue is subsequently structured as a Markov Decision Process (MDP)
and is characterized by a four-tuple (S, A, P, R); here, S represents the state space, A is
the action space, P is the probability distribution function, and R represents the reward
function, which is composed of five components: delay reward, delay variation reward,
KL trust value reward, node diversity reward, and node redundancy reward. The state,
denoted as S, is composed of three components at time τ: the delay values of the selected
route group L, represented as DL(τ); the trust values of each node at time τ, denoted as
Trust(τ); and the types of each node, referred to as δ. This can be formulated as:

S(τ) = [DL(τ), Trust(τ), δ] (10)

where the action space A has a size of L0, which corresponds to the size of the preselected
route group L. A(τ) is a subset of L, and it consists of L routes, where the l-th route is
expressed as al :

A(τ) = [a1, a2, . . . , al , . . . , aL] (11)

where the probability distribution P is based on the current policy πθτ−1 , representing the
probabilities of different actions for different states S(τ). For any given time window τ, the
current policy πθτ−1 based on parameters θwill generate an action A(τ) according to the
probabilities in P:

A(τ) = πθτ−1(S(τ)) (12)

4.4. Reward Module

The Reward Mechanism’s role is to assign rewards to the network with respect to
multiple objectives. By adjusting the weighting factors αo and the rewards ro associated
with different objectives, the system can guide the network’s learning process. The formula
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for calculating the reward R(τ) obtained by the network at the τ-th time window is
represented as:

R(τ) = ∑
o∈O

αoro(τ) (13)

here αo represents the weight of reward type o, and ro(τ) represents the reward value of
type o obtained during the τ time window. O represents the set of reward types, including
the delay reward, delay variation reward, KL trust value reward, node diversity reward,
and node redundancy reward. These can be expressed as:

O = {delay, variation, diversity, sa f ety, repeat} (14)

Here, delay represents the average delay, variation represents the delay variation,
diversity represents the node diversity, sa f ety represents the route trust value, and repeat
represents the node redundancy. The delay reward is defined as the average delay of the
current path group A(τ) and it is defined as:

rdelay(τ) =
1
L

L

∑
l=0

DM(τ)(al) =
1
L

L

∑
l=0

∑
e∈al

dM(τ)(e) (15)

Here, rdelay(τ) represents the delay reward at time τ, DM(τ)(al) is the delay of route al
under M(τ), and dM(τ)(e) is the delay of edge e under M(τ). The delay variation reward
is expressed as the average delay variation for each path in the current path group A(τ)
and is formulated as:

rvariation(τ) = mean
[∣∣∣DM(τ)(ai)− DM(τ)

(
aj
)∣∣∣ ∣∣∣ i < j ∧ i, j < L

]
(16)

Here, rvariation(τ) represents the delay variation reward at time τ, and mean indicates
the calculation of the mean value. The KL trust reward is defined as the mean of the
minimum safety node trust values for each path in the current path set A(τ) and it can be
expressed as:

rsa f ety(τ) =
1
L

L

∑
l=0

max
vi∈al

(Trust(τ, vi)) (17)

Next, the node diversity reward is defined as the average of the variance of the number
of nodes of each type in each path within the current path group A(τ) as follows:

rt(τ) =
1
L

L

∑
l=0

var(al) =
1
L

L

∑
l=0

∑
t∈T

(
Countal (t)− Countal

)2 (18)

where the node redundancy reward is represented by the number of nodes that appear
repeatedly in the current routing group A(τ).

4.5. Enhanced PPO Module

In traditional policy gradient algorithms, policy weights are typically updated by
calculating the gradient of the objective function and applying it with a step size. However,
this update process may encounter problems like overshooting or undershooting. To
address these issues, we adopt the PPO algorithm. PPO is a policy gradient method in
reinforcement learning, which enhances the policy by optimizing a surrogate objective
function using stochastic gradients obtained by sampling the data from interactions with
the environment. It allows for multiple small-batch updates, as opposed to a single gradient
update for each data sample. The specific PPO variant employed in this research is the
PPO-clip algorithm, which relies on a clipping mechanism. To prevent the importance
sampling function from exceeding the predefined upper or lower bounds, a truncation
function denoted as Jθk

PPO(θ) is applied. This function automatically limits the importance
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sampling values when they go beyond the specified upper or lower limits. This can be
expressed as Equation:

Jθk

PPO(θ) ≈ ∑
(sτ ,aτ)

min
(

pθ(aτ | sτ)

pθk (aτ | sτ)
Aθk

(sτ , aτ), clip
(

pθ(aτ | sτ)

pθk (aτ | sτ)
, 1− ε, 1 + ε

)
Aθk

(sτ , aτ)

 (19)

Here, Jθk

PPO(θ) is used to assess the expected cumulative reward (performance) of the
policy, θ is the current policy’s parameter, and θk is the policy parameters at a previous
time step or iteration step k. sτ represent S(τ). aτ represents the action taken at time step

τ, and aτ ∈ A(τ). clip
(

pθ(aτ |sτ)
p

θk (aτ |sτ)
, 1− ε, 1 + ε

)
is a clipping function used to limit the ratio

between 1−ε and 1+ε, where ε is a small positive value usually employed to ensure that
policy updates are bounded. The function Aθk

represents the function, which provides an
estimate of the advantage when taking action aτ with the parameters set θk:

ÂGAE(γ,λ)
t =

∞

∑
l=0

(
γλ)lδV

t+l = δV
t + (γλ)δV

t+1 + (γλ)2δV
t+2 + · · ·+ (γλ)T−t+1δT+1 (20)

Here, γ is the discount factor, λ is the GAE parameter, and δV
t is the temporal

difference function:
δV

t = rt + γVω(st+1)−Vω(st) (21)

We utilize its gradient as the loss function for parameter θ:

5Jθ′(θ) = Eπθ′

[
πθ(s, a)
πθ′(s, a)

R(s, a)5 logπθ′(s, a)
]

(22)

