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Abstract: The extended reality (XR) environment demands high-performance computing and data
processing capabilities, while requiring continuous technological development to enable a real-
time integration between the physical and virtual worlds for user interactions. XR systems have
traditionally been deployed in local environments primarily because of the need for the real-time
collection of user behavioral patterns. On the other hand, these XR systems face limitations in local
deployments, such as latency issues arising from factors, such as network bandwidth and GPU
performance. Consequently, several studies have examined cloud-based XR solutions. While offering
centralized management advantages, these solutions present bandwidth, data transmission, and
real-time processing challenges. Addressing these challenges necessitates reconfiguring the XR
environment and adopting new approaches and strategies focusing on network bandwidth and
real-time processing optimization. This paper examines the computational complexities, latency
issues, and real-time user interaction challenges of XR. A system architecture that leverages edge
and fog computing is proposed to overcome these challenges and enhance the XR experience by
efficiently processing input data, rendering output content, and minimizing latency for real-time
user interactions.

Keywords: extended reality; cloud computing; edge computing; LiDAR; point cloud; compression;
real-time interaction

1. Introduction

The rapid advances in digital technologies are fundamentally transforming daily
life. One of the most notable paradigm shifts in this ongoing transformation is the rapid
development of extended reality (XR) technologies, encompassing augmented reality
(AR) [1,2], virtual reality (VR) [3], and mixed reality (MR) [4].

XR, as a technological domain, revolves around the fusion or alteration of the phys-
ical world and the digital domain, forging entirely new digital realities by obfuscating
the conventional boundaries that delineate reality from the virtual world. VR achieves
complete user immersion within virtual environments, enabling interactions within digi-
tally synthesized settings entirely distinct from the physical world. AR overlays virtual
objects or information seamlessly onto the real-world context, augmenting everyday expe-
riences with rich layers of digital content. MR represents a dynamic convergence of the
virtual and real worlds, allowing users to interact with virtual entities within the authentic
physical environment.

These XR technologies are revolutionizing how people engage with digital information
and are finding diverse applications across a spectrum of domains, from entertainment and
gaming to the educational, healthcare, and industrial sectors. As XR continues its evolution-
ary trajectory, it has the potential to redefine perceptions and interactions within the tangible
and digital dimensions, presenting novel avenues for innovation and creative exploration.
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XR technology demands highly computational tasks, particularly in high-performance
3D rendering and processing extensive 3D point clouds [5]. These operations are partic-
ularly computation-intensive and must be executed in real time and be driven by user
interactions, requiring seamless and uninterrupted rendering of virtual environments.
Consequently, deploying such operations in a local environment was initially considered a
reasonable choice regarding performance and stability. On the other hand, the limitations
of local environments have become apparent with the advances in cloud technology and
the exponential growth in the number of users. This has led to the necessity of transitioning
to cloud-based solutions, driven by the following reasons.

First, a cloud-based XR environment [6] offers scalability, allowing it to accommo-
date a surge in users, with the advantage of accessibility from anywhere at any time. In
contrast, local environments can be complex and expensive regarding hardware upgrades
and maintenance. Leveraging the cloud enables swift expansion and upgrades, ensuring
uninterrupted services for users. This scalability of cloud environments facilitates user
collaboration and data sharing, particularly in scenarios involving numerous users collabo-
rating or exchanging information within virtual spaces. Cloud-based systems are adept at
handling such requirements seamlessly.

Second, in the cloud environment, it is feasible to collect and analyze large volumes
of data to learn user patterns and offer personalized experiences [7]. This enables the
provision of richer and tailored XR environments for users. In addition, cost savings are
achieved because of the reduced expenditures associated with hardware procurement and
management, such as storage and servers. Leveraging cloud services allows for the efficient
management of costs by utilizing resources only when needed.

Lastly, cloud environments facilitate seamless updates and maintenance tasks through
centralized management and automated processes [8]. Automation processes support the
automatic updating of system components and software. Swift remedial actions can be
taken when issues arise. Furthermore, cloud service providers can deploy new features
and improvements promptly, addressing user requirements and security concerns. These
advantages enhance the user experience and effectively incorporate the latest technologies
in cloud-based XR environments.

