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Abstract: Although the existing deblurring methods for defocused images are capable of approxi-
mately recovering clear images, they still exhibit certain limitations, such as ringing artifacts and
remaining blur. Along these lines, in this work, a novel deep-learning-based method for image
defocus deblurring was proposed, which can be applied to medical images, traffic monitoring,
and other fields. The developed approach is equipped with wavelet transform, an iterative filter
adaptive module, and graph neural network and was specifically designed for handling defocused
blur. Our network exhibits excellent properties in preserving the original information during the
restoration of clear images, thereby enhancing its capability to spatially address varying blurriness
and improving the quality of deblurring. From the acquired experimental results, the superiority of
the introduced method in the context of image defocus deblurring compared to the majority of the
existing algorithms was clearly demonstrated.

Keywords: image deblurring; deep learning; wavelet transform; defocus deblurring

1. Introduction

When an object resides on the focal plane of a lens, the light emitted from a point on
the object can be projected onto the image plane as a single point. However, for points that
are not positioned on the focal plane, a blurred circle composed of numerous image points
is formed, resulting in defocus blur. In real-world applications, errors in the camera’s focal
length or depth of field settings often lead to image defocus blur, significantly impairing
the practical utility of the image. Image deblurring, as a way to improve image quality,
is widely used in various fields, such as medical imaging and traffic monitoring. Image
defocus deblurring is considered a typical ill-posed problem in image processing, with
the aim to recover a corresponding clear image from a defocused blurred image. In recent
years, this technology has received widespread attention from the scientific community.
Nonetheless, the recovery of a clear image from a real blurred image remains challenging
due to the complex and variable nature of the blur kernel in real-world scenarios.

In traditional defocus deblurring methods, defocused blurred images are treated as the
outcomes of convolving clear images with various blur kernels. Therefore, these methods
can restore clear images by predicting these blur kernels and subsequently applying non-
blind deconvolution. However, due to the oversight of real-world blur nonlinearity during
the process of defocus deblurring, the performance of the traditional approaches in defocus
deblurring is suboptimal.

Recently, Abuolaim and Brown [1] introduced the first end-to-end learning-based
approach, namely DPDNet, which is independent of the specific blur models and directly
recovers clear images. By employing an end-to-end learning methodology, DPDNet exhibits
superior performance in handling real-world defocused images compared to prior methods.
The authors introduced the Dual-Pixel Defocus deblurring (DPDD) dataset. However, their
deblurred image frequently exhibited ringing artifacts and remaining blur (Figure 1),
primarily due to an excessive loss of original information during the image processing
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procedure using straightforward UNet [2] architecture. On the other hand, the network’s
structure is overly simplistic, hindering both the accurate extraction of image information
and the reconstruction of clear images.
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In this work, an end-to-end network for performing single-image defocus deblurring
was proposed. Innovatively, in the encoding phase of the network, the downsampling
layers were replaced with wavelet transforms. It was also considered that the lossless image
decomposition of images can be achieved using the wavelet transform. Therefore, the size
of the feature maps was reduced while ensuring the preservation of image information.
Simultaneously, in the decoding phase, wavelet inverse transforms were employed to
upsample low-resolution feature maps into high-resolution images, effectively minimizing
the image information loss during the process of restoring clear images from feature maps.
Additionally, the images exhibiting sparsity in the wavelet domain enabled the network to
learn mapping from sparse features to sparse features [3], which significantly enhanced the
learning efficiency of the network.

Furthermore, to effectively address extensive defocus blur, the Iterative Filter Adaptive
module (IFA) [4] and Graph Convolution Network modules (GCN) [5] were utilized. Partic-
ularly, IFA, a module proficient in handling spatial variations and significant defocus blur,
was used. To address spatial variations, IFA utilizes an adaptive filter prediction scheme.
More specifically, IFA does not directly predict pixel values; instead, it adaptively generates
per-pixel defocus-deblurring filters and applies them to feature maps. Additionally, the
GCN module was employed to exploit the characteristics of graph structures, connecting
feature maps and employing graph convolution to recover lost details from the encoded
feature maps of different channels.

In summary, the contributions of this work are as follows:

(1) An end-to-end network for single-image de-defocusing is presented. Wavelet trans-
forms are also incorporated into the encoding stage of the proposed network, reducing
the feature map size while ensuring a wide receptive field.