In our experiments, we observed that fully connected layers exhibit relatively weak
fitting capabilities for the relationship between states and actions and they can often lead
to the problem of gradient explosion. Therefore, we made some improvements to the PPO
algorithm. We introduced a learning rate decay technique, which can enhance the stability
of training in the later stages and improve the training effectiveness. Here, we employed
linear learning rate decay, where the Actor Network’s learning rate decreases linearly from
an initial value of 1 × 10−4 to 0 as the training steps progress. This is formulated as:

αnew = αinitial × (decay factor)
iteration

decay step . (23)

where α presents the parameter operated. By default, PPO uses the ReLU activation
function, but experimental findings suggest that PPO performs more effectively with the
Tanh activation function. Therefore, we replaced ReLU with the Tanh activation function.

tanh(x) =
e2x − 1
e2x + 1

(24)

In the feedforward neural network (FNN), we added a layer normalization layer (LN),
following the formula [55]:

µl =
1
H

H

∑
i=1

al
iσ

l =

√√√√ 1
H

H

∑
i=1

(
al

i − µl)2 (25)

After these adjustments, the issue of gradient explosion has been significantly allevi-
ated. The pseudocode of the algorithm is given in Algorithm 1 and a flow chart is given in
Figure 2.
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Algorithm 1: TBPPO Routing Process

Input:Mtopo , Group(0).
Output: Paths for current network.
Initialization:θactor , θcritic.
Using Mtopo as input, perform the DFS algorithm to obtain the preselected path set L.
For τ = 1, . . .. . ., T do

Obtain Group(τ, vi), M(τ), S(τ) from the environment under the policy πatt.
Calculate trust values Trust(τ, vi) for all nodes using Group(τ, vi) and Group(0, vi) as input.

Start DRL algorithm:
While next state is not final state do

Actor network selects action al
Calculate the reward Ral (τ) for this action.
Store the current experience in the experience replay buffer.

End
Sample a batch from the experience replay buffer.
Calculate the TD error.
Calculate the advantage function ÂGAE(γ,λ)

t
For epoch = 1, . . .. . ., 10 do

Perform proximal policy optimization Jθk
PPO(θ)

Update gradients for Actor and Critic networks.
End

End
End

5. Results and Validation

In this section, we thoroughly examine the details of the experiment and the results to
assess the reliability of our proposed system. We compare the performance of the TBPPO
algorithm with three other algorithms: DRSIR, PPO, and Dijkstra. Additionally, we explore
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the performance of TBDRSIR, which integrates the DRSIR algorithm with our trust value
mechanism within the network topology.

5.1. Experiment Setup

Our experiments were executed on hardware consisting of an Intel (R) Core (TM)
i5-9400 CPU running at 2.90 GHz and an NVIDIA GeForce GTX 1660Ti for training the
TBPPO agent. We implemented the AC model using PyTorch and optimized the training
process using the Adam Optimizer as the loss function. In our experimental model, the
state representation includes several components, such as the current KL trust values for
each node, node types, node utilization, the current average delay, and the number of
remaining steps. The action space in our experiments is constructed from a set of feasible
routes calculated using an improved DFS algorithm. The Actor network is designed as a
six-layer fully connected neural network, with each layer consisting of 256 neurons and
layer normalization applied between these layers. The output size of the network matches
the action space size, which is set to 5 in our experimental model. Similarly, the Critic
network is constructed as a six-layer fully connected network with 256 neurons in each layer,
featuring layer normalization between layers. The output of the Critic network corresponds
to the Q-value, resulting in an output size of 1. For a comprehensive understanding of the
remaining parameters of our experimental model, please refer to Table 2.

Table 2. Parameters of neural network and reward function.

Parameter Name Value

Total Episodes 3000
Discount Factorγ 0.96

Learning Rate of Actor 1 × 10−5

Learning Rate of Critic 1 × 10−4

Advantage function scaling factor λ 0.90
Truncation parameter ε 0.2

Parameter of delay reward αdelay 0.2
Parameter of variation αvariation 4
Parameter of trust value αtrust −400

Parameter of diversity αtype 3
Parameter of repeat αrepeat −100

5.2. Validation of the KL Trust Mechanism

To assess the effectiveness of the KL trust value mechanism, we conducted experiments
using the CICIDS2017 dataset [56], which offers insights into packet exchange patterns
within a network over a specific time frame. This validation process involved simulating a
botnet network with three key stages: probing, propagation, and launching DDoS attacks.
These stages encompassed diverse characteristics, such as creating packets with fixed IP
addresses but varying TCP destination port numbers, generating packets with a multitude
of uniform source addresses but with distinct destination addresses and port numbers,
introducing a significant number of unique source addresses accessing a specific destination
IP address. Furthermore, our SDN was inundated with SYN packets, but the number of
ACK packets did not align with these SYN packets.

The decision to employ KL divergence as a metric for the trust value was driven by
our objective to evaluate the impact of attack interference on a node’s communication
capability, as opposed to classifying the type of attack. KL divergence serves as a suitable
measure for gauging the degree to which a node’s communication capabilities are affected,
making it a pragmatic choice for our purposes. Our methodology involves identifying
records in which a node functions as both the source and destination IP without being
subjected to any attacks, deeming these records as valid for that particular node. We
randomly sampled 3000 such records for each test node. Out of the 84 distinctive features
within the CICIDS2017 dataset, we classify a node as malicious if it falls into any of the
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following categories: an attacker node itself, a node with identified port vulnerabilities,
a node affected by worm infestations, or a node subject to DDoS attacks. As a result,
we established four key features as our criteria for classification: source IP frequency,
destination IP frequency, SYN packet frequency, and the frequency of distinct destination
ports. These criteria were utilized as benchmarks for calculating the KL divergence. It is
worth noting that the data volume for the number of distinct ports recorded (DP) may
vary across different nodes. Therefore, we combined attack records with a portion of
normal communication records in varying proportions and subsequently calculated their
trust values. The weightings assigned to the parameters, namely SIP (Source IP), DIP
(Destination IP), SYN, and DP (Distinct Ports), are detailed in Table 3.

Table 3. β of advanced KL-Divergence.