Therefore, transitioning to the cloud is considered an essential step in constructing XR
environments in a more modern and scalable manner, providing users with superior experi-
ences. On the other hand, there are certain challenges involved in moving XR environments
to the cloud. XR environments need to process and transmit large volumes of data in real
time, posing significant network bandwidth and latency obstacles. Transmitting data to
the cloud results in increased volumes of data. Moreover, the delays incurred while data
are transferred to cloud servers can hinder the user experience. Addressing these latency
issues requires network infrastructure optimization and data compression technologies.

Furthermore, real-time interactions with users must occur seamlessly in XR environ-
ments. Delays in data processing [9] and rendering within the cloud environment can
hinder the delivery of a smooth user experience. Therefore, methods must be explored to
ensure real-time processing and responsiveness, even within the cloud environment.

Therefore, developing new technologies and strategies for cloud-based XR environ-
ments is essential to address these challenges. Research focusing on network bandwidth
optimization and real-time processing optimization plays a critical role in resolving these
issues. Therefore, this paper proposes a novel XR system that leverages edge and fog com-
puting to overcome the limitations of existing cloud-based XR environments. This approach
aims to achieve network bandwidth optimization and real-time processing optimization,
ensuring a seamless XR experience for the users without interruptions.

In the context of XR environments, the system was designed with a central focus on
real-time user interactions. Consequently, the interaction component is considered one
of the most critical elements within the system. Within this system, interactions play a
prominent role in the input and output stages.
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From the input perspective, numerous sensors generate extensive data, collecting
information on the user’s actions and environmental factors. Effectively processing and
analyzing data to enable real-time interaction is paramount. Nevertheless, this necessitates
efficient data compression and decompression processes, and minimizing network latency
when transmitting data to servers.

In the proposed system, edge computing was designed to meet these requirements.
Edge computing applies data compression techniques to reduce the volume of data, mini-
mizing data transmission and processing delays. Typically, in XR environments, the devices
used for user interactions are installed at specific locations, designed to provide users with
a seamless interaction between the physical world and virtual environments. These de-
vices, which include various sensors and displays, are controlled by local edge computers.
These edge computers must process operations requiring rapid local processing, such as
the real-time handling of extensive input data. Synchronizing the time among various
hardware components ensures a natural interaction for users.

On the output side, real-time rendering of visuals and sound is crucial. Multiple edge
computers are used to provide users with a smooth and realistic virtual environment. These
edge computers are integrated to harmoniously coordinate the synchronization of input
data and rendering tasks for output data. Hence, a dedicated server operates within the
fog environment to guarantee the real-time performance of the system.

The proposed fog system is crucial for optimizing the interaction and user experience.
The system functions as a dedicated server, integrating data collected from edge computers
and input data while performing time synchronization tasks for the input data. Further-
more, it ensures precise timing for rendering visuals and sound based on the synchronized
data, coordinating with the edge computers responsible for rendering. After processing
the data collected by the fog system, it consolidates the key information and forwards it to
the central cloud system. This central cloud system efficiently manages multiple users and
virtual worlds, enabling natural interactions through synchronization. This architecture
allows the system to provide users with realistic, real-time interaction and effectively es-
tablish a cloud-based XR environment. This design is critical for delivering a smooth and
real-time interactive user experience.

This paper reports on a proposed system that utilizes edge and fog computing in a
cloud-based XR environment. Section 2 reviews the related research and examines trends in
the design of cloud-based XR systems and interaction-related research. Section 3 provides
details of the proposed system architecture and core technologies. Section 4 presents the
experimental results and performance tests. Section 5 concludes the paper and discusses
future research directions, systematically introducing the present research and emphasizing
the significance of cloud and edge computing in XR environments.

2. Related Works

VR [10,11] immerses the users entirely in a virtual world, enabling interactions com-
pletely detached from reality. AR [12] enriches everyday experiences by overlaying virtual
objects or information onto the real world, often through smartphone applications (apps) or
AR glasses. MR combines virtual and real worlds, allowing interactions with virtual objects
within the real world. XR technologies are revolutionizing various fields, including gaming,
education, healthcare, industrial automation, arts, and entertainment. These technologies
continue to evolve and expand.