(2) IFA and GCN modules are introduced to increase the network’s depth, thereby
enhancing the ability to reconstruct clear images.

(3) A proprietary dataset is curated. In contrast to previous datasets, the proposed collec-
tion included a higher proportion of images with extensive defocus blur, alongside
their corresponding all-in-focus images.

2. Related Works

The process of image deblurring can be regarded as the pursuit of an optimal solu-
tion in the solution space. Traditional methods employ various natural image priors to
constrain the solution space by estimating the maximum a posteriori mode [6]. However,
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the conventional optimization approaches involve intricate iterative computations and
lack real-time capabilities. Moreover, simplistic model assumptions can lead to inaccurate
blur kernel estimation, thereby reducing the algorithm’s accuracy. In recent years, with
the advancements of deep learning, Convolutional Neural Networks (CNNs) have been
extensively applied in the field of image deblurring [7–9].

Recent research has primarily focused on enhancing network architectures, intro-
ducing multi-scale and increasing receptive fields to enhance the performance of image
restoration algorithms. Ronneberger et al. [2] proposed an encoder–decoder structure net-
work (U-net), which effectively exploits contextual information to achieve superior perfor-
mance in image semantic segmentation. Nah et al. [9] applied multiple scales to defuzzing
networks, gradually removing differences in the degree of ambiguity. Chen et al. [10]
embedded smooth dilated convolution to the network, while keeping the number of pa-
rameters in receptive fields constant to improve network performance. Zuozheng Lian
et al. [11] introduced an enhanced U-Net, incorporating depth-wise separable convolutions,
residual depth-wise separable convolutions, and wavelet transform. This approach enables
the extraction of finer image details while simultaneously reducing computational com-
plexity. Qian Ye et al. [12] introduced a network designed to establish direct mapping from
a blurred input image to a clear image, leveraging the estimated defocus map to condition
this mapping process. Li et al. [13] introduced the blind text image deblurring method
to obtain a clean text image from the given blurry text image without knowing the blur
kernel. However, their algorithm still lags behind mainstream deblurring algorithms in
terms of processing time. Additionally, it does not achieve satisfactory results in the task of
image deblurring caused by defocusing. Joan Bruna et al. [14] cascaded wavelet transform
convolution and nonlinear modulus calculations to compute translation-invariant image
features, preserving high-frequency information for classification. In another interesting
work, Bae et al. [15] discovered that wavelet transform within CNNs is beneficial for single-
image super-resolution and introduced wavelet residual networks. Yanyun Wu et al. [16]
presented a deblurring method that employs a two-level wavelet-based convolutional
neural network (CNN). This network incorporates discrete wavelet transform (DWT) to
distinguish image context from texture information, consequently reducing computational
complexity. Additionally, Junyong Lee et al. [4] introduced an Iterative Adaptive Net-
work to address spatially varying blur. Their approach enhances the network’s deblurring
capabilities by predicting a unique deblurring filter for every pixel within the image.

Nevertheless, current defocus deblurring methods still exhibit certain drawbacks, such
as image ringing artifacts and remaining blur. Furthermore, most networks are constrained
when dealing with pronounced severe defocus blur, and are characterized by a large
number of model parameters, long training times, and significant practical limitations.

3. Methods

The network architecture presented in this work is illustrated in Figure 2. Our ap-
proach was built upon U-net [2] by integrating wavelet transform into the encoding stage,
replacing the conventional pooling layer. The sparse nature of wavelet coefficients sim-
plifies the deblurring process while providing a larger receptive field to the network by
decreasing the size of the feature maps. In the decoding stage, wavelet inverse transform,
instead of the upsampling layer, was used to generate high-resolution feature maps from
low-resolution ones, effectively mitigating the information loss due to pooling layers. The
Iterative Filter Adaptive module (IFA) [4] and Graph Convolutional Network between the
encoding and decoding stages were also introduced. The network employs a filter size of
3*3 and uses Leaky Rectified Linear Unit (Leaky ReLU) [17] as the activation function. The
Mean Squared Error (MSE) loss function was also adopted, which is widely used in image
deblurring tasks and is the most suitable for our approach.
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Figure 2. Schematic illustration of the proposed network architecture, which was built upon the
U-Net framework, integrating wavelet transforms into the encoding stage and replacing conventional
pooling layers. In the decoding phase, wavelet inverse transforms in lieu of upsampling layers were
utilized. Furthermore, IFA modules and GCN layers between the encoding and decoding stages
were introduced.