SIP Parameter β1 DIP Parameter β2 SYN Parameter β3 DP Parameter β4

0.8 1.0 2.0 0.0001

In the experiment, several nodes were tested, including one with the IP address
172.16.0.1. The test dataset included a mix of DDoS attack records and regular communi-
cation, with proportions of 20%, 40%, and 60%, respectively. The results are presented in
Table 4. As can be observed, there is a positive correlation between the KL trust value and
the proportion of DDoS attacks. This result demonstrates that the KL trust value can reflect
the security performance of a given node.

Table 4. The relationship between KL trust value and DDoS attack ratio of tested node.

DDoS Attack Proportion KL Trust Value

20% 0.069
40% 0.167
60% 0.298

5.3. Performance Comparison
5.3.1. Baselines

The TBPPO algorithm was evaluated in comparison to the DRSIR [21], PPO [22], and
Dijkstra [13] algorithms. Furthermore, we integrated the trust mechanism introduced in
our paper with DRSIR to form TBDRSIR and conducted comparative evaluations.

(1) Dijkstra Algorithm [13]: The Dijkstra algorithm is based on the weights of a graph to
select paths. This algorithm is simple and feasible and is an important component
of the OSPF protocol. We hope to use this algorithm to demonstrate the deviation of
our algorithm’s delay portion from the theoretical optimal value and to evaluate its
security performance.

(2) DRSIR Algorithm [21]: The DRSIR algorithm is based on DQN’s deep reinforcement
learning algorithm and its effectiveness has been thoroughly demonstrated in [21].
However, it does not explore multiple objectives. We aim to use this algorithm to
showcase our algorithm’s optimization ability for multiple objectives.

(3) TBDRSIR (Trust-Based DRSIR): TBDRSIR is a variant of our ablation experiment
introduced to explore the performance of TBPPO. It draws inspiration from DRSIR
and combines the dynamic security assessment capability we designed. We aim to
test the performance of our security mechanism on other algorithms.

(4) PPO Algorithm [22]: The PPO algorithm has been used to solve routing optimization
problems in SDNs in [22]. Its advantage lies in its adaptability to diverse environments
and good performance in terms of delay. However, the authors lacked consideration
for security capabilities. Additionally, we have made improvements to PPO, enabling
it to achieve a superior performance. We hope to use this algorithm as a baseline to
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demonstrate our algorithm’s superior security performance and better performance
in terms of delay variation.

5.3.2. Network Topologies

These experiments were performed in two distinct network topologies: NSFNet-14 [57]
and Germany-50 [58]. NSFNet-14 consists of 14 nodes and 19 undirected edges, with an
initial route count of 61 determined using the DFS algorithm. In contrast, the Germany-50
network comprises 50 nodes and 176 undirected edges, with an initial route count (K)
capped at 10,000 and calculated using an enhanced DFS algorithm. Figure 3 shows the
design and network topology of NSFNet-14 and Germany-50.
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5.3.3. Convergence Comparison

Figure 4 shows the convergence performance comparison in the NSFNet-14 and
Germany-50 topologies after 3000-episode iterations of simulation, as represented by
the deep reinforcement learning metric of reward convergence. It is worth noting that
because PPO and DRSIR do not incorporate our security mechanism, their rewards will
lack the corresponding negative values of rsa f ety(τ) and rt(τ), which leads to a certain
numerical difference in the performance of TBPPO versus PPO and TBDRSIR versus
DRSIR. Figure 4a shows the rewards collected per cycle in the NSFNet-14 topology. After
3000-episode iterations, TBPPO converged to −20 after 800 episodes, while PPO initially
reached −20 after 500-episode iterations and later re-converged to −12 after 2700 episodes,
both exhibiting good convergence trends. DRSIR showed poorer convergence, quickly
rising to −60 in the first 100-episode iterations and fluctuating widely until the end of
3000 episodes. In contrast, TBDRSIR displayed greater volatility and ultimately failed to
converge. These findings indicate that PPO is more suited to mechanisms that combine the
trust value and the nodes’ diversity than DQN is.
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In Figure 4b, rewards collected per cycle in the Germany-50 network topology are
presented, which offers more potential routes than NSFNet-14. According to the reward
comparison in the figure, the convergence patterns of various algorithms can be observed.
TBPPO starts to approach −85 after roughly 1400-episode iterations, while PPO achieves
convergence at −75 after just 1200-episode iterations. DRSIR rapidly climbs to around
−150 within the first 300-episode iterations, but exhibits higher volatility compared to
PPO-based algorithms. In contrast, TBDRSIR does not reach convergence. Clearly, TBPPO
consistently performs well on larger networks, while TBDRSIR seems to show an inferior
performance in our analysis, possibly due to the inclusion of the trust mechanism, which
appears to negatively impact DQN’s performance. Compared to NSFNet-14, both PPO and
TBPPO continue to show superior convergence and optimization capabilities.