XR environments blur the boundaries between the physical and digital realms, over-
coming the physical space limitations [13]. This convergence provides new opportunities
for users to interact with diverse digital content daily. XR shapes the future of computing
and interaction paradigms. Research efforts are currently underway to enable XR experi-
ences in cloud environments, aiming to overcome the constraints related to the physical
locations and computational performance.

Various research topics around cloud-based XR system design and edge computing
in XR systems exist. This section introduces these research topics. Research related to
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cloud-based XR system design [7] focuses on creating virtual environments centered on
cloud servers and delivering them to the users. Although these systems can provide high-
performance computing and the ability to handle large-scale data, they are constrained by
network latency and bandwidth issues, particularly in achieving real-time interactions.

Research on XR system design using edge computing [14,15] has explored methods of
improving user interactions by deploying edge computers in local environments. Edge com-
puters can handle large-scale data processing and real-time rendering locally, enhancing
the user experience. Research on hybrid cloud–edge environments [16] explores methods
to combine cloud and edge computing and provide optimal performance and user experi-
ences. In methods involving mobile devices or VR equipment, there are ongoing efforts
to address the latency issues, which can be problematic when using direct streaming or
edge computing solutions [17,18]. This study addressed network latency issues, efficiently
processing large datasets, and enabling real-time interactions.

Research on real-time data processing and compression technologies has investigated
methods [19–21] to process and compress large datasets. These technologies reduced the
volume of data, minimized network latency, and provided users with faster response times.
These research efforts encompassed two approaches for compressing point cloud data.
The direct compression approach compressed point cloud data directly using various data
structures and compression techniques [19]. Alternatively, researchers have converted raw-
point cloud data, such as packet data, into lossless range images. They applied different
compression algorithms, such as those used for images and videos, e.g., MPEG, to reduce
the volume of data [21]. Both methods aim to reduce the data size while maintaining
essential information in point cloud datasets.

Research on the interactions and user experience has focused on enhancing the
user’s experience within XR environments [22–24]. This study evaluated various meth-
ods to improve user experience, emphasizing user interactions and feedback processing.
These related studies are integral to enhancing XR environments through cloud-based
XR systems and edge computing, providing valuable insights and inspiration for these
research endeavors.

3. Proposed System Architecture

To provide a detailed explanation of the XR content slated for use as a testbed to
validate the efficiency of the proposed cloud platform, the following description is provided.
The experimental content facilitates a virtual environment wherein multiple users engage
in collaborative interactions within a cubic space through an online platform. This virtual
scenario takes the form of an interactive storybook.

Upon touching the virtual walls, users trigger immediate interactions. The touch
interactions are detected through LiDAR sensors embedded in the walls. To promptly
respond to user actions, laser projectors are employed to project visuals onto the four walls
and the floor, while speakers simultaneously reproduce corresponding audio feedback.
Consequently, users experience real-time responses to their interactions in the virtual world.

This content allows users to witness real-time reactions to their interactions in the
virtual environment, where touching the walls or interacting with elements previously
manipulated by other users leads to dynamic responses. The system is designed to offer
users a multi-sensory experience, providing visual and auditory feedback in real-time.

In a cloud-based XR environment, generating and transmitting large-scale 3D graphics
and sensor data are essential. However, this can lead to network bandwidth issues and
the need to prevent overload due to data streaming. In recognizing these challenges, we
propose an alternative approach that leverages edge and fog computing, which proves to
be more efficient in designing and implementing XR environments. Edge and fog com-
puting is more efficient in designing and implementing XR environments by considering
these constraints rather than relying solely on cloud-based systems, such as the real-time
transport protocol (RTP) [25]. This approach minimizes data transmission to the cloud,
especially for equipment with a significant volume of data, such as light detection and
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ranging (LiDAR) sensors and projectors installed in the real world. These devices can
seamlessly receive data in the local environment through edge computers.

Typically, in XR environments, content engages users through a process such as
Figure 1. Users perform actions as required by the content in a designated space, and these
actions need to be detected through sensing equipment provided in the XR environment
(in our proposal, LiDAR sensors). Such equipment, like LiDAR sensors, typically transmits
data such as point clouds. Based on this data, user actions are detected. These detected
actions are then reflected in the XR content through character actions, enabling the content
to provide feedback to users through screens and sound.
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The distinct characteristics of XR environments are that, when executed on local com-
puters, there are fewer constraints on data communication and data processing. However,
there are limitations, such as higher costs and difficulties in facilitating interactions among
multiple users. Consequently, our proposal aims to address real-time processing challenges
that arise when building XR environments in a cloud setting. We achieve this by optimizing
the volume of data and leveraging dedicated servers.