3.1. Wavelet Transform

In two-dimensional Discrete Wavelet Transform (2D DWT), the input signal is divided
into four filter bands: LL, LH, HL, and HH. Initially, a one-dimensional (1D) DWT is applied
to each row of the image, resulting in a low-frequency component (L) and a high-frequency
component (H) in the horizontal direction. Subsequently, another 1D DWT is performed
on each column of the transformed data, generating four subbands:

LL Subband: This subband contains low frequencies in both horizontal and vertical directions.
LH Subband: This subband represents low frequency in the horizontal direction and high
frequency in the vertical direction.
HL Subband: This subband denotes high frequency in the horizontal direction and low
frequency in the vertical direction.
HH Subband: This subband represents high frequency in both horizontal and vertical
directions.

We employed 1D filters φ(x) and ϕ(x) for filtering and horizontal downsampling of
each column of the image. Subsequently, we employed two filters for filtering and vertical
downsampling of each row. As a result, four sub-images, ILL, ILH, IHL, and IHH, could be
computed. The 2D DWT can be represented as follows:

ψLL(x, y) = φ(x)φ(y)

ψLH(x, y) = φ(x)ϕ(y)

ψHL(x, y) = ϕ(x)φ(y)

ψHH(x, y) = ϕ(x)ϕ(y)

(1)

Conversely, during the reconstruction phase of 2D DWT, the inverse one-dimensional
discrete wavelet transform was applied first to each column of the transformed result,
followed by a similar operation on each row of the transformed data to obtain the recon-
structed image. To summarize, the wavelet decomposition process of an image involves
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separating the signal into low and high frequencies, and if necessary, the LL subband can
be further decomposed until the desired level of detail is achieved.

In this work, the pooling and upsampling layers in the U-net were substituted with dis-
crete wavelet transform (DWT) and inverse discrete wavelet transform (IDWT), respectively.
During the encoding phase, a series of convolutional operations and DWT were employed
to extract informative features from the input image. Subsequent to DWT processing, the
data size was reduced to one-quarter of its original size, whereas the number of channels
was quadrupled (Figure 3). Unlike conventional pooling layers that may lead to the loss of
some original information due to methods like merging or adjusting convolutional strides
to reduce data size, our approach can mitigate the data loss caused by this step.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 13 
 

Conversely, during the reconstruction phase of 2D DWT, the inverse one-dimen-
sional discrete wavelet transform was applied first to each column of the transformed re-
sult, followed by a similar operation on each row of the transformed data to obtain the 
reconstructed image. To summarize, the wavelet decomposition process of an image in-
volves separating the signal into low and high frequencies, and if necessary, the LL sub-
band can be further decomposed until the desired level of detail is achieved. 

In this work, the pooling and upsampling layers in the U-net were substituted with 
discrete wavelet transform (DWT) and inverse discrete wavelet transform (IDWT), respec-
tively. During the encoding phase, a series of convolutional operations and DWT were 
employed to extract informative features from the input image. Subsequent to DWT pro-
cessing, the data size was reduced to one-quarter of its original size, whereas the number 
of channels was quadrupled (Figure 3). Unlike conventional pooling layers that may lead 
to the loss of some original information due to methods like merging or adjusting convo-
lutional strides to reduce data size, our approach can mitigate the data loss caused by this 
step. 

 
Figure 3. Application of wavelet transform in the encoding and decoding process. 

3.2. Iterative Filter Adaptive Module 
The IFA module [4] was added at the bottom of the U-net. IFA takes the defocused 

feature map extracted by the network as input and outputs the deblurred feature map. In 
the IFA module, Ib, which is the same as the main network input, was introduced to pre-
dict the deblurring filter. IFA consists of a filter encoder, a filter predictor, and an Iterative 
Adaptive Convolution layer (IAC). The filter encoder encodes Ib as eF ∈ Rh×w×256, the filter 
predictor predicts the deblurring filter map Fdeblur ∈ Rh×w×cFdeblur, where Fdeblur is c (2k + 1), 
c is 256, and k is 3, and finally, the IAC layer uses the prediction filter Fdeblur to transform 
the input feature eB to generate the deblurring feature eBS. 