5.3.4. Delay Comparison

Figure 5 illustrates the delay performance comparison in the NSFNet-14 and Germany-50
topologies conducted following the simulation of 3000-episode iterations. Figure 5a
shows the delay performance in the NSFNet-14 topology. After 3000-episode iterations,
TBPPO, TBDRSIR, PPO, and DRSIR divided packets into multiple routes, while Dijkstra
only used the shortest path with a fixed delay of 160 ms. TBPPO converged to 223.3 ms
after 600-episode iterations, and PPO reached 216.67 ms after 500-episode iterations in
terms of average delay. DRSIR displayed gradual convergence, approaching around
260 ms after 1200-episode iterations, albeit with some noticeable fluctuations. In contrast,
TBDRSIR initially demonstrated convergence to 300 ms, but experienced a sudden di-
vergence around 2700-episode iterations, ultimately failing to converge. These findings
indicate that in the context of low-delay network exploration, PPO outperforms DQN.
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Additionally, TBPPO, which needs to balance both exploration and security considera-
tions while also not significantly surpassing PPO, remains competitive. Furthermore,
when compared to the theoretically optimal Dijkstra, both TBPPO and PPO exhibit a
relatively similar performance.
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In Figure 5b, the delay performance in the Germany-50 network topology is presented.
This network comprises 50 nodes and 176 edges, resulting in a larger number of possible
routes compared to NSFNet-14. To address resource constraints, the paths were sorted
by delay, with the top 10,000 routes retained. The action space for testing the algorithm
consisted of these 10,000 routes. After a 3000-cycle simulation, TBPPO, TBDRSIR, PPO,
and DRSIR employed a data packet division strategy using three distinct paths for the data
transmission. In contrast, the Dijkstra algorithm, in its quest for the shortest route within
the network topology, funneled all traffic along that singular path. Within the simulated
network configuration, only one shortest path with a 160 ms delay was available, which
ultimately led to Dijkstra maintaining a consistent average delay of 250 ms. According to
the delay comparison in the figure, the convergence patterns of various algorithms can
be observed. TBPPO starts to approach 423.3 ms after roughly 1400-episode iterations,
while PPO achieves convergence at 503.3 ms after 1200-episode iterations. DRSIR begins
to approach the 657 ms mark after 300-episode iterations, but its performance continues
to fluctuate. In contrast, TBDRSIR does not reach convergence. It is evident that TBPPO
consistently performs well on large networks, while TBDRSIR, in our analysis, seems to
exhibit an inferior performance, possibly due to the inclusion of the trust mechanism, which
appears to negatively impact DQN’s performance. When compared to NSFNet-14, PPO
and TBPPO still showcase superior convergence and optimization capabilities. Moreover,
as the network scales up, PPO’s advantage in securing routing becomes more apparent,
resulting in lower delay due to fewer instances of attacks.

5.3.5. Trust Value Comparison

Figure 6 illustrates a comparative analysis of the KL trust values across five algorithms.
Specifically, in the context of the NSFNet-14 dataset, as shown in Figure 6a, it is evident
that the Dijkstra algorithm fails to take trust values into account. Consequently, it directs
all network traffic along a single path, leading to a consistently static KL trust value of
approximately 1. This static value serves as a clear indicator of the Dijkstra algorithm’s
inability to achieve routing convergence. The TBPPO algorithm, on the other hand, displays
a noticeable convergence trend and eventually stabilizes at around 0.5, with intermittent
fluctuations hovering around 0.2. In contrast, the PPO algorithm, which does not explicitly
address security concerns, exhibits a performance similar to Dijkstra. Both the DRSIR
and TBDRSIR algorithms exhibit inadequate adaptation to dynamic DDoS attack defense
scenarios, failing to achieve trust value convergence. As a result, the TBPPO algorithm
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consistently maintains lower KL trust values, suggesting a reduced vulnerability to attacks
and an enhanced security performance.
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Figure 6b compares the performance of the KL trust values on Germany-50. Much
like the scenario in NSFNet-14, the Dijkstra algorithm does not consider trust values when
assessing its performance. It channels all traffic through a single path, resulting in a
consistently stable KL trust value of around 1.5 without achieving convergence. Examining
the graph, it becomes apparent that the TBPPO algorithm exhibits a noticeable trend
towards convergence, although it experiences more fluctuations compared to NSFNet-14.
Eventually, it stabilizes at approximately 0.8, with fluctuations hovering around 0.4. In
contrast, PPO reaches convergence at 1.3. Regrettably, both the DRSIR and TBDRSIR
algorithms fail to achieve trust value convergence. This result shows the capability of the
TBPPO model to identify relatively secure routes in a large network environment.

5.3.6. Delay Variation Comparison

In Figure 7, the performance of different routing algorithms in terms of delay variation
is compared. Dijkstra, which does not take into account delay variation attributes, is not
part of the comparison. A comparison is made between TBPPO, TBDRSIR, PPO, and
DRSIR. On the NSFNet-14 data, as depicted in Figure 7a, the TBPPO algorithm starts to
converge around 60 ms after roughly 1300-episode iterations, showing a clear trend towards
convergence. PPO, on the other hand, converges around 60 ms after 600-episode iterations.
TBDRSIR reaches approximately 125 ms after 1700-episode iterations, with significant
fluctuations. DRSIR, however, fails to converge, with an average delay of around 70 ms.
According to the shaded area in the graph, it continues to fluctuate between 15 ms and
175 ms even after about 3000-episode iterations. These results suggest that TBPPO, while
emphasizing security, maintains a competitive delay performance compared to PPO.
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In our performance analysis of the Germany-50 data, when comparing delay varia-
tions (as shown in Figure 7b), we evaluated TBPPO, TBDRSIR, PPO, and DRSIR. Dijkstra
was omitted from this comparison due to its lack of multiple delay-aware paths. As il-
lustrated in Figure 7b, the TBPPO algorithm exhibits a clear convergence trend, starting
to converge around the 1500th iteration to an approximate 50 ms delay. In contrast, PPO
achieves convergence earlier, at around 1000-episode iterations, with an average delay of
approximately 140 ms. TBDRSIR fails to reach convergence, while DRSIR exhibits more
noticeable convergence at around 210 ms. Interestingly, even though TBPPO prioritizes
security, its delay variation performance is not significantly inferior to PPO. In the context
of Germany, TBPPO demonstrates the benefits of secure route discovery by reducing the
number of attacks, resulting in lower delay compared to PPO and showcasing improved
real-time communication capabilities.