The input data for our system primarily consists of 3D point cloud data detected using
a LiDAR sensor. These data are transmitted in real-time, with a scanning frequency of
20–30 times per second to determine whether the user’s body is in contact with the wall.
For touch interactions on the wall, multiple users may utilize various parts of their bodies,
necessitating the detection of multiple touches from different positions. To achieve this,
we deploy multiple sensors, as shown in Figure 2, to detect these touches with precision.
However, it is worth noting that, while this sensor arrangement enables precise touch
interactions, it can also result in data transmission delays due to the larger volume of
data. These delays may ultimately hinder user interaction and cause delays in the XR
environment’s output.

Generating and transmitting large-scale 3D graphics and sensor data are essential in a
cloud-based XR environment. This can lead to network bandwidth issues and the need
to prevent overload due to data streaming. Edge and fog computing enhance local data
processing and real-time on-site interaction, significantly improving the user experience.

Figure 2 shows the architecture of the proposed system. Unlike conventional cloud-
based methods, the proposed approach minimizes data transmission to the cloud. There-
fore, equipment with a significant volume of data to be transmitted, such as light detection
and ranging (LiDAR) sensors and projectors installed in the real world, can receive data in
the local environment through edge computers.

The input data for this system was the 3D point cloud data detected using a LiDAR
sensor. These data were transmitted primarily in real-time, scanning the volumetric area as
point cloud data at 20–30 times per second to determine if the user’s body was in contact
with the wall. For touch interactions on the wall, multiple users can utilize various parts of
their bodies, requiring the detection of multiple touches from different positions. Therefore,
multiple sensors are deployed to detect multiple touches, as shown in Figure 3. While
this sensor arrangement enables precise touch interactions, data transmission delays can
increase because of the larger volume of data. Such delays can ultimately hinder user
interaction, delaying the output utilized as an element of the XR environment.



Appl. Sci. 2023, 13, 12477 6 of 13
Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 
Figure 2. System architecture of the proposed method. 

Generating and transmitting large-scale 3D graphics and sensor data are essential in 
a cloud-based XR environment. This can lead to network bandwidth issues and the need 
to prevent overload due to data streaming. Edge and fog computing enhance local data 
processing and real-time on-site interaction, significantly improving the user experience. 

Figure 2 shows the architecture of the proposed system. Unlike conventional cloud-
based methods, the proposed approach minimizes data transmission to the cloud. There-
fore, equipment with a significant volume of data to be transmitted, such as light detection 
and ranging (LiDAR) sensors and projectors installed in the real world, can receive data 
in the local environment through edge computers. 

The input data for this system was the 3D point cloud data detected using a LiDAR 
sensor. These data were transmitted primarily in real-time, scanning the volumetric area 
as point cloud data at 20–30 times per second to determine if the user’s body was in contact 
with the wall. For touch interactions on the wall, multiple users can utilize various parts 
of their bodies, requiring the detection of multiple touches from different positions. There-
fore, multiple sensors are deployed to detect multiple touches, as shown in Figure 3. While 
this sensor arrangement enables precise touch interactions, data transmission delays can 
increase because of the larger volume of data. Such delays can ultimately hinder user in-
teraction, delaying the output utilized as an element of the XR environment. 

Figure 2. System architecture of the proposed method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 
Figure 3. Simulating touch detection of the wall using two LiDAR sensors. 

In the proposed system, edge computers are critical as they receive sensor data in 
real time in the local environment, making them essential devices for efficient data reduc-
tion. Typically, network speeds are slower than the CPU or GPU processing speeds. 
Therefore, compressing the data on these edge computers before transmitting it to the 
cloud can alleviate data bottlenecks. The system divides the target wall into minimum 
unit-sized segments to facilitate touch detection, as shown in Figure 4. Multiple points 
map to a single unit because most touches are concentrated in specific areas. For content 
execution, it is essential to know where touches are detected. Thus, it is advantageous to 
selectively send only the areas where touch detection occurs rather than transmitting all 
the points. 