The Iterative Aggregation and Convolution (IAC) layer operates on the input Fdeblur, 
where each spatial location in Fdeblur is represented as an Nc (2k + 1)-dim vector, which 
corresponds to N sets of filters {F1, F2, · · ·, FN}. The n-th filter set Fn has two 1-dimensional 
filters, 𝑓ଵ௡ and 𝑓ଶ௡, whose size is k × 1 and 1 × k, respectively, and a bias vector 𝑏௡. The 
IAC layer reshapes 𝑓ଵ௡, 𝑓ଶ௡, and 𝑏௡ into a filter whose size is k × k and the channel is c. 
Corresponding to each spatial location, a filter is generated with channel c. The IAC layer 
decomposes the vectors in each position F into filter and bias vectors and iteratively ap-
plies them to eB in a channel fashion to generate the output feature map. The process is 
shown in Figure 4 

Figure 3. Application of wavelet transform in the encoding and decoding process.

3.2. Iterative Filter Adaptive Module

The IFA module [4] was added at the bottom of the U-net. IFA takes the defocused
feature map extracted by the network as input and outputs the deblurred feature map. In
the IFA module, Ib, which is the same as the main network input, was introduced to predict
the deblurring filter. IFA consists of a filter encoder, a filter predictor, and an Iterative
Adaptive Convolution layer (IAC). The filter encoder encodes Ib as eF ∈ Rh×w×256, the
filter predictor predicts the deblurring filter map Fdeblur ∈ Rh×w×c

Fdeblur, where Fdeblur is c
(2k + 1), c is 256, and k is 3, and finally, the IAC layer uses the prediction filter Fdeblur to
transform the input feature eB to generate the deblurring feature eBS.

The Iterative Aggregation and Convolution (IAC) layer operates on the input Fdeblur,
where each spatial location in Fdeblur is represented as an Nc (2k + 1)-dim vector, which
corresponds to N sets of filters {F1, F2, · · ·, FN}. The n-th filter set Fn has two 1-dimensional
filters, f n

1 and f n
2 , whose size is k × 1 and 1 × k, respectively, and a bias vector bn. The

IAC layer reshapes f n
1 , f n

2 , and bn into a filter whose size is k × k and the channel is c.
Corresponding to each spatial location, a filter is generated with channel c. The IAC layer
decomposes the vectors in each position F into filter and bias vectors and iteratively applies
them to eB in a channel fashion to generate the output feature map. The process is shown
in Figure 4.
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3.3. Graph Convolutional Network

The graph convolutional network was incorporated into the proposed network to
leverage the distinctive features of graph structures. This permitted the recovery of details
that were lost in defocus images. The specific process is illustrated in Figure 5. First, the
encoder generates high-dimensional features, which are transformed into independent
vertices. Then, these vertices are connected through a pre-generated graph. As a result, the
feature maps are converted into a graph network that can be further processed by graph
convolutions. Following multiple graph convolution operations, the nodes in the graph
structure are restored to feature maps in the same order [18].
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In the context of GCN, the propagation process involves the use of aggregators to ac-
quire the hidden states of nodes. Different GCNs employ a variety of aggregators to collect
data from neighbouring nodes, along with specific updates for adjusting node weights.
Kipf et al. [5] introduced an aggregator designed for spectral GCNs. The aggregator is
defined as follows:

T =
~
D
− 1
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A

~
D
− 1

2
X (2)

where T is the aggregator,
~
A = A + IN is the adjacency matrix of the undirected graph with

added self-connections, IN is the identity matrix, and
~
D is the degree matrix from [5]

GraphConv(X) =
~
D
− 1
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A

~
D
− 1

2
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Therefore, we represent the graph convolution utilized in the proposed network using

Equation (3), where
~
D is the degree matrix,

~
A is the adjacency matrix of the undirected

graph, X is the convolved matrix, and Θ is a matrix of graph convolution filter parameters.
Throughout the process of the graph convolution operation, the Watts–Strogatz (WS)

model [19] was implemented to transform the feature map and graph structure. Dur-
ing the graph convolution process, the pre-generated graph was utilized based on the
Watts–Strogatz model to achieve better results while reducing computational complex-
ity. To further enhance the performance, the Residual Graph Convolutional Networks
(ResGCN) [20] were integrated to increase the depth of the network.