5.3.7. Node Diversity Analysis

In Figure 8, we performed an extensive examination of node diversity across different
routing algorithms. Specifically, when observing the NSFNet-14 (see Figure 8a), the Dijkstra
algorithm consistently maintains a fixed path for the traffic, resulting in a constant node
diversity value of 11. In contrast, the TBPPO algorithm displays an intriguing behavior, as
it gradually converges to a node diversity of 8 over approximately 600-episode iterations,
demonstrating a clear convergence trend. The PPO algorithm also exhibits a commendable
convergence performance but stabilizes at a node diversity value of 15. Conversely, the
TBDRSIR and DRSIR algorithms both reach a node diversity of 13, albeit with relatively
significant fluctuations. These findings indicate that the TBPPO algorithm places greater
emphasis on optimizing the composition of routing nodes compared to the other algo-
rithms. Moreover, the TBPPO algorithm distinguishes itself by offering notable advantages
over traditional Dijkstra and PPO approaches concerning security. Additionally, it outper-
forms the DRSIR algorithm and TBDRSIR in terms of stability and various performance
metrics. The algorithm excels in providing multiple dependable routing options in network
topologies with consistent structures dynamically changing the link conditions, striking a
balance between link delay and security.
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In Figure 8b of the Germany-50 data, the Dijkstra algorithm consistently follows a fixed
path, maintaining a constant node diversity value of 38. On the other hand, the TBPPO
algorithm begins to converge towards a node diversity of 23 after about 1500-episode itera-
tions, displaying a clear convergence pattern. PPO, which does not take into account node
types, shows a performance similar to Dijkstra. Both TBDRSIR and DRSIR algorithms still
exhibit relatively large fluctuations in node diversity. These findings imply that the TBPPO
algorithm places greater emphasis on the composition of routing nodes, thereby improving
its ability to prevent failures in similar nodes when sudden events occur from operators.
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5.3.8. Multi-Path Routing Performance

In Figure 9, we executed a comprehensive evaluation of the multi-path routing per-
formance of the TBPPO algorithm. This assessment involved an investigation into the
effectiveness of TBPPO under various output settings, specifically producing 3, 4, and
5 route paths. We employed a range of essential performance metrics including but not
limited to average delay, average trust value, delay variation, and node diversity.
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In Figure 9a, in terms of the average delay performance, three routes achieved
the best average delay at 500 milliseconds, which was 100 milliseconds faster than the
600 milliseconds of four routes. On the other hand, five routes were slower than four routes
by about 200 milliseconds at 800 milliseconds. Both three routes and four routes achieved
convergence, with similar convergence speeds. However, under five routes, the algorithm
exhibited larger fluctuations but still showed some degree of convergence.

In Figure 9b, regarding the trust value performance, three routes continued to achieve
the best trust value at around 0.7, while four routes closely followed with 1.2. In contrast,
five routes had the poorest performance, with a trust value of around 1.5. The convergence
performance among these three scenarios exhibited slight variations.

In Figure 9c, in terms of the delay variation performance, four routes showed similar
results to three routes, with both achieving an average delay variation of around 60 mil-
liseconds with clear convergence trends. However, five routes did not converge to the same
extent, resulting in an average delay variation of around 100 milliseconds.

In Figure 9d, with respect to node diversity, four routes exhibited a comparable trend
to three routes, with both converging at approximately 50, as opposed to the 40 for three
routes. In contrast, five routes ultimately converged at around 80. When comparing
their convergence characteristics, three routes and four routes demonstrated a robust
performance, indicating strong convergence abilities. On the other hand, five routes
exhibited some degree of convergence; however, it displayed a wider range of fluctuations.
These findings suggest that TBPPO exhibited good performance with both three routes and
four routes displaying strong convergence capabilities. However, its performance declined
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when using five routes compared to three and four routes. Therefore, we recommend not
selecting multi-path routing tasks with more than four routes when using TBPPO.

6. Conclusions

This paper presents the TBPPO algorithm, a deep reinforcement learning-based
approach that addresses the limitations of existing intelligent routing algorithms in SDN
environments. TBPPO leverages a unique trust value mechanism based on KL diver-
gence and optimizes DFS and PPO algorithms to establish secure, low-delay routing
solutions. Initially, it refines the DFS algorithm for route selection, effectively reducing
the complexity of the reinforcement learning network’s action space and avoiding rout-
ing loops. Furthermore, it employs an improved KL divergence algorithm to estimate the
trust values related to potential node attacks and a node diversity assessment method
to estimate the ISP balance, providing an easy-to-calculate security assessment method
for this algorithm. Lastly, the algorithm enhances PPO to explore multiple performance-
balanced paths, enabling diverse network configurations and communication pairs to
select routes that align with the network characteristics. We demonstrated the effective-
ness of the TBPPO algorithm compared to cutting-edge methods in medium to large
network topologies. The result show that, in large networks, TBPPO with security mech-
anisms experienced fewer attacks in route selection compared to PPO. Both its delay
and variation performance were reduced by about 100 ms, its trust value led by 0.5,
and the diversity of nodes was ahead by 20. Moreover, when comparing TBPPO with
PPO and TBDRSIR, PPO still converges stably under complex multi-objective dynamic
conditions. This result can be attributed to the excellent stability of PPO. In multi-route
performance tests, we discovered that when TBPPO is used with more than four routes,
its performance deteriorates significantly; therefore, we recommend applying TBPPO to
three or four route path tasks to showcase its best capabilities. We hope that TBPPO can
offer a better multi-path secure routing optimization method for real-time communica-
tion, such as in scenarios like online classes, streaming videos, live web broadcasts, and
real-time meetings. In future research, we will focus on the application of the algorithm
in heterogeneous network scenarios, making it adaptable to a wider range of practical
application scenarios, like smart grid. We plan to introduce the graph convolutional
networks (GCNs) into the DRL process for a better performance.

Author Contributions: Conceptualization, Y.Z., L.Q. and Z.W.; methodology, Z.W.; software, Y.X.;
validation, X.W. and S.W.; formal analysis, A.P.; investigation, Z.W.; resources, Y.Z.; data curation,
S.W.; writing—original draft preparation, S.W.; writing—review and editing, L.Q. and A.P.; visual-
ization, Y.X. and X.W.; supervision, Z.W.; project administration, Y.Z.; funding acquisition, Y.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Science and Technology Project of State Grid Zhejiang Electroic
Power Co., grant number B311XT230019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors Yi Zhang, Lanxin Qiu, Yangzhou Xu and Xinjia Wang were
employed by the company Information Communication Branch of State Grid Zhejiang Electric Power
Co., Hangzhou 310007, China. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict of
interest. The funder had no role in the design of the study; in the collection, analysis, or interpretation
of data, in the writing of the manuscript, or in the decision to publish the results.