 
Figure 4. Uniformly segmented areas in the content divided into detection units. The blue circles 
represent point cloud data detected from LiDAR sensors, while the yellow box indicates the areas 
where touch detection is inferred. 

In the proposed method, for efficient compression, the edge computer assesses the 
areas that detect touches based on the received input points. This approach efficiently re-
moves redundant points detected at the same location. Furthermore, it allows the data to 
be structured in an image format with screen resolution, distinct from irregularly scanned 

Figure 3. Simulating touch detection of the wall using two LiDAR sensors.



Appl. Sci. 2023, 13, 12477 7 of 13

In the proposed system, edge computers are critical as they receive sensor data in real
time in the local environment, making them essential devices for efficient data reduction.
Typically, network speeds are slower than the CPU or GPU processing speeds. Therefore,
compressing the data on these edge computers before transmitting it to the cloud can
alleviate data bottlenecks. The system divides the target wall into minimum unit-sized
segments to facilitate touch detection, as shown in Figure 4. Multiple points map to a single
unit because most touches are concentrated in specific areas. For content execution, it is
essential to know where touches are detected. Thus, it is advantageous to selectively send
only the areas where touch detection occurs rather than transmitting all the points.
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In the proposed method, for efficient compression, the edge computer assesses the
areas that detect touches based on the received input points. This approach efficiently
removes redundant points detected at the same location. Furthermore, it allows the data to
be structured in an image format with screen resolution, distinct from irregularly scanned
LiDAR data. This structured data can be applied with various compression techniques like
Huffman encoding [26] or H.264 [27], enhancing the compression efficiency.

The proposed method introduces a compression technique that utilizes previously
scanned data to reduce data transmission. This compression approach sends information
about touch detection for segmented areas to the content server. After the initial data trans-
mission, subsequent data transmissions only send the coordinates of the altered data to
make it easier for the server to determine touch detection. A transmission control protocol
(TCP) must be used because it is crucial not to lose data. The system avoids transmitting
data without user input by sending only the detected coordinates. In addition, it can re-
spond immediately with minimal data transmission when changes are detected. Therefore,
this approach offers advantages over the traditional method of directly transmitting scan
values from sensors to the cloud.

Upon receiving such input, the edge computer responsible for the output must process
the received data promptly in real time. On the other hand, cloud-based systems often
experience delays in data transmission depending on network conditions. Hence, our
proposed method leverages a fog computing system to establish a dedicated content server,
distinct from the cloud, which operates as a dedicated server [28]. This approach involves
the fog server assessing touch-related data from the edge, processing the output accordingly,
and relaying this information to the cloud server for synchronization with other XR users.
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Several crucial constraints must be considered when incorporating edge and fog
computing into XR environments. XR environments require real-time interactions for
quality user experiences, emphasizing the importance of processing inputs and outputs
as locally as possible to mitigate the latency issues caused by data transmission in cloud
computing. Hence, local computers, such as edge computing, can process input and output
data rapidly, minimizing latency and providing users with a seamless interaction.

XR environments that merge virtual and real-world settings were constructed. In this
XR environment, virtual worlds are rendered on all the walls of a small room, providing
users with the sensation of being immersed in a virtual world within the physical one.
As shown in Figure 1, multiple laser projectors were used to project images onto various
walls, and user inputs are detected using LiDAR sensors [29] when users interact with the
walls. The proposed system employs edge computers to handle extensive point cloud data
generated from LiDAR sensors, render screens and sound, and ensure swift processing [30].

First, the edge computer responsible for processing input data received all the data
from the LiDAR sensor. On the other hand, the data size was too large to be transmitted as
a complete point cloud. Therefore, this study used a method of extracting and compressing
only the data that differs from the previous data. This compression helped mitigate
the problem of input data that will cause bottlenecks. Once the compressed data were
transmitted to the central server, the original data were restored, and the touch events
were determined. Subsequently, the input results were displayed on the screen to facilitate
interactions with the user, which was the fundamental processing method.