3.4. Dataset

The DPDD dataset [1] was employed to train our network, which is a commonly used
end-to-end defocus dataset. In addition, our own dataset (Figure 6) was created. To this
end, a Canon EOS 800D camera was utilized to capture a pair of identical static images at
various apertures (F1.8-F22). As the aperture size varied, the depth of field in the captured
images differed, resulting in both clear (Ground Truth) and defocus blurred images. The
specific capture procedure was as follows: First, the camera was securely positioned on a
tripod to maintain stability throughout the entire shooting process while keeping the lens
focal length constant. The aperture was adjusted to its minimum value to acquire fully
clear images and subsequently switched to its maximum value to obtain blurred images.
Throughout the entire capture process, the automatic exposure mode was employed to
adjust the exposure time, ensuring consistent brightness across all images. To capture
diverse scenes and different types of defocused and blurred images, 100 scenes (indoor
and outdoor settings) and varying focal lengths were examined for image acquisition.
Similarly, our custom-made dataset comprised a total of 500 pairs of images. These images
were divided into training, validation, and test sets, with each set containing 400, 50, and
50 scenes, respectively.
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4. Experimental Section

Our model was implemented using PyTorch [21]. The training of the proposed model
was performed using an Adam optimizer where β1 = 0.9 and β2 = 0.99, with a weight
decay rate of 0.01. We employed a total of 9 ResBlocks in the encoder and an additional
9 ResBlocks in the decoder. The learning rate was initialized to 1.0 × 10−4. The number
of filters were set to N = 17 for Fdeblur. Moreover, a batch size of 8 was used, and during



Appl. Sci. 2023, 13, 12513 8 of 13

training, a 256 × 256 region was randomly cropped from a blurred image and its ground
truth image at the same location was used as the training input. MSE loss was also used, as
it is the most suitable loss function and is widely used in image deblurring.

For evaluating the performance of defocus deblurring, the following metrics were
used: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM) [22], and Mean
Absolute Error (MAE). Higher PSNR values indicate better image quality. SSIM values
range from −1 to 1, with 1 indicating perfect similarity. Lower MAE values signify better
deblurring performance.

The developed models and previous ones were evaluated using a PC with an NVIDIA
GeForce RTX 3060Ti GPU. The training process of our network using the DDPD dataset
required a duration of 12 h. During testing, the average processing time for each image
was 0.1 s.

4.1. Comparison with Previous Methods

The proposed approach was compared with previous defocus map-based methods
and recent end-to-end learning-based methods: Just Noticeable Blur estimation (JNB) [23],
Edge-Based Defocus Blur estimation (EBDB) [24], DPDNet [1], Ye et al.’s method [12],
and IFAN [4]. Among these methods, the JNB and EBDB are both defocus map-based
approaches. They start by estimating the defocus map and subsequently carry out non-
blind deconvolution. Ye et al.’s method attempts to learn direct mapping from the blurry
input image to the clean image by utilizing the estimated defocus map to condition the
mapping. DPDNet and IFAN belong to the end-to-end learning-based method that restores
deblur images directly. A visual comparison is shown in Figure 7, indicating that WIG-Net
restored clearer and sharper details.

These networks involved in the experiment were trained using the custom-made
dataset. Table 1 presents the quantitative comparison. The results indicate that under the
same training conditions, our network exhibits significantly improved defocus deblurring
performance compared to the current mainstream methods, with notable enhancements in
both PSNR and SSIM metrics.

Table 1. Quantitative comparison with previous defocus deblurring methods.

Model PSNR SSIM MAE

Input 22.31 0.614 0.502
Shi et al. [23] 22.39 0.620 0.504

Karaali et al. [24] 22.45 0.632 0.487
Abuolaim et al. [1] 22.73 0.687 0.464

Ye et al. [12] 23.54 0.715 0.428
Lee et al. [4] 23.64 0.723 0.419

Ours 23.71 0.742 0.412

Our network outperforms the other competing networks in defocus deblurring due
to several key reasons. Firstly, the introduced wavelet transform enables lossless image
decomposition, significantly reducing the loss of valuable information during processing.
Secondly, IFA and GCN extend the network’s receptive field, enhancing its ability to handle
large-scale defocusing blur effectively.
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4.2. Ablation Study

To analyse the impact of each module in our model on the deblurring effect, an ablation
study was performed (Table 2). All models in the ablation study were trained under the
same conditions. To evaluate the effectiveness of each module, the baseline model and its
four variants were compared. For the baseline model, conventional convolutional layers
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and residual blocks were used instead of the key modules designed specifically for our
network. In this work, comparison tests were performed on the DPDD dataset [1].