Appl. Sci. 2023, 13, 12520 22 of 24

References
1. Scott-Hayward, S.; Natarajan, S.; Sezer, S. A Survey of Security in Software Defined Networks. IEEE Commun. Surv. Tutor. 2016,

18, 623–654. [CrossRef]
2. Alsmadi, T.; Alqudah, N. A Survey on malware detection techniques. In Proceedings of the 2021 International Conference on

Information Technology (InCIT), Amman, Jordan, 14–15 July 2021; pp. 371–376. [CrossRef]
3. Yoo, Y.; Yang, G.; Lee, J.; Shin, C.; Kim, H. TeaVisor: Network Hypervisor for Bandwidth Isolation in SDN-NV. IEEE Trans Cloud

Comput. 2023, 11, 2739–2755. [CrossRef]
4. Pizzutti, M.; Schaeffer-Filho, A.E. An Efficient Multipath Mechanism Based on the Flowlet Abstraction and P4. In Proceedings of

the IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.
[CrossRef]

5. Jin, H.; Yang, G. TALON: Tenant Throughput Allocation Through Traffic Load-Balancing in Virtualized Software-Defined
Networks. In Proceedings of the International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 9–11
January 2019; pp. 233–238. [CrossRef]

6. Shen, L.; Wu, M.; Zhao, M. Secure Virtual Network Embedding Algorithms for a Software-Defined Network Considering
Differences in Resource Value. Electronics 2022, 11, 1662. [CrossRef]

7. Klöti, R.; Kotronis, V.; Smith, P. OpenFlow: A security analysis. In Proceedings of the 2013 21st IEEE International Conference on
Network Protocols (ICNP), Goettingen, Germany, 7–10 October 2013; pp. 1–6. [CrossRef]

8. Perrig, A.; Szewczyk, R.; Tygar, J. SPINS: Security Protocols for Sensor Networks. Wirel. Net. 2002, 8, 521–534. [CrossRef]
9. Karlof, C.; Wagner, D. Secure routing in wireless sensor networks: Attacks and countermeasures. In Proceedings of the First IEEE

International Workshop on Sensor Network Protocols and Applications (SNPA), Anchorage, AK, USA, 11 May 2003; pp. 113–127.
[CrossRef]

10. Zhou, L.; Haas, Z.J. Securing ad hoc networks. IEEE Netw. 1999, 13, 24–30. [CrossRef]
11. Buchegger, S.; Boudec, J.Y.L. Performance analysis of the CONFIDANT protocol. In Proceedings of the 3rd ACM international

symposium on Mobile ad hoc networking & computing (MobiHoc), New York, NY, USA, 9–11 June 2003; pp. 226–236. [CrossRef]
12. Ali-Eldin, A.M.T. A cloud-based trust computing model for the social Internet of Things. In Proceedings of the 2021 International

Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 9 May 2021; pp. 161–165. [CrossRef]
13. Suryani, V.; Widyawan, S. A survey on trust in Internet of Things. In Proceedings of the 2016 8th International Conference on

Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 5–6 October 2016; pp. 1–6. [CrossRef]
14. Gautam, A.K.; Kumar, R. A comprehensive study on key management. Authen. Trust Manag. Tech. Wirel. Sens. Net. 2021, 3, 50.

[CrossRef]
15. Khan, W.Z.; Arshad, Q.; Hakak, S. Trust Management in Social Internet of Things: Architectures, Recent Advancements, and

Future Challenges. IEEE Internet Things J. 2021, 8, 7768–7788. [CrossRef]
16. Pourghebleh, B.; Wakil, K.; Navimipour, N.J. A Comprehensive Study on the Trust Management Techniques in the Internet of

Things. IEEE Internet Things J. 2019, 6, 9326–9337. [CrossRef]
17. Jiang, J.R.; Huang, H.W.; Liao, J.H.; Chen, S.Y. Extending Dijkstra’s shortest path algorithm for software defined networking.

In Proceedings of the 16th Asia-Pacific Network Operations and Management Symposium (APNOMS), Hsinchu, Taiwan,
17–19 September 2014; pp. 1–4. [CrossRef]

18. Wu, Y.J.; Hwang, P.C.; Hwang, W.S. Artificial Intelligence Enabled Routing in Software Defined Networking. Appl. Sci.
2020, 10, 6564. [CrossRef]

19. Mnih, V.; Kavukcuoglu, K.; Silver, D. Playing Atari with deep reinforcement learning. In Proceedings of the Neural Information
Processing Systems Conference and Workshops (NIPS), Lake Tahoe, CA, USA, 5–10 December 2013; pp. 529–536. [CrossRef]

20. Schulman, J.; Moritz, P.; Levine, S. High-Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv 2015,
arXiv:1506.02438. [CrossRef]

21. Xiang, J.; Li, Q.; Dong, X. Continuous Control with Deep Reinforcement Learning for Mobile Robot Navigation. In Proceedings of
the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 1501–1506. [CrossRef]

22. Schulman, J.; Levine, S.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 1889–1897. [CrossRef]

23. Du, J.; Zhang, C.; He, S. Learning-Based Congestion Control Assisted by Recurrent Neural Networks for Real-Time Communica-
tion. In Proceedings of the 2023 IEEE Symposium on Computers and Communications (ISCC), Gammarth, Tunisia, 9–12 July 2023;
pp. 323–328. [CrossRef]

24. Chen, J.; Xiao, Z.; Xing, H. STDPG: A Spatio-Temporal Deterministic Policy Gradient Agent for Dynamic Routing in SDN. In
Proceedings of the 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.
[CrossRef]

25. Casas-Velasco, D.M.; Rendon, O.M.C.; da Fonseca, N.L.S. DRSIR: A Deep Reinforcement Learning Approach for Routing in
Software-Defined Networking. IEEE Trans. Net. Serv. Manag. 2021, 19, 4807–4820. [CrossRef]

26. Alkhalaf, S.; Alturise, F. A novel method for routing optimization in software-defined networks. Comput. Mat. Cont. 2022, 73,
6393–6405. [CrossRef]