On the other hand, synchronizing input and output can be challenging because input
and rendering are processed separately on each edge computer. Therefore, the proposed
approach established a fog system using a local private cloud. This allowed for faster data
exchange than with a typical cloud environment. Within this system, synchronization was
designed based on the operational time of edge computers in the form of dedicated servers.
Figure 5 shows the synchronization method in the proposed system.
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Time synchronization is a crucial element in real-time systems. In the proposed method,
the fog system synchronized the time of all edge computers through time alignment during
the initial connection. In addition, it periodically checks and adjusts time discrepancies to
maintain synchronization. Through this process, the fog system’s server can deliver data or
events to the output edge computer accurately and enable real-time rendering.

Nevertheless, addressing response-delay situations due to network conditions is es-
sential. The proposed approach used the same clock to make all content progress identical
between the fog and edge computers, except for rendering tasks. The server was consis-
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tently prepared to render data identical to that of the output edge computer. It handled
operations responding to input data, ensuring synchronization among all edge computers
via the fog. In this manner, the proposed system minimized delays and provided interactive
content precisely on time.

Consequently, if a specific output edge computer experiences delays, the system uti-
lizes pre-processed data from the fog to synchronize with the data flow, enabling rendering
that is identical to the other edge computers precisely and on time. This approach leveraged
the edge computer performance using local computing power to render and pre-compute
the content flow of the fog. The system provided efficient results with fewer devices.
Moreover, compared to conventional RTP-based methods, which may encounter buffering
issues due to network latency and synchronization errors when using multiple displays,
the direct real-time rendering performed by edge computers offers superior responsiveness
and synchronization speed.

Data processed in cloud systems are typically categorized into static resource data
used in content and user data. Static resource data are generally large and known to many
users. Such data are updated by storing in central cloud storage and provided via a CDN
approach, allowing updates to be made at each fog or edge location. User data, however,
require real-time interaction and are processed in the fog. The data are transformed from
input data into touch events to reduce the size and are transmitted to minimize delays. This
approach enables central data collection for various users in the cloud while minimizing
device and edge computer usage adapting to individual XR system environments.

4. Experimental Results and Discussion

This section reports the efficiency of the proposed method by comparing the compres-
sion rate and interaction performance when using the edge computer-based compression
method in a testbed environment. The experimental setup used a Mini PC (Intel 10th Gen
i5, 16 GB RAM) for the edge computer, while the cloud environment consisted of a self-built
personal cloud with 6th Gen Intel i3 processors and OpenStack [31]. Four touchscreen
walls were used, each equipped with two LiDAR sensors, totaling eight sensors, and four
projectors were employed. For content delivery, a dedicated server format was used in the
fog system, and a rendering-specific client was formed and executed on the output edge.
The LiDAR sensor rotated 30 times per second, transmitting 10,000 points per rotation,
while the projector had a resolution of 1600 × 900, as used in the experiments.

The data compression rate experiments indicated an average data compression rate of
approximately 70–80%, as listed in Table 1. This compression allowed for the data to be
reduced to sizes of 1 KB or less during restoration and transformation into event messages.

Table 1. Average compression rates are based on the number of touches.

Area User Touches Compression Ratio

Front 5 83
Back 6 81
Left 5 77

Right 6 77

Hence, in recent network environments, where the amount of data transferred can
contribute to network latency in addition to pure response delay, this approach resulted
in no network latency between the cloud and the fog because the data size was tiny. As
the data compression rate increases, the required computing resources in the fog can be
reduced, solidifying the role of edge computers.

The second experiment analyzed the interaction latency by monitoring the delay count
over five minutes through logs. Table 2 lists the following scenarios: the proposed method
was used; only the edge and cloud were used; the edge, fog, and cloud were used; only the
cloud was used. When using only the cloud or fog, rendering was replaced with streaming
(RTP), allowing for an evaluation of the impact of the rendering method on latency. Unreal
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Engine 4 [32] was used for the real-time streaming approaches [25] without edge computers.
In addition, the Unreal Engine was used as the dedicated server [28].

Table 2. Number of occurrences of latency that affects the screen output for five minutes.