Table 2. Ablation study.

WtT IFA GCN PSNR SSIM MAE

23.67 0.705 0.436√
24.65 0.757 0.409√
24.56 0.751 0.414√
24.03 0.736 0.423√ √
25.12 0.765 0.399√ √
25.04 0.763 0.401√ √
24.77 0.749 0.411√ √ √
25.37 0.774 0.394

As shown in Table 2, the PSNR was 23.67 dB without introducing WtT, IFA, and
GCN, which indicates that the baseline model alone has a limited effect on the defocus
deblurring of images. With the introduction of WtT, IFA, and GCN, the sharpness of the
deblurred images was improved to different degrees. The introduction of WtT, IFA, and
GCN improved the average PSNR by 1.28 dB, 1.45 dB, and 1.37 dB, respectively, and the
average SSIM by 0.06, enabling the network to obtain high-quality reconstructed images.

Compared to the baseline model (the first and second rows in Table 2), the introduction
of WtT significantly enhanced the network’s deblurring capabilities. This confirms that in-
corporating wavelet transform into the code-and-decode structure increases the perceptual
field of the network, and the contextual information of the image can effectively be used
to produce clearer results at the edges, and the reversibility of wavelet transform avoids
the loss of image information. Meanwhile, the image is sparse in the wavelet domain, and
the downsampling of the wavelet transform enhances the sparsity of the image features
and improves the learning ability of the network. Furthermore, introducing IFA into the
baseline model can also improve the deblurring performance, as evident from the first and
third rows in Table 2. This validates the advantage of IFA in adaptively handling spatial
variations. The GCN module [18] also demonstrates good performance in deblurring, as
shown in the first and fourth rows of Table 2. This substantiates the effectiveness and feasi-
bility of the method that restores lost information by associating features across channels
through graph convolution. Nevertheless, the introduction of the GCN module increases
the network’s parameter count, leading to longer training times. Ensuring reasonable
training times can impose limitations on the depth of our network.

4.3. Generalization Ability

Given that our approach was trained using the DPDD training dataset [1], a natural
question arises concerning the model’s generalization to images from different datasets. To
address this, the performance of our method on alternative test sets was assessed. Figure 8
depicts the outcomes of our network trained on the DPDD dataset when applied to our
custom-made dataset’s test set. The restored image details are prominently discernible,
showcasing the efficacy of our model’s training on the DPDD dataset. Table 3 illustrates the
quantitative comparison of our custom-made dataset’s test set. A noticeable enhancement
in the image quality achieved by our model can be ascertained, indicating its favourable
generalization capacity to images captured by other cameras. The underlying reasons for
this effect could lie in the deep learning network utilizing wavelet transforms. Particu-
larly, owing to its inherent low information loss property, the network’s transferability is
enhanced and the generalization ability of networks with significant depth is also improved.
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Table 3. Quantitative evaluation on the custom-made dataset’s test set.

PSNR SSIM MAE

Blurry image 21.05 0.632 0.513

Ours 23.46 0.708 0.435

5. Conclusions

In this work, a deep-learning-based image deblurring algorithm was proposed that
employs a forward wavelet transform to replace downsampling and an inverse wavelet
transform for upsampling. This method increased the network’s receptive field and mini-
mized information loss during transmission. To recover the lost image information in the
wavelet domain, a graph neural network was employed that utilizes pre-defined graph
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structures to improve image restoration performance, while keeping the computational
cost low. An IFA module can handle spatially varying defocus blur by predicting a sepa-
rable deblurring filter for each pixel. Our experimental results, using the DPDD test set
and the custom-made dataset’s test set, demonstrated that the proposed method could
produce images with better visual quality and stronger robustness in various scenarios.
Our network is capable of handling large areas of defocus blurring and can be applied to
medical images, traffic monitoring, and other fields.

Our proposed network performed well in addressing defocus blur for smaller objects,
as indicated in the labeled section of Figure 8e, but it still exhibited certain limitations. We
plan to address this shortfall in future research by extending the dataset and enhancing the
network’s ability to extract detailed information.
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