27. Kullback, S.; Leibler, R.A. The Information in Distributions. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]

https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1109/ICIT52682.2021.9491765
https://doi.org/10.1109/TCC.2022.3225915
https://doi.org/10.1109/GLOCOM.2018.8647887
https://doi.org/10.1109/ICOIN.2019.8717976
https://doi.org/10.3390/electronics11101662
https://doi.org/10.1109/ICNP.2013.6733671
https://doi.org/10.1023/A:1016598314198
https://doi.org/10.1109/SNPA.2003.1203362
https://doi.org/10.1109/65.806983
https://doi.org/10.1145/513800.513828
https://doi.org/10.1109/MIUCC52538.2021.9447667
https://doi.org/10.1109/ICITEED.2016.7863238
https://doi.org/10.1007/s42452-020-04089-9
https://doi.org/10.1109/JIOT.2020.3039296
https://doi.org/10.1109/JIOT.2019.2933518
https://doi.org/10.1109/APNOMS.2014.6996609
https://doi.org/10.3390/app10186564
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1506.02438
https://doi.org/10.1109/CAC48633.2019.8996652
https://doi.org/10.48550/arXiv.1502.05477
https://doi.org/10.1109/ISCC58397.2023.10218019
https://doi.org/10.1109/ICC40277.2020.9148789
https://doi.org/10.1109/TNSM.2021.3132491
https://doi.org/10.32604/cmc.2022.031698
https://doi.org/10.1214/aoms/1177729694


Appl. Sci. 2023, 13, 12520 23 of 24

28. Iqbal, A.; Zubair, M.; Khan, M.A.; Ullah, I.; Ur-Rehman, G.; Shvetsov, A.V.; Noor, F. An Efficient and Secure Certificateless
Aggregate Signature Scheme for Vehicular Ad hoc Networks. Future Internet 2023, 15, 266. [CrossRef]

29. Abidi, R.; Azzouna, N.B. Self-adaptive trust management model for social IoT services. In Proceedings of the 2021
International Symposium on Networks, Computers and Communications (ISNCC), Dubai, United Arab Emirates,
31 October–2 November 2021; pp. 1–7. [CrossRef]

30. Magdich, R.; Jemal, H.; Nakti, C. An efficient trust related attack detection model based on machine learning for social Internet of
Things. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin City, China,
28 June–2 July 2021; pp. 1465–1470. [CrossRef]

31. Amiri-Zarandi, M.; Dara, R.A.; Fraser, E. LBTM: A lightweight blockchain-based trust management system for social Internet of
Things. J. Supercom. 2022, 78, 8302–8320. [CrossRef]

32. Wang, X.; Zhong, X.; Li, L. TOT: Trust aware opportunistic transmission in cognitive radio social Internet of Things. Comput.
Commun. 2020, 162, 1–11. [CrossRef]

33. Farahbakhsh, B.; Fanian, A.; Manshaei, M.H. TGSM: Towards trustworthy group-based service management for social IoT.
Internet Things 2021, 13, 100312. [CrossRef]

34. Ashwin, M.; Kamalraj, S.; Azath, M. Weighted Clustering Trust Model for Mobile Ad Hoc Networks. Wirel. Pers. Commun. 2017,
94, 2203–2212. [CrossRef]

35. Rajeswari, A.R.; Kulothungan, K.; Ganapathy, S. A trusted fuzzy based stable and secure routing algorithm for effective
communication in mobile adhoc networks. Peer-to-Peer Net. Appl. 2019, 12, 1076–1096. [CrossRef]

36. Zhang, T.; Yan, L.; Yang, Y. Trust evaluation method for clustered wireless sensor networks based on cloud model. Wirel. Net.
2016, 24, 777–797. [CrossRef]

37. Mingwu, Z.; Bo, Y.; Yu, Q. Using Trust Metric to Detect Malicious Behaviors in WSNs. In Proceedings of the Eighth ACIS
International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
(SNPD), Qingdao, China, 30 July–1 August 2007; pp. 104–108. [CrossRef]

38. Sagar, S.; Mahmood, A.; Sheng, M. Towards a Machine Learning-driven Trust Evaluation Model for Social Internet of Things: A
Time-aware Approach. In Proceedings of the 17th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services (MobiQuitous), New York, NY, USA, 7–9 December 2020; pp. 283–290. [CrossRef]

39. Sagar, S.; Mahmood, A.; Sheng, Q.Z.; Zhang, W.E. Trust Computational Heuristic for Social Internet of Things: A Machine
Learning-based Approach. In Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; pp. 1–6. [CrossRef]

40. Marche, C.; Nitti, M. Trust-Related Attacks and Their Detection: A Trust Management Model for the Social IoT. IEEE Trans. Net.
Serv. Manag. 2020, 18, 3297–3308. [CrossRef]

41. Jafarian, B.; Yazdani, N.; Haghighi, M.S. Discrimination-aware trust management for social internet of things. Comp. Net. Inter. J.
Comp. Tel. Net. 2020, 178, 11. [CrossRef]

42. Abdelghani, W.; Amous, I.; Zayani, C.A.; Sèdes, F. Dynamic and scalable multi-level trust management model for Social Internet
of Things. J. Supercomput. 2022, 78, 8137–8193. [CrossRef]

43. Abadi, A.F.E.; Asghari, S.A.; Marvasti, M.B.; Abaei, G. RLBEEP: Reinforcement-Learning-Based Energy Efficient Control and
Routing Protocol for Wireless Sensor Networks. IEEE Access 2022, 10, 44123–44135. [CrossRef]

44. Chen, C.; Xue, F.; Lu, Z. RLMR: Reinforcement Learning Based Multipath Routing for SDN. Wirel. Commun. Mob. Comp. 2022,
2022, 5124960. [CrossRef]

45. Yao, H.; Mai, T.; Xu, X.; Zhang, P.; Li, M. NetworkAI: An intelligent network architecture for self-learning control strategies in
software defined networks. IEEE Internet Things J. 2018, 5, 4319–4327. [CrossRef]