Area Our Method Use Edge + Cloud Use Fog + Cloud Use Cloud Only

Front 1 7 37 92
Back 0 4 46 108
Left 0 12 45 112

Right 1 8 31 99

Minimal latency was observed when utilizing edge computers. This result was at-
tributed to the effective compression of most data through edge computing. On the other
hand, in scenarios without a fog system, rendering delays and issues related to time syn-
chronization through data updates occurred multiple times, and there were instances of
network response latency in the cloud. Therefore, latency issues were minimized when
the fog system played a significant role in user interaction, and the edge focused on
data compression.

The touch recognition speed for the output from the moment of input was measured.
This measurement was conducted to provide a clearer comparison of the responsiveness
with the existing approaches from previous experiments. Figure 6 illustrates the measure-
ment conducted in the same environment. The delay times were compared based on logs
created when rendering in the time-synchronized input/output edge computers. Measure-
ments were taken over time, and the results are based on a one-minute measurement in a
15 fps environment. Figure 6 records the data at 30 frame (two second) intervals for visual
clarity and to reduce the amount of visualized data.
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The proposed method exhibited a very stable pace of user interaction time. With
an average delay of less than 100 ms for touch events, users could comfortably engage
with the content at 15 fps contents. When an edge computer was involved, it reduced the
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amount of data transmitted to the cloud significantly, resulting in a consistent response
time. The method utilizing both edge and cloud exhibited a slight delay in video playback
because it used real-time streaming for rendering. For touch detection, however, it received
compressed data, maintaining a consistent speed. On the other hand, when edge computing
was not used, the data had to be received and processed from multiple LiDAR sensors
over the network. As a result, the transmitted data accumulated over time, leading to
progressively slower responsiveness. The same phenomenon was observed when using the
cloud only, and it slowed down even faster than with the fog due to slower network latency.

In this section, we evaluated the performance of the proposed method in a testbed
environment. We compared our system with various system architectures and perfor-
mances in existing systems that utilize the functionality of commercial game engines. Our
system processes a substantial amount of point cloud data received from LiDAR sensors
located on the six walls. Handling such large-scale data processing is typically challenging
in cloud environments. However, we efficiently addressed this issue by employing edge
computing, which involves data compression. Our experiments demonstrated that our
system achieved an average data compression rate of approximately 70–80%, minimizing
network latency between cloud and fog and allowing for the transmission of smaller data
sizes. This reduction in data transfer delays significantly improves real-time interaction,
enhancing the user experience in XR environments.

Furthermore, we conducted a comparative analysis between fog servers and central
servers. In our proposal, fog servers share the same logic as central servers but do not retain
data. Instead, they fetch data from the central server when needed. This approach mini-
mizes network latency and effectively resolves time synchronization issues among users.
As a result, this configuration provides a clear advantage in response time compared to
traditional cloud-based systems, optimizing user interactions, and delivering an improved
user experience.

Additionally, our system is designed to perform GPU-intensive tasks, particularly
screen rendering, exclusively on edge computers. This design ensures that graphics-
related tasks, which demand GPU capabilities, are offloaded to the edge, while CPU-based
operations, which do not require graphics processing, are carried out within the fog and
cloud servers. This efficient division of labor reduces the cost of cloud infrastructure setup
and maintenance and effectively distributes the load in online XR environments. As a
result, our system offers a more immersive and realistic virtual reality experience.

The proposed method used edge computing for the efficient local control of sensors
and displays and used fog computing for the rapid processing of user interactions with
feedback, synchronizing with the cloud later, enabling faster and more realistic interactions.

5. Conclusions

This paper proposed and experimentally validated a novel approach to enhance
real-time user interactions in XR environments. The proposed system distributes data
processing and rendering tasks from the cloud to local environments, leveraging edge and
fog computing. The experimental results showed that data compression and processing
using edge computers mitigated the rendering delays significantly, highlighting the crucial
role of fog systems in time synchronization and data synchronization for user interaction.
These findings represent significant advances in ensuring excellent performance and real-
time interactions in XR environments [6].

Furthermore, data processing in cloud environments and network response delays
can lead to increased latency, emphasizing the that leveraging edge and fog computing to
address these issues is essential. Consequently, the proposed system has great potential
for enhancing user experiences in XR environments, and its application and development
in various systems will lead to further progress and expansion in future research and
development endeavors.