46. Chen, Y.R.; Rezapour, A.; Tzeng, W.G. RL-Routing: An SDN Routing Algorithm Based on Deep Reinforcement Learning. IEEE
Trans. Net. Sci. Eng. 2020, 7, 3185–3199. [CrossRef]

47. Li, Z.; Wang, X.; Pan, L. Network Topology Optimization via Deep Reinforcement Learning. IEEE Trans. Commun. 2022, 71,
2847–2859. [CrossRef]

48. Guo, X.; Lin, H.; Li, Z.; Peng, M. Deep-Reinforcement-Learning-Based QoS-Aware Secure Routing for SDN-IoT. IEEE Internet
Things J. 2020, 7, 6242–6251. [CrossRef]

49. Wang, J.; Liu, J.; Guo, H.; Mao, B. Deep Reinforcement Learning for Securing Software-Defined Industrial Networks with
Distributed Control Plane. IEEE Trans. Ind. Infor. 2022, 18, 4275–4285. [CrossRef]

50. Xu, Q.; Zhang, Y.; Wu, K.; Wang, J. Evaluating and Boosting Reinforcement Learning for Intra-Domain Routing. In Proceedings of
the IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Monterey, CA, USA, 4–7 November 2019;
pp. 265–273. [CrossRef]

51. Douligeris, C.; Mitrokotsa, A. DDoS attacks and defense mechanisms: A classification. In Proceedings of the 3rd IEEE International
Symposium on Signal Processing and Information Technology (ISSPRT), Darmstadt, Germany, 17 December 2003; pp. 190–193.
[CrossRef]

52. Zargar, S.T.; Joshi, J.; Tipper, D. A Survey of Defense Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks.
IEEE Commun. Sur. Tutor. 2013, 15, 2046–2069. [CrossRef]

53. Vishwakarma, R.; Jain, A.K. A survey of DDoS attacking techniques and defence mechanisms in the IoT network. Telecom. Syst.
2020, 73, 3–25. [CrossRef]

https://doi.org/10.3390/fi15080266
https://doi.org/10.1109/ISNCC52172.2021.9615856
https://doi.org/10.1109/IWCMC51323.2021.9498808
https://doi.org/10.1007/s11227-021-04231-3
https://doi.org/10.1016/j.comcom.2020.08.007
https://doi.org/10.1016/j.iot.2020.100312
https://doi.org/10.1007/s11277-016-3371-0
https://doi.org/10.1007/s12083-019-00766-8
https://doi.org/10.1007/s11276-016-1368-y
https://doi.org/10.1109/SNPD.2007.325
https://doi.org/10.1145/3448891.3448927
https://doi.org/10.1109/ICC40277.2020.9148767
https://doi.org/10.1109/TNSM.2020.3046906
https://doi.org/10.1016/j.comnet.2020.107254
https://doi.org/10.1007/s11227-021-04205-5
https://doi.org/10.1109/ACCESS.2022.3167058
https://doi.org/10.1155/2022/5124960
https://doi.org/10.1109/JIOT.2018.2859480
https://doi.org/10.1109/TNSE.2020.3017751
https://doi.org/10.1109/TCOMM.2023.3244239
https://doi.org/10.1109/JIOT.2019.2960033
https://doi.org/10.1109/TII.2021.3128581
https://doi.org/10.1109/MASS.2019.00039
https://doi.org/10.1109/ISSPIT.2003.1341092
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1007/s11235-019-00599-z


Appl. Sci. 2023, 13, 12520 24 of 24

54. Mycek, M.; Secci, S.; Pióro, M.; Rougier, J.-L. Cooperative multi-provider routing optimization and income distribution. In
Proceedings of the 7th International Workshop on Design of Reliable Communication Networks (DRCN), Washington, DC, USA,
25–28 October 2009; pp. 281–288. [CrossRef]

55. Jimmy, L.B.; Jamie, R.K.; Geoffrey, E.H. Layer Normalization. arXiv 2016. [CrossRef]
56. Aslansefat, K.; Khanh, N.Q.; Rastogi, O. CICIDS2017: Intrusion Detection Evaluation Dataset. 2019. Available online: https:

//www.kaggle.com/datasets/cicdataset/cicids2017 (accessed on 16 October 2023).
57. Suárez-Varela, J. NSFNet Topology. 2019. Available online: http://knowledgedefinednetworking.org/data/datasets_v0/nsfnet.

tar.gz (accessed on 16 October 2023).
58. Rusek, K. Germany50 Topology. 2020. Available online: http://knowledgedefinednetworking.org/data/datasets_v1/germany5

0bw.tar.gz (accessed on 16 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/DRCN.2009.5339996
https://doi.org/10.48550/arXiv.1607.06450
https://www.kaggle.com/datasets/cicdataset/cicids2017
https://www.kaggle.com/datasets/cicdataset/cicids2017
http://knowledgedefinednetworking.org/data/datasets_v0/nsfnet.tar.gz
http://knowledgedefinednetworking.org/data/datasets_v0/nsfnet.tar.gz
http://knowledgedefinednetworking.org/data/datasets_v1/germany50bw.tar.gz
http://knowledgedefinednetworking.org/data/datasets_v1/germany50bw.tar.gz

	Introduction 
	Related Works 
	Trust-Based Security Mechanisms 
	Reinforcement Learning in SDN 

	System Model 
	Network Module 
	Attack Module 
	Deep Reinforcement Learning Module 

	Trust-Based Proximal Policy Optimization (TBPPO) 
	The Improved DFS Module 
	Security Module 
	Markov Process Transition Module 
	Reward Module 
	Enhanced PPO Module 

	Results and Validation 
	Experiment Setup 
	Validation of the KL Trust Mechanism 
	Performance Comparison 
	Baselines 
	Network Topologies 
	Convergence Comparison 
	Delay Comparison 
	Trust Value Comparison 
	Delay Variation Comparison 
	Node Diversity Analysis 
	Multi-Path Routing Performance 


	Conclusions 
	References