Appl. Sci. 2023, 13, 12477 12 of 13

Author Contributions: Conceptualization, E.-S.L. and B.-S.S.; methodology, E.-S.L.; software, E.-S.L.;
validation, E.-S.L. and B.-S.S.; formal analysis, B.-S.S.; investigation, E.-S.L.; resources, E.-S.L.; data
curation, B.-S.S.; writing—original draft preparation, E.-S.L.; writing—review and editing, B.-S.S.;
visualization, E.-S.L.; supervision, B.-S.S.; project administration, E.-S.L.; funding acquisition, B.-S.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the National Research Foundation of Korea (NRF) grants
funded by the Korean government (No. NRF-2022R1A2B5B01001553 and No. NRF-2022R1A4A1033549).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the license of contents.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yin, Y.; Zheng, P.; Li, C.; Wang, L. A State-of-the-Art Survey on Augmented Reality-Assisted Digital Twin for Futuristic

Human-Centric Industry Transformation. Robot. Comput.-Integr. Manuf. 2023, 81, 102515. [CrossRef]
2. Heo, M.-H.; Kim, D. Effect of Augmented Reality Affordance on Motor Performance: In the Sport Climbing. Hum.-Centric Comput.

Inf. Sci. 2021, 11, 40. [CrossRef]
3. Zhang, F.; Wu, T.-Y.; Pan, J.-S.; Ding, G.; Li, Z. Human Motion Recognition Based on SVM in VR Art Media Interaction

Environment. Hum.-Centric Comput. Inf. Sci. 2019, 9, 40. [CrossRef]
4. Bang, G.; Yang, J.; Oh, K.; Ko, I. Interactive Experience Room Using Infrared Sensors and User’s Poses. J. Inf. Process. Syst. 2017,

13, 876–892. [CrossRef]
5. Lee, Y.; Yoo, B.; Lee, S.-H. Sharing Ambient Objects Using Real-Time Point Cloud Streaming in Web-Based XR Remote Collabora-

tion. In Proceedings of the 26th International Conference on 3D Web Technology, Pisa, Italy, 8–12 November; Association for
Computing Machinery: New York, NY, USA, 2021; pp. 1–9.

6. Theodoropoulos, T.; Makris, A.; Boudi, A.; Taleb, T.; Herzog, U.; Rosa, L.; Cordeiro, L.; Tserpes, K.; Spatafora, E.; Romussi, A.; et al.
Theodoros Theodoropoulos Cloud-Based XR Services: A Survey on Relevant Challenges and Enabling Technologies. J. Netw.
Netw. Appl. 2022, 2, 1–22. [CrossRef]

7. Liubogoshchev, M.; Ragimova, K.; Lyakhov, A.; Tang, S.; Khorov, E. Adaptive Cloud-Based Extended Reality: Modeling and
Optimization. IEEE Access 2021, 9, 35287–35299. [CrossRef]

8. Wu, H.; Zhang, H.; Cheng, J.; Guo, J.; Chen, W. Perspectives on Point Cloud-Based 3D Scene Modeling and XR Presentation
within the Cloud-Edge-Client Architecture. Vis. Inform. 2023, 7, 59–64. [CrossRef]

9. Huang, Y.; Song, X.; Ye, F.; Yang, Y.; Li, X. Fair and Efficient Caching Algorithms and Strategies for Peer Data Sharing in Pervasive
Edge Computing Environments. IEEE Trans. Mob. Comput. 2020, 19, 852–864. [CrossRef]

10. Boletsis, C.; Cedergren, J.E. VR Locomotion in the New Era of Virtual Reality: An Empirical Comparison of Prevalent Techniques.
Adv. Hum.-Comput. Interact. 2019, 2019, e7420781. [CrossRef]

11. AR/VR Light Engines: Perspectives and Challenges. Available online: https://opg.optica.org/aop/abstract.cfm?uri=aop-14-4-7
83 (accessed on 1 October 2023).

12. Chiang, F.-K.; Shang, X.; Qiao, L. Augmented Reality in Vocational Training: A Systematic Review of Research and Applications.
Comput. Hum. Behav. 2022, 129, 107125. [CrossRef]

13. Çöltekin, A.; Lochhead, I.; Madden, M.; Christophe, S.; Devaux, A.; Pettit, C.; Lock, O.; Shukla, S.; Herman, L.; Stachoň, Z.; et al.
